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Abstract: A model is proposed to calculate the melting points of nanoparticles based on the Lennard-
Jones (L-J) potential function. The effects of the size, the shape, and the atomic volume and surface
packing of the nanoparticles are considered in the model. The model, based on the L-J potential
function for spherical nanoparticles, agrees with the experimental values of gold (Au) and lead (Pb)
nanoparticles. The model, based on the L-J potential function, is consistent with Qi and Wang’s
model that predicts the Gibbs-Thompson relation. Moreover, the model based on the non-integer L-J
potential function can be used to predict the melting points Tm of nanoparticles.
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1. Introduction

Melting point is a thermal property that depends on the size of materials and was
first observed in 1954 [1]. Many experimental methods have been used to measure the
melting point of nanoparticles, such as transmission electron microscopy (TEM) [2], differ-
ential scanning calorimetry (DSC) [3], nanometer scale calorimetry [4], differential thermal
analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques [5], etc. It has
been found that the melting points of metals with different shapes [1–10] and semicon-
ductors [11] decrease as their thickness decreases. The first theoretical description of
the size-dependent melting point of nanoparticles was in 1909 by the relation known as
Gibbs-Thompson relation [12], which takes the following form:

Tm = Tmbulk

(
1− C

D

)
(1)

where Tm and Tmbulk are the melting points of the nanoparticle and bulk material, re-
spectively, C is a constant that depends on the material of the nanoparticle, and D is the
nanoparticle thickness (e.g., the diameter of spherical nanoparticles). The Gibbs-Thompson
relation shows that the melting points of nanoparticles are linearly proportional to the
reciprocal of the nanoparticle thickness. Many experimental works [11,13–16] have showed
that the melting points of nanoparticles follow the Gibbs-Thompson relation.

There are three different theoretical thermodynamic models that describe the constant
C in the Gibbs-Thompson relation: The homogeneous liquid-drop model (LDM) considers
both the solid and liquid states of nanoparticles in a homogeneous phase [5,12,17]; the liquid
shell nucleation model (LSN) considers the equilibrium of the solid core and thin liquid
shell in nanoparticles [17–19]; and the liquid nucleation and growth model (LNG) supposes
the surface of nanoparticles melts first and then grows into the entire solid [17,20,21].

Many models were proposed to calculate the melting point of non-spherical shape
nanoparticles that follow the Gibbs-Thompson relation. A new parameter was introduced
to consider the non-spherical shape called the shape factor which is defined as the ratio of
the surface area of non-spherical nanoparticles to the surface area of spherical nanoparticles
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that have similar volume [22,23]. The shape factor was introduced in many models, such
as Qi and Wang’s model that based on the surface-to-volume ratio [24,25], the surface-area-
difference (SAD) model where the cohesive energy of a nanoparticle that consists of n atoms
is equal to the increased surface energy due to the surface area difference of n atoms and
the nanoparticle [26], and a nonlinear lattice type sensitive model which considers the
lattice structure and surface-to-volume ratio of the nanoparticle [27,28]. Other models
found that C in Equation (1) is a size-dependent parameter, such as Zhang et al.’s model
where surface atoms and interior atoms have different effects upon the melting point [29]
and Chen et al.’s model that is based on Gibbs free energy [30].

It is found that the melting point of nanoparticles is linearly proportional to their
cohesive energy [31], where the cohesive energy of nanoparticles is equal to the sum
of bond energies of n atoms in an equilibrium configuration [32,33]. The bond energy
between two atoms in the nanoparticles can be calculated using many different potential
functions such as the Lennard-Jones (L-J) (12-6) potential function [34,35], non-integer L-J
potential function [32], Mie-type Potential function [36], Morse potential function [37],
and generalized Morse potential function [33]. The cohesive energy and melting point
of nanoparticles based on the upper potential functions does not consider the shape
of nanoparticles.

The L-J (12-6) potential function is a well-known semi-empirical formula that has
two physically defined terms: The first term represents the empirical Pauli repulsive
potential, whereas the second term represents the dipole-dipole attractive potential [38].
However, the Morse potential was obtained by Taylor expansion of an unknown from of
the potential function around an equilibrium distance between two neighbor atoms [39].
Moreover, the L-J (12-6) potential function does not have adjustable parameters, unlike
the Morse potential function and the other potential functions. Additionally, the pair
interaction potentials (e.g., L-J (12-6) potential) are accepted to describe the behavior of
metals [40]. An extended L-J embedded-atom potential model was used to describe the
physical properties of FCC metals [41] and Thorium-doped Tungsten Crystals [42]. The
LAMMPS molecular dynamics simulation method was used to calculate the cohesive
energy of some metals based on the L-J (12-6) potential where the discrepancy between the
calculated and experimental values was less than 0.1% [43]. Moreover, the same method
based on the L-J (12-6) potential was used to calculate the bulk melting point of Fe, Ni,
Pb, and Cr with very small discrepancy if the parameters of the L-J (12-6) potential were
normalized [44]. Therefore, the aim of the present work is to build a model using the L-J
(12-6) potential function to calculate the melting point of metallic nanoparticles considering
the shape and structure of nanoparticles, and the effect of the dangling bonds of the surface
atoms of nanoparticles.

