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Abstract 

Background:  Papillary thyroid cancer (PTC) is a type of malignant tumor with excellent prognosis, accounting for 
more than 80% of thyroid cancer. Recently, numerous studies illustrated the importance of N6-methyladenosine (m6A) 
RNA modification to tumorigenesis, but it has never been reported in PTC.

Methods:  We downloaded data from The Cancer Genome Atlas (TCGA) and analyzed RNA expression, single nucleo-
tide polymorphisms (SNPs) and copy number variations (CNVs) of 19 m6A RNA methylation regulators in PTC. Then 
we used nonnegative matrix factorization (NMF) to cluster patients into two m6A subtypes and compared them in 
overall survival (OS) and disease-free survival (DFS). The Weighted correlation network analysis (WGCNA) and univari-
ate Cox proportional hazard model (CoxPH) were used to select genes for the construction of a m6A-related signature. 
The accuracy and prognostic value of this signature were validated by using receiver operating characteristic (ROC) 
curves, K-M (Kaplan–Meier) survival analysis, univariant and multivariant analyses.

Results:  CNVs and differential expression of m6A regulators were observed in PTC patients. Especially IGF2BP2 
(Insulin-like growth factor 2 mRNA binding protein 2), which was most significantly overexpressed in tumor tissue. 
We chose 4 genes in the m6A-related module from WGCNA: IGF2BP2, STT3A, MTHFD1 and GSTM4, and used them to 
construct a m6A-related signature. The prognostic value of this signature was validated, and risk scores provided by 
the signature was the independent prognostic factor for PTC. A nomogram was also provided for clinical usage.

Conclusions:  We performed a comprehensive evaluation of the m6A RNA modification landscape of PTC and 
explored its underlying mechanisms. Our m6A-related signature was of great significance in predicting the DFS of 
patients with PTC. And IGF2BP2 was a gene worthy for further analysis as its strong correlation with DFS and clinical 
phenotypes of PTC.
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Background
Thyroid cancer is one of malignant tumors whose inci-
dence are rapidly increasing in the world for both men 
and women. It can be classified into several subtypes: 

PTC, follicular thyroid cancer (FTC) and medullary thy-
roid cancer (MTC) [1]. PTC is the most common type of 
thyroid cancer, accounting for more than 80% of all cases. 
Generally, prognosis of patients with PTC is excellent, 
with 5-year-survival rate over 97% [2]. The 10-year and 
15-year survival rates of papillary microcarcinoma, PTC 
which is smaller than 1 cm, are even over 99% [3]. In pre-
vious studies, lymph node metastasis has been proved to 
increase the risk of local recurrence without influencing 
survival in PTC [4]. Wada et  al. indicated that patients 
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without lymph node metastasis has nearly no chance of 
recurrence, while the recurrence rate of patients with 
lymph node metastasis is over 16% [5]. As a result, it is of 
greater significance to explore prognostic factors for DFS 
than OS.

Generally, DNA and histone protein are considered to 
be essential participants of reversible epigenetic modi-
fication which can regulate gene expression in mammal 
cells [6]. In recent years, reversible RNA modification, 
especially methylation, has been demonstrated to be 
another important component of gene expression regula-
tion. The m6A RNA methylation, which was discovered 
in the 1970s, was the first example of reversible RNA 
methylation and wildly distributed in long non-coding 
RNAs and polyadenylated mRNAs [7, 8]. m6A has been 
observed within introns, internal exons, 3ʹ untranslated 
regions (3ʹUTRs) and stop codons, suggesting its addi-
tion can be earlier or simultaneous with RNA splicing [9, 
10]. There are 3 types of m6A RNA methylation regula-
tors: methyltransferases (writers), RNA binding pro-
teins (readers), and demethylases (erasers). Writers are 
composed of METTL3, METTL14, METTL16, RBM15, 
RBM15B, WTAP and KIAA1429. Readers are comprised 
of YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, HNRN-
PA2B1 and HNRNPC. FTO and ALKBH5 serve as eras-
ers which perform demethylation activity [11].

Numerous studies showed that m6A RNA methyla-
tion played a role in the occurrence and progression of 
multiple malignant tumors, including hepatocellular 
carcinoma, colorectal carcinoma, breast cancer, glio-
blastoma and clear cell renal cell carcinoma [12–15]. 
Yongsheng li et  al. have concluded the characteristics 
of m6A RNA methylation across 33 types of cancer and 
predicted that the mechanism of m6A RNA modifica-
tion might be related with the activation or depression 
of some oncogenic pathways such as PI3K-AKT-mTOR 
signaling, G2M checkpoint, KRAS and P53 pathways 
[16]. METTL3 and IGF2BP2 have been proved to be 
over-expressed in colorectal carcinoma and promote 
the progression of cancer [17]. The RNA transcripts of 
SOX2 were methylated by METTL3 and bonded with 
IGF2BP2, resulting in regulation of SOX2 degradation. 
Yunhao Chen et al. demonstrated that WTAP can lead to 
post-transcriptional suppression of its downstream effec-
tor, ETS proto-oncogene1 (ETS1), and further contrib-
ute to the proliferation of hepatocellular carcinoma [18]. 
However, there has been no research which specifically 
explored the landscape of m6A RNA methylation and its 
relationship with DFS in PTC. In addition to expression 
levels of m6A RNA methylation regulators, SNPs and 
CNVs may also have prognostic value for PTC.

In this study, we performed a comprehensive evalua-
tion of the landscape of m6A RNA methylation in PTC 

and explored its underlying mechanisms. The expres-
sion level, CNVs, SNPs and correlated clinical pheno-
types of m6A RNA methylation regulators were analyzed 
to confirm the significance of m6A modification in PTC. 
By applying NMF, we divided patients from the TCGA 
cohort into two clusters (cluster1 and cluster 2) accord-
ing to the expression of 19 m6A RNA methylation regu-
lators and validated their differences in OS and DFS. In 
order to screen out essential genes for constructing a 
m6A-related signature, we performed WGCNA, univari-
ant and multivariant analyses. Finally, we validated the 
accuracy and explored the underlying mechanism of the 
m6A-related signature by a series of analyses to illustrate 
its prognostic value.

Methods
Data download
The transcriptome data, somatic mutation data and clini-
cal information of PTC patients were obtained from the 
TCGA database via the GDC data portal (https​://porta​
l.gdc.cance​r.gov/repos​itory​). We downloaded RNA-seq 
(level 3, HTSeq-FPKM data) of 493 PTC patients (493 
primary tumor tissue and 58 solid normal tissue) with 
complete clinical information from the TCGA data-
base. For SNP, we downloaded “Masked Somatic Muta-
tion” subtype of somatic mutation data and used the 
VarScan software to process it. We used a R package 
called “maftools” [19] to analyze and visualize the Muta-
tion Annotation Format (MAF) of somatic variants. For 
CNV, the loss and gain of copy-number have been iden-
tified using segmentation analysis and GISTIC2.0 algo-
rithm. The microarray data of papillary thyroid cancer 
patients was downloaded from GSE58545 (normal = 18, 
PTC = 27) datasets in the Gene Expression Omnibus 
(GEO) database. Oncomine database (http://www.oncom​
ine.org) was used to validated mRNA levels of m6A regu-
lators in PTC. Human Protein Atlas (http://www.prote​
inatl​as.org) was used to validate expression levels of m6A 
RNA methylation regulators by immunohistochemistry 
[20]. A list of antibodies which were used in IHC sam-
ples were provided in Additional file 1: Table S1. We used 
Genotype-tissue expression (GTEx) dataset to compare 
expression levels of m6A regulators among different tis-
sues and genders.

Non‑negative matrix factorization consensus clustering
To investigate the relationship between the expression of 
m6A regulators and clinical phenotypes in PTC, we clus-
tered PTC samples from TCGA into 2 different clusters 
(cluster 1 and cluster 2) using NMF. The purpose of NMF 
was to identify potential characteristics in gene expres-
sion profiles by resolving the original matrix into two 
non-negative matrices [21]. Deposition was repeatedly 

https://portal.gdc.cancer.gov/repository
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http://www.oncomine.org
http://www.oncomine.org
http://www.proteinatlas.org
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performed, and its result was aggregated to acquire con-
sensus clustering of PTC samples. The most suitable 
number of subtypes was decided according to cophe-
netic, dispersion and silhouette coefficients. NMF was 
performed by a R package called “NMF” [22]. The num-
ber of clusters k was chosen as 2, and the number of runs 
was set at 200. We also used a R package called “survival” 
to compare the OS and DFS between cluster 1 and clus-
ter 2.