The paper is organized as follows. In Section 2, we describe the theory and model
to calculate the melting point of a nanoparticle based on L-J (12-6) potential function
considering the shape and structure of nanoparticles and dangling bonds of the surface
atoms. Section 3 is about the results of the melting point based on the present model and
compared to other models such as Qi and Wang’s model [24] and Qi et al.’s model [34],
and with the available experimental data. Finally, in last section, discussions about the
validity of the present model are presented.

2. Theory and Model

The total cohesive energy of nanoparticles is the sum of the total interior and the total
superficial parts [45]:

nEa = (n− N)EI +
1
2

NES (2)

where n and N denote the total number and surface number of atoms, respectively, E is
the cohesive energy per atom, and the subscripts a, I, S, mean whole, interior, and surface
of the nanoparticle, respectively. The factor 1/2 in the second term of the right side of
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Equation (2) is due to the bonds of the surface atoms of the nanoparticles being dangling
bonds [25,46].

Dividing Equation (2) by the total number of atoms n and using the definition of the
surface-to-volume atomic ratio sn = N/n [47], the following is obtained:

Ea = (1− sn)EI +
1
2

snES (3)

In the present model, the nanoparticles are considered in a spherical shape with a
diameter equal to D. Thus, the total number of atoms in the nanoparticle equals the ratio
of the nanoparticle volume to the atomic volume multiplied by the volume packing factor
PL as follows:

n = PL

(
D
d

)3
(4)

where d is the atomic diameter.
The surface number of atoms in the nanoparticle equal the ratio of the surface area of

the nanoparticle to the cross-section area of the atom multiplied by the surface packing
factor Pf as follows:

N = 4Pf

(
D
d

)2
(5)

Equations (4) and (5) can be used to rewrite the surface-to-volume atomic ratio sn as a
function of the total number of atoms n in the nanoparticle as follows:

sn =
4Pf

P
2
3
L n

1
3

(6)

The surface-to-volume atomic ratio parameter sn as shown in Equation (6) is a size-
dependent parameter because it is ∝ n−

1
3 . The parameter sn also depends on the structure

of the nanoparticle because it depends on the volume and surface packing factors. The
volume and the surface packing factors of different cubic structures (SC, BCC, and FCC)
are calculated as described in Safaei et al.’s paper [27] and summarized in Table 1. The
bulk limit ( n→ ∞ ) of the parameter sn is s∞ = lim

n→∞
sn → 0 , which means no shape effect

for bulk materials.

Table 1. The values of the volume and the surface packing factors for different cubic structures [27].

Cubic Structure PL Pf

FCC π
3
√

2
π√

3
BCC π

6
√

2
3π

8
√

2
SC π

6
π
4

The cohesive energy of the interior nanoparticle (n− N)EI and the surface nanopar-
ticle NES are equal to the sum of the bond energies of the interior atoms and the bond
energies of the surface atoms in the nanoparticle, respectively. As result, the cohesive
energy of the nanoparticle per atom can be calculated using the following formula:

Ea =
1
2


1− sn

n− N

n−N

∑
i=1

n

∑
j = 1
j 6= i

Uij +
sn

2N

N

∑
i=1

n

∑
j = 1
j 6= i

Uij


(7)
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where Uij is the bond energy between two atoms in the nanoparticle. The bond energy Uij
can be calculated using the L-J (12-6) potential function [38,48]:

Uij = D0


(

r0

rij

)12

− 2

(
r0

rij

)6
 (8)

where D0 represents to the depth of the potential, rij and r0 are the relative distance
between the ith and jth atoms and distance between the nearest atoms in the nanoparticle,
respectively. The first term on the L-J (12-6) potential function represents to the short-range
Pauli’s repulsive potential, where the second term represents to the long-range dipole
attractive potential [38,48].