Construction of co‑expression module networks
The WGCNA was performed to establish the gene co-
expression network to find trait-related modules by the R 
package “WGCNA” [23]. All genes and samples were fil-
tered by good genes or good samples test. Filtered genes 
were used to construct a scale-free network by calculat-
ing the connection strength between genes. Scale-free R2 
ranging from 0 to 1 was used to determine a scale-free 
topology model. To minimize effects of noise and spuri-
ous associations, the adjacency matrix was transformed 
into Topological Overlap Matrix (TOM). And TOM-
based dissimilarity was used to form modules by dynamic 
tree cut. Here, we set minimal module size as 50 and cut 
height as 0.25. We used the KOBAS database to exert 
Kyoto Encyclopedia of Genes (KEGG) pathway enrich-
ment and gene ontology (GO) analysis of the m6A-related 
module in WGCNA. When the P value was less than 
0.05, the enriched pathway was considered to be statisti-
cally significant.

Construction of the m6A‑related risk signature
The patients with PTC from TCGA were randomly 
divided into a training set (N = 241) and a testing set 
(N = 240) using a R package called “caret”. For the train-
ing set, the univariate CoxPH was used to identify genes 
whose expression levels were statistically correlated 
with DFS, among all genes in the m6A-related module 
(P < 0.05). The m6A-related risk signature gave patients 
in training and testing sets risk scores based on genes 
weighted value which was calculated by a linear combi-
nation of Cox coefficient and gene expression:

And patients were classified into low-risk and high-risk 
group according to the median of risk scores.

Validation of the m6A‑related signature for colon cancer
The Chi square test was performed to confirm that 
there was no selection bias in classification of training 
and testing set. The univariate and multivariate analy-
ses were conducted for both the m6A-related signature 

Risk score =

N∑

i=0

(Expi * Coei).

and clinical factors. The Kaplan–Meier (K–M) survival 
curves and log-rank test were generated to evaluate the 
difference in DFS between high‐risk group and low‐risk 
group in total TCGA PTC cohort, training set and test-
ing set. We performed ROC curves to measure the prog-
nostic capacity of our signature using a R package called 
“survivalROC”. A nomogram was used to predict cancer 
prognosis. In the TCGA datasets, all genes in the sig-
nature were included to generate the nomogram which 
can investigate the chancer of 1-, 3- and 5-year DFS of 
patients with PTC.

Statistical analysis
We exerted Mann–Whitney U tests to compare the 
expression levels of m6A RNA methylation regulators in 
different subgroups (normal tissues/primary tumor tis-
sue, cluster1/cluster2). Chi square test was performed 
to confirm the difference in CNVs between normal and 
tumor tissues. Chi square test was also used to analyze 
the difference in clinical phenotypes between cluster 
1 and cluster 2, as well as high-risk group and low-risk 
group. The relationships between m6A regulators and 
other genes in the m6A-related module were analyzed by 
calculating the Spearman correlation coefficients.

Results
m6A RNA methylation regulators had different expression 
level in PTC and normal tissues
Using transcriptome data from TCGA database, we ana-
lyzed the mRNA levels of 19 m6A regulators in PTC and 
para-tumor normal tissues (Fig.  1a, b, Additional file  2: 
Table S2). Except YTHDF2, 18 of 19 m6A regulators were 
differentially expressed in PTC and normal thyroid tis-
sues. METTL3, YTHDC1, FTO, METTL14, RBM15, 
YTHDF3, WTAP, HNRNPA2B1, ALKBH5, METTL16, 
YTHDC2, KIAA1429, IGF2BP3, RBM15B and YTHDF1 
had lower expression levels in tumor tissues, while 
IGF2BP2, IGF2BP1 and HNRNPC had higher expres-
sion level in tumor tissues. Among all of these genes, only 
IGF2BP2 had significantly higher expression pattern and 
distinguishable protein expression in tumor tissue com-
pared to normal tissue (Fig. 1c). We also validated these 
results in the GEO database (Additional file 3: Table S3) 
and found 14 differentially expressed m6A RNA meth-
ylation regulators with 10 of them was the same as the 
analysis of TCGA. The expression of these genes was 
also further validated in the Oncomine database (Addi-
tional file  4: Figure S1) and Human Protein Atlas data-
base (Fig.  1c and Additional file  5: Figure S2). Then we 
explored the relationships between 19 m6A RNA meth-
ylation regulators by Spearman correlation analysis 
(Fig.  1d). The relationships between each two of them 
were almost positively correlated, and YTHDF3 and 
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KIAA1429 were most relevant (Cor = 0.82). However, 
there were also some genes which were negatively corre-
lated, such as IGF2BP2 and ALKBH5 (Cor = − 0.43).

CNVs and SNPs of m6A RNA methylation regulators can 
serve as prognostic factors for PTC
Among the 505 cases, CNVs of the 13 m6A RNA meth-
ylation regulators were frequently observed (Fig.  2a). 
In detail, two m6A “reader” genes HNRNPA2B1 and 
IGF2BP3 had the highest frequency of CNV events 
(2.04%, 2.04%) followed by YTHDC2 (1.63%) and 
METTl16 (1.22%). We performed Chi square test to ana-
lyze the difference in CNVs between normal tissues and 
PTC tissues, and found HNRNPA2B1 (P = 0.004235), 
IGF2BP3 (P = 0.004235) and METTL16 (P = 0.0040631) 
were of statistical significance (Additional file  6: 
Table  S4). The chromosome position of HNRNPA2B1, 
IGF2BP3 and METTL16 were shown in Fig.  2b. Fur-
thermore, we evaluated the correlation between the 
copy number and mRNA level of 19 m6A regulators, and 

found higher copy number of 4 genes were corresponded 
with higher expression level: ALKBH5 (P = 0.001), 
METTL16 (P = 2.287e−04), WTAP (P = 0.003) and 
YTHDF1 (P = 0.009) (Fig.  2d–g). SNPs of YTHDC1, 
RBM15, METTL14, HNRNPC, HNRNPA2B1 and FTO 
were found merely in 7 independent samples (Fig.  2c). 
CNVs and SNPs may influence the expression level and 
biological function of m6A RNA methylation regulators, 
and further effected the activities of RNA modification.

Two m6A subgroups were different in clinical phenotypes 
and DFS
The total TCGA cohort were clustered into 2 subgroups 
(cluster 1: n = 352 and cluster 2: n = 141) by applying 
NMF (Fig.  3a, b), according to expression levels of 19 
m6A regulators in PTC samples. To better understand 
the clustering result and its relationships with survival 
outcomes and clinical phenotypes, we compared the OS 
and DFS between cluster 1 and cluster 2 and found clus-
ter 2 had better DFS than cluster 1 (P = 0.034, Fig.  3c). 

Fig. 1  The overview of m6A RNA methylation regulators in PTC. a A Vioplot which visualized the differentially expressed m6A regulators in 
PTC (blue represents normal tissues and red represents tumor tissues). b The mRNA levels of 19 m6A regulators in PTC. Red means this gene is 
up-regulated while green means this gene is down-regulated (*P < 0.05, **P < 0.01, ***P < 0.001). c The validation of IGF2BP2 expression level by 
immunohistochemical staining. The result showed that the expression level of IGF2BP2 was higher in PTC tissue than normal thyroid tissue. d 
Spearman correlation analysis of the 19 m6A regulators in PTC. The “X” represents that the correlation between this pair of genes does not have 
statistical significance (P > 0.05). The number in every box is the Spearman correlation coefficient between two genes
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But there was no statistical difference between the OS of 
cluster 1 and cluster 2 (P = 0.056, Fig. 3d). These results 
demonstrated that m6A RNA methylation may have 
strong correlation with DFS of PTC patients. As shown 
in the heatmap, IGF2BP1, WTAP, FTO, IGF2BP3 and 
ALKBH5 had higher expression level in cluster 2, while 
IGF2BP2, RBM15B, HNRNPC were significantly down-
regulated in cluster 2 (Fig. 3e, Additional file 7: Table S5). 
We also found these 2 clusters were different in extrathy-
roidal extension (P < 0.01), T (P < 0.01) and N (P < 0.001) 
classifications, suggesting m6A RNA methylation may 
also related to clinical phenotypes and progression of 
PTC.