The cohesive energy per atom of the nanoparticle based on the L-J (12-6) potential
function is written as:

Ea =
D0

2

{
A12

r∗12 − 2
A6

r∗6

}
(9)

where r∗ = r/r0 is the reduced nearest distance between two atoms,

A6 = (1− sn)AI
6 +

1
2

sn AS
6 (10a)

and
A12 = (1− sn)AI

12 +
1
2

sn AS
12 (10b)

are the potential parameters, where

AI
k =

1
n− N

n−N

∑
i=1

n

∑
j = 1
j 6= i

(
1
aij

)k

(11)

AS
k =

1
N

N

∑
i=1

n

∑
j = 1
j 6= i

(
1
aij

)k

(12)

where k = 6 and 12, and aij =
(
rij/r

)
. The parameters AI

k and AS
k represent to the contribution

of the interior atoms and surface atoms in the value of the potential parameters, respectively.
The potential parameters are calculated based on the present model using Equations (10a)

and (10b) for spherical nanoparticles and based on Qi et al.’s model [34] that does not consider
the shape effect for different cubic structures (SC, BCC, and FCC) as seen in Figure 1 (for A6)
and Figure 2 (for A12). As shown in the figures, the calculated potential parameters A6 and
A12 for spherical nanoparticles are size-dependent. The calculations show that the growth of
the potential parameters as a function of number of atoms n for spherical nanoparticles based
on the present model is slower than the Qi et al.’s model [34]. The surface-to-volume atomic
ratio parameter sn ∝ n−

1
3 in the present model, as shown in Equations (10a) and (10b), is

behind the slow growth of the potential parameters. When the nanoparticle has a very
small number of atoms then the contribution of the surface atoms is larger than the interior
atoms in the calculation of the potential parameters. Therefore, the values of the potential
parameters of spherical nanoparticles are smaller than those which do not consider the
shape effect. As the number of atoms in nanoparticles increases, the value of the parameter
sn decreases by factor ∝ n−

1
3 , so the contribution of the interior atoms increases by factor

equals to (1− sn), and the contribution of the surface atoms decreases by factor equals to
sn in the calculation of the potential parameters. Therefore, the growth of the potential
parameters as a function of the number of atoms n for spherical nanoparticles is slow.
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shape effect case that is based on Qi et al. model [34].
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Figure 2. Size-dependent of the potential parameter A12 as function of n of spherical nanoparticles
in different cubic structures: SC, BCC, and FCC and compared to without shape effect case that is
based on Qi et al. model [34].

A′k is the corresponding bulk value of Ak (when n→ ∞ or N/n→ 0), which it can
be obtained as follows:

A′k = lim
n→∞

{
(1− sn)AI

k +
1
2

sn AS
k

}
= lim

n→∞

1
n

n

∑
i=1

n

∑
j = 1
j 6= i

(
1
aij

)k

(13)

The bulk value of Ak (k = 6 and 12) for different cubic structures is summarized in
Table 2.
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Table 2. The values of A′6 and A′12 for different cubic structures [38].

Cubic Structure A’
6 A’

12

FCC 14.45 12.13
BCC 12.25 9.11
SC 8.40 6.20

The equilibrium value of r∗ can be obtained by minimizing Equation (9) to be
as: r∗0 = (A12/A6)

1/6. Therefore, the cohesive energy per atom in the equilibrium con-
figuration is [38]:

Ea = −
D0

2
(A6)

2

A12
(14)

The relative cohesive energy of the nanoparticle is defined as the ratio of the cohesive
energy per atom of the nanoparticle to the corresponding cohesive energy of the bulk
material E0:

Ea

E0
=

P0

2
(A6)

2

A12
(15)

where P0 = 2A′12/
(

A′6
)2.

The melting point Tm of nanoparticles is linearly proportional to cohesive energy as
follows [49]:

Tm = 0.032
E
kβ

(16)

where kβ is the Boltzmann constant, then the ratio of melting point of nanoparticle Tm with
n atoms to the bulk melting Tmbulk equals to the relative cohesive energy of the nanoparticle:

Tm

Tmbulk
=

P0

2
(A6)

2

A12
(17)

3. Results and Discussion

The melting points of spherical nanoparticles in an FCC structure are calculated
based on the L-J potential function using Equation (17) and compared to Qi et al.’s model
(without shape effect) [34] as seen in Figure 3. It is found that the calculated melting points
of nanoparticles that do not consider the shape effect (Qi et al.’s model) are higher than
spherical nanoparticles (present model). Since Qi et al.’s model does not consider the
shape effect, it treats the surface atomic bonds and the interior atomic bonds in the same
manner. However, the present model considers that if the shape of the nanoparticles is
spherical, then the parameter sn ∝ n−

1
3 . As the size of a spherical nanoparticle reduces,

then the parameter sn becomes large, so the contribution of the surface atomic bonds is
larger than the interior atomic bonds in the total energy of the nanoparticle, which makes
its core less stable. This result agrees with the idea that the melting process begins on the
surface of nanoparticles [29]. Therefore, the calculated melting point that considers the
shape of a nanoparticle as a spherical shape is smaller than that which does not consider
the shape effect. Thus, the melting points of spherical nanoparticles decrease faster as
their size decreases.

The calculated melting points of nanoparticles in an FCC structure are also compared
to two sets of experimental data of melting points of Au nanoparticles [2,5] (the mass
density is ρ = 18.4 g/cm3 and Tmbulk = 1337.3 K [50]) and two sets of experimental
data of melting points of Pb nanoparticles [6,7] (the mass density is ρ = 11.3 g/cm3 and
Tmbulk = 600.61 K [50]) as seen in Figure 3. The first experimental set of melting points
of Au nanoparticles are carried out for Au nanoparticles deposited on an amorphous
carbon substrate [2], where the second experimental set is for silica-encapsulated Au
nanoparticles [5]. The first experimental sets of melting point of Pb are carried out for Pb
nanoparticles that were deposited on carbon substrate [6], while they were deposited on
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silicon monoxide substrate in the second experimental set [7]. The experimental values
of the melting point of spherical Au and Pb nanoparticles (in an FCC structure) are given
by their diameters; therefore, the relation n = 0.74(D/d)3 + 1.82(D/d)2 [27,28] is used to
calculate the corresponding number of atoms n. The calculated melting points based in
the present model agree with the experimental sets of Au and Pb nanoparticles containing
n ≥ 1000 atoms. The deviations between the calculated melting points for spherical
nanoparticles and the first experimental sets of Au nanoparticles containing n < 1000 and
Pb nanoparticles containing n < 6000 atoms are due to the effect of their substrates [28,51].
The agreement of the calculated melting points of spherical nanoparticles with experimental
values shows that the present model is effective in predicting the melting points.
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Figure 3. The variation of ratio Tm/Tmbulk as function of the number of atoms n of spherical nanopar-
ticles in an FCC structure is compared to without shape effect case that is based on Qi et al. model [34],
two different experimental sets of Au nanoparticles: The first experimental set of Au [2] and the
second experimental set of Au [5], and two different experimental sets of Pb nanoparticles: The first
experimental set of Pb [6] and the second experimental set of Pb [7].

The deviation between the experimental data and the calculated melting points based
on the L-J potential in Qi et al.’s model [34] is because the shape effect is not considered.
However, if the shape effect is considered, as in the present model, then the calculated
melting points based on the L-J potential agree with the experimental data. Therefore, the
deviation problem in Qi et al.’s model [34] is not due to the L-J potential. The surface-to-
volume atomic ratio parameter sn that depends on the shape of the nanoparticles plays
an important role in the present model. The parameter sn allows the surface atoms to
have a larger effect than the interior atoms in the nanoparticles when their sizes reduce.
Therefore, the calculated melting points of the nanoparticles based on the present model
are smaller than that predicted by Qi et al.’s model [34] and agree with experimental data.
The deviation between the calculated melting points based on the present model and
the experimental values of melting points, as discussed above, when n < 1000 for Au
nanoparticles and n < 6000 for Pb nanoparticles, is due the environment’s effect on the
nanoparticles. However, the agreement between the calculated and experimental values is
perfect if the environmental effect is reduced, as in the silica-encapsulated Au nanoparticles
when n < 1000 because they are considered as individual nanoparticles [5], as seen in
Figure 3.

The calculated melting points of spherical nanoparticles for different cubic structures
are compared in Figure 4. The calculations show that the structure effect on the melting
points is obvious for small nanoparticles because of the appearance of the lattice structure
parameter aij and surface-to-volume atomic ratio parameter sn in the potential parameters.
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Figure 4. The variation of ratio Tm/Tmbulk as function of the number of atoms n of spherical nanopar-
ticles in different cubic structures.