Detection of DFS‑related m6A regulator and its correlated 
module by WGANA
The univariant CoxPH was performed to identify m6A 
RNA methylation regulators which were prognostic 
factors for OS and DFS of patients with PTC (Table  1). 
We found that FTO (HR = 1.57, P = 0.044), RBM15 
(HR = 3.84, P = 0.012), YTHDF3 (HR = 1.29, P = 0.009) 
and KIAA1429 (HR = 1.76, P = 0.042) were related with 
the overall survival rate, while only IGF2BP2 (P = 0.0006) 
was related with the DFS of PTC patients. As we men-
tioned before, the prognosis of PTC patient is excellent, 

and the recurrence of tumor is one of the biggest chal-
lenges at present. As a result, it is of greater value for us 
to study the mechanism of genes related to DFS of PTC 
patient. By WGCNA, we identified 22 co-expression 
modules and analyzed their association with 12 clini-
cal phenotypes, including futime, fustat, TNM clas-
sification, stage, age, gender, new-event, new-event 
time, extrathyroidal extension and IGF2BP2 expression 
(High-expression and Low-expression) (Fig. 4a–c, Addi-
tional file  8: Figure S3). Except the grey module which 
contained non-clustering genes, the brown module was 
the most correlated module of IGF2BP2 expression 
(r = − 0.61, P = 7e−52). The brown module was also cor-
related with futime (r = − 0.15, P = 0.001), T (r = − 0.19, 
P = 3e−05), N (r = − 0.35, P = 1e−15), stage (r = − 0.14, 
P = 0.002), new-event (r = − 0.11, P = 0.01), new-event 
time (r = − 0.11, P = 0.02), age (r = 0.11, P = 0.02) and 
extrathyroidal extension (r = − 0.25, P = 3e−08). The 
result of KEGG and GO analyses showed that the brown 
module was related to membrane-bounded organelle, 
multiple metabolic process, thyroid hormone synthesis 
and HIF-1signaling pathway (Fig. 4d, e), especially meta-
bolic pathways in the central carbon metabolism, such as 
pyruvate metabolism, citrate cycle, propanoate metabo-
lism and glycolysis/gluconeogenesis.

Fig. 2  CNVs and SNPs analysis of m6A regulators. a The percentage of patients with CNVs in 13 m6A regulators. b The chromosome location of 
genes with frequently CNVs (HNRNPA2B1, IGF2BP3 and METTL16). c The SNPs of YTHDC, RBM15, METTL14, HNRNPC, HNRNPA2B1 and FTO were 
observed in 7 patients. d–g The copy numbers of ALKBH5, METTL16, WTAP and YTHDF1 were correlated with gene expression levels in PTC tissues
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Construction and verification of the m6A‑related risk 
signature
We randomly divided patients in the total TCGA cohort 
into training set and testing set. Then another univariant 
CoxPH was performed in the training set to filter genes 
which were related to DFS of PTC, among 796 genes in 
the brown module (Additional file 9: Table S6). We iden-
tified 4 genes: IGF2BP2 (HR = 1.19, P = 0.0002), STT3A 

(HR = 0.89, P = 0.033), MTHFD1 (HR = 1.32, P = 0.044) 
and GSTM4 (HR = 1.12, P = 0.049). The expression lev-
els of STT3A, MTHFD1 and GSTM4 were strongly cor-
related with IGF2BP2 (Fig.  5a–c). These 4 genes were 
used to construct the m6A-related risk signature via mul-
tivariate CoxPH regression model (Additional file  10: 
Table  S7). Risk scores of patients were calculated as 
follows:

Fig. 3  Identification of consensus clusters by m6A regulators. a The consensus map of NMF clustering results in the total TCGA cohort. Patients 
were divided into cluster 1 and cluster 2 according to the expression profiles of 19 m6A regulators. b The relationship between cophenetic, 
dispersion, evar, residuals, rss and silhouette coefficients with respect to number of clusters. c, d The survival curve of DFS (P = 0.034) and OS 
(P = 0.056) in cluster 1 and cluster 2. e The correlation analysis of m6A methylation regulators and clinical phenotypes in cluster 1 and cluster 2. The 
result showed that these 2 clusters has statistical differences in extrathyroidal extension, T and N classifications (*P < 0.05, **P < 0.01, ***P < 0.001)
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Patients were divided into high-risk and low-risk 
groups with the median risk score used as the cut-
off value. The ROC curve analysis in total TCGA PTC 
cohort (AUC = 0.817, Fig. 5d), training set (AUC = 0.904, 
Fig.  5e) and testing set (AUC = 0.774, Fig.  5f ), reveal-
ing promising prognosis value of the signature for PTC 
disease-free survival. The K–M survival curves were per-
formed to illustrate the difference between the high-risk 
and low-risk groups in DFS: total TCGA PTC cohort 
(P = 8.166e−05, Fig.  5g), training set (P = 8.426e−04, 
Fig.  5h) and testing set (P = 1.473e−02, Fig.  5i). All of 
these analyses showed that patients in low-risk group 
had better prognosis than high-risk group and this 
m6A-related signature was of strong accuracy in predict-
ing the DFS of patients with PTC. Univariant and multi-
variant CoxPH showed that T classification (HR = 1.691, 
P = 0.003), stage (HR = 1.49, P = 0.003) and risk score 
(HR = 1.001, P = 0.047) were prognostic factors for PTC 
(Fig. 6a), and only risk score was the independent prog-
nostic factor (HR = 1.001, P = 0.04, Fig. 6b). Furthermore, 
a prognostic nomogram was constructed to predict DFS 

Risk score = (0.390×MTHFD1)+ (0.167× IGF2BP2)

+ (0.152×GSTM4)+ (−0.133× STT3A)

of individual patients with PTC (Fig.  6c). In Fig.  6d, we 
assessed whether there was statistical difference in clini-
cal phenotypes between high-risk and low-risk groups 
by Chi square test. The heatmap indicated that high‐risk 
group was corresponded to advanced stage, higher level 
of T and N classifications, new tumor event and extrathy-
roidal extension in total TCGA PTC cohort. Finally, to 
better understand the expression of IGF2BP2 in human 
tissues, we used GTEx dataset to explore the landscape 
of IGF2BP2 in different genders and organs. The expres-
sion patterns of IGF2BP2 were similar in most organs of 
female and male, but were significantly different in blood 
vessel, brain, breast, skeletal muscle, skin and stomach 
(Fig. 7a–c). The tissue-specificity of IGF2BP2 is of great 
value to explore as it can provide clues for therapy and 
diagnosis. IGF2BP2 had high expression level in bone 
marrow and low expression level in brain, liver and skel-
etal muscle. These organs and malignant tumor origi-
nated from them can become potential objects of study 
(Fig. 7d).

Discussion
Over past decades, the occurrence of PTC has been 
proved to be correlated with external radiation expo-
sure, dietary iodine content and resultant disturbance 

Table 1  Univariant CoxPH analysis of OS and DFS

Italic values are statistically significant

uniCox analysis

Gene Survival analysis Disease free analysis

HR HR.95L HR.95H P-value HR HR.95L HR.95H P-value

METTL3 0.973958 0.742174 1.278129 0.849081 0.981439 0.836601 1.151353 0.818114

YTHDC1 1.036531 0.852548 1.26022 0.718934 0.977604 0.873975 1.093522 0.691972

FTO 1.573325 1.012161 2.44561 0.044044 0.78099 0.577311 1.056529 0.108867

METTL14 1.25211 0.688421 2.277356 0.461329 0.977691 0.685448 1.394532 0.900902

RBM15 3.843867 1.338806 11.03619 0.012343 0.858734 0.388698 1.897167 0.70649

IGF2BP2 0.919768 0.8431 1.003408 0.059652 1.097637 1.040737 1.157648 0.000603

IGF2BP1 4.527263 0.510412 40.156 0.175085 0.183686 0.000123 274.5852 0.649576

YTHDF3 1.290726 1.065857 1.563037 0.008975 0.999697 0.891851 1.120584 0.995846

WTAP 0.994085 0.811996 1.217007 0.954173 0.916739 0.821487 1.023036 0.120403

HNRNPA2B1 0.991969 0.959783 1.025234 0.631828 0.983031 0.963915 1.002526 0.0876

HNRNPC 0.975073 0.928021 1.024511 0.317143 1.020512 0.987934 1.054164 0.219977

ALKBH5 1.04919 0.991575 1.110154 0.095643 0.957849 0.913425 1.004433 0.075499

YTHDF2 1.088042 0.895735 1.321636 0.395142 0.939033 0.833287 1.058199 0.302091

METTL16 1.021759 0.712861 1.464507 0.906707 1.001206 0.802832 1.248598 0.991461

YTHDC2 1.812616 0.943702 3.481584 0.074104 1.020589 0.686415 1.517452 0.919788

KIAA1429 1.756042 1.020936 3.020446 0.041867 1.065358 0.779387 1.456256 0.691363

IGF2BP3 1.097294 0.926038 1.30022 0.283528 0.155158 0.002606 9.23819 0.371512

RBM15B 1.024573 0.807027 1.300762 0.841987 1.077647 0.933178 1.244482 0.30856

YTHDF1 1.066432 0.990667 1.147991 0.087156 1.013381 0.948002 1.083268 0.696068
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of thyroid stimulating hormone (TSH) level [24]. 
Nowadays, increasing investigations begin to focus on 
acquired genetic changes that can distinguish PTC from 
para-tumor normal tissue, which has greatly expanded 
our knowledge of the molecular pathogenesis of PTC. 
Several biomarkers have been used in clinic, such as 
RET/PTC rearrangement, PAX8-PPARγ rearrange-
ment, BRAF and RAS mutations [25–27]. As a prom-
ising field of cancer biology, m6A RNA modification 
has been verified to participant in developing several 
types of malignant tumor. However, there has been no 
research which explore the role and mechanism of m6A 

RNA modification in the progression of PTC. Here, 
we discovered some m6A RNA methylation regulators 
whose expression level, CNVs and SNPs were strongly 
correlated with PTC, including IGF2BP2, HNRNPA2B1 
and IGF2BP3. They are all “readers” which can selec-
tively bind to and change the secondary structures of 
m6A-containing RNAs. This process results in regu-
lated degradation of targeted RNAs and can be revers-
ibly tuned via m6A methylation and demethylation [28]. 
Readers may also affect RNA splicing, storage, traffick-
ing and translation [29]. Overexpression of IGF2BP2 
has been indicated to be related to poor survival of 

Fig. 4  Detection and validation of m6A-related module by WGCNA. a Heatmap of the correlation between gene modules and the clinical 
phenotypes of PTC. The brown module was the most correlated module of IGF2BP2 expression level. b Hierarchical cluster analysis was performed 
to detect co-expression modules with corresponding colors. c The correlation analysis between membership (MM) in brown module and gene 
significance (GS) for IGF2BP2. d, e Bubble chart of GO and KEGG results of brown module
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patients with colorectal cancer, acute myelocytic leu-
kemia and metaplastic breast cancer [30, 31]. Recently, 
K.Wang et  al. demonstrated that the progression of 
thyroid carcinoma can be promoted by METTL3 and 
IGF2BP2 through m6A methylation on TCF1 mRNA 
and activation of Wnt signaling pathway in thyroid can-
cer [32]. The relationship between IGF2BP2 and PI3K/
Akt signaling pathway has been discussed, suggesting 
up-regulated IGF2BP2 in pancreatic cancer plays a role 
in cell proliferation [33]. In addition, SNPs of IGF2BP2 

and IGF2BP3 has been proved to promote the lymph 
node metastasis of esophagogastric junction adenocar-
cinoma [34]. In our GO and KEGG analysis, we noticed 
that IGF2BP2-related module was correlated with cen-
tral carbon metabolism, thyroid hormone synthesis and 
HIF-1signaling pathway, which provided some poten-
tial regulatory metabolism of m6A RNA modification. 
In addition to thyroid gland, IGF2BP2 also showed high 
expression level in lung, small intestine and bone mar-
row, but the expression of IGF2BP2 did not have great 

Fig. 5  Construction and validation of m6A-related signature. a–c The Pearson correlation coefficients between IGF2BP2 and each gene in the 
signature. d–f The ROC curves of patients with PTC in the total TCGA cohort, training group and testing group. g–i Comparing DFS in high-risk and 
low-risk groups by performing K–M survival curves in the total TCGA cohort, training group and testing group
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difference between male and female. The next step is 
to analyze the expression pattern of IGF2BP2 in other 
organs and explore the potential relationship between 
IGF2BP2 and regulatory singling pathways, such as 
HIF-1 signaling pathway.

Furthermore, we explored and validated the prognos-
tic value of m6A RNA methylation regulators in PTC. 
Although FTO, RBM15, YTHDF3, and KIAA1429 were 
correlated with OS of PTC, we chose IGF2BP2 for deeper 
analysis as it is the only gene which was correlated with 
DFS of PTC. We used WGCNA, univariant and mul-
tivariant CoxPH to select candidate genes (IGF2BP2, 
STT3A, MTHFD1 and GSTM4) for construction of a 
m6A-related signature. With the exception of IGF2BP2, 
other three genes were down-regulated in PTC, and 
their roles in tumorigenesis have been reported in previ-
ous researches. It is well-known that STT3A acts as an 
enzyme which catalyzes PD-L1 glycosylation and main-
tain PD-L1 stability, resulting in killing T cells [35]. As 
a result, low expression level of STT3A can support the 

immune activity in thyroid cancer tissue, which increases 
inflammatory mediators, cytokines, chemokines, reactive 
oxygen species in the tumor immune microenvironment 
and promotes tumor progression. MTHFD1 and GSTM4 
are enzymes of folate metabolism and glutathione metab-
olism, and both of them have been reported to be related 
to immunodeficiency and tumor [36, 37]. After K-M 
plot, ROC curve, univariant and multivariant analyses, 
this signature showed its great value in predicting DFS 
of patients with PTC. The result was validated in dif-
ferent cohort (total TCGA cohort, training set and test-
ing set) to ensure the accuracy. We can also notice that 
risk scores were correlated with T and N classifications, 
new tumor event and extrathyroidal extension of PTC. 
These clinical phenotypes were considered to indicators 
of recurrence and lymph node metastasis, both of which 
were regarded as determinants of DFS and particularly 
contribute to the exacerbation of PTC. We also provided 
a nomogram that reduce the m6A-related signature into 
a single numerical estimate of the probability of an event, 

Fig. 6  Analysis of prognostic factors for PTC. a Univariant CoxPH of risk score and 6 clinical phenotypes (gender, T, N, stage, age, extrathyroidal 
extension). b Multivariant CoxPH of T, stage and risk score. c A nomogram performed based on prognostic factors found in CoxPH. d A heatmap 
which showed the risk scores, clinical phenotypes and gene expression (IGF2BP2, GSTM2, MTHFD1 and STT3A) of patient with PTC. A Chi square test 
was also performed to evaluate the relationships among risk score and 9 clinical phenotypes (*P < 0.05, **P < 0.01, ***P < 0.001)
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such as death, 1-, 3-, 5-year DFS and recurrence, predict-
ing the prognosis of every individual patient. For further 
study, we prepare to evaluate the clinical prognostic value 
of this signature by applying to patients who are not lim-
ited to internet databases. To deeply explore the mecha-
nism of m6A modification, cell and animal experiments 
are urgently needed to search for downstream target of 
m6A RNA methylation regulators.

Conclusions
In this study, we performed a comprehensive evalua-
tion of the landscape of m6A RNA methylation in PTC 
by analyzing the RNA expression level, CNVs, SNPs and 
correlated clinical phenotypes of 19 m6A RNA meth-
ylation regulators. In NMF clustering analysis, we found 
that cluster1 and cluster 2 were significantly different 
in DFS, stage and age, suggesting the important role of 
m6A modification in PTC. After WGCNA, univariant 
and multivariant CoxPH, IGF2BP2, STT3A, MTHFD1 

and GSTM4 were used as candidates for construction of 
a m6A-related signature. This signature was capable to 
predict the DFS of Patients in different cohort and served 
as an independent prognostic factor for PTC. It was 
also correlated with T and N classifications, new tumor 
event and extrathyroidal extension of PTC. To sum up, 
IGF2BP2 is a possible biomarker for diagnosis and prog-
nosis of PTC and our m6A-related signature is of great 
significance in predicting DFS of PTC patients.
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