The Qi and Wang model showed that the melting point Tm of a nanoparticle is linearly
proportional to the reciprocal of the nanoparticle size D [24,25]:

Tm

Tmbulk
= Tmbulk

(
1−

3Pf d
PLD

)
(18)

The constant C in Equation (1) equals to 3Pf d/PL. However, using Equation (4), then
Equation (18) to get:

Tm

Tmbulk
= 1−

3Pf

P
2
3
L n

1
3

(19)

The calculated melting points by Equation (17) based on the L-J potential function
are compared to the calculated melting points by Equation (19) based on Qi and Wang’s
model [24,25] for spherical nanoparticles having different cubic structures: Figure 5 for an
SC, Figure 6 for a BCC, Figure 7 for an FCC. The calculated melting points by both models
show an excellent agreement for spherical nanoparticles with BCC and FCC structures and
a small deviation for an SC structure. The present model based on the L-J potential function
predicts that the melting point Tm of nanoparticles is linearly proportional to the reciprocal
of the nanoparticle size D. The present model provides a microscopic point view on the
relation of the melting points of nanoparticles with their sizes, as discussed above, and
shows how the contributions of the surface atoms and interior atoms play an important
role in the instability of the nanoparticles core when their sizes are reduced.

A non-integer L-J potential function was proposed to calculate the cohesive energy
and the melting point of nanoparticles [32], which takes the following form:

Uij = D0


(

r0

rij

)2α

− 2

(
r0

rij

)α
 (20)

where α is a dimensionless non-integer parameter. It was found that if the α parameter
is small, then the nanoparticle becomes stable with small values of cohesive energy [32].
The non-integer L-J potential function with different values of α = 5.2, 6 (L-J (12− 6)
potential function), and 8.7 is used to calculate the melting points of spherical nanoparticles
in an FCC structure and compare to the two experimental sets of Au nanoparticles melting
points [2,5] and the two experimental sets of Pb nanoparticles melting points [6,7] as seen
in Figure 8. As shown in the figure, most of the experimental data are lying between



Nanomaterials 2021, 11, 2916 9 of 12

the calculated melting point curves when α = 5.2 and 8.7. This result may explain the
deviation of some experimental data from the calculated melting point based on the L-J
potential due to the environment’s effect. The environment’s effect may have an effect
on the form of repulsive and attractive interactions in potential function. Therefore, the
repulsive potential ∝ r−12 and the dipole attractive potential ∝ r−6 in the L-J potential can
be replaced by an effective repulsive potential ∝ r−2α and an effective attractive potential
∝ r−α to introduce the effect of the nanoparticle’s environment.
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Figure 8. The variation of ratio Tm/Tmbulk as function of number of atoms n of spherical nanoparticles
in an FCC structure based on the non-integer L-J potential functions for different values of α parameter
and compared to two different experimental sets of Au nanoparticles: The first experimental set
of Au [2] and the second experimental set of Au [5], and two different experimental sets of Pb
nanoparticles: The first experimental set of Pb [6] and the second experimental set of Pb [7].

4. Conclusions

A model is built to calculate the melting point of nanoparticles based on the sum of
all energy bonds between the atoms in an equilibrium configuration based on L-J (12− 6)
and the non-integer L-J potential functions. The model considers the size, the shape, and
the structure of the nanoparticles, and considers the dangling bonds of the surface atoms
of the nanoparticles. The calculated melting points for spherical nanoparticles agree with
the experimental data of Au and Pb nanoparticles and Qi and Wang’s model [24,25]. The
agreement of the present model with the experimental values is due to the existence of the
surface-to-volume atomic ratio parameter sn that depends on the shape of the nanoparticles
and plays an important role in the contribution of the surface atoms in the nanoparticles
when their sizes are reduced. The deviation between the experimental data and the
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calculated melting points based on the L-J potential is not due to the L-J potential; instead,
it is due to whether the model considers the shape effect or not, as in Qi et al.’s model [34].

The calculated melting points based on the L-J (12-6) potential function for spherical
nanoparticle follow the Gibbs-Thompson relation. However, the present model provides a
microscopic description of the variation of the thermal properties of nanoparticles with
their sizes. Using the non-integer L-J potential function can explain the deviation of the
experimental data for Au and Pb nanoparticles from the calculated melting points based on
L-J potential. The terms of the potential function can be considered as an effective repulsive
potential ∝ r−2α and an effective attractive potential ∝ r−α instead of Pauli’s repulsive
potential ∝ r−12 and dipole attractive potential ∝ r−6 to introduce the environmental effect.
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Funding: Researchers supporting project number (RSP-2021/328), King Saud University, Riyadh,
Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Takagi, M. Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. J. Phys. Soc. Jpn. 1954, 9, 359–363. [CrossRef]
2. Buffat, P.; Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298. [CrossRef]
3. Levitas, V.I.; Pantoya, M.L.; Chauhan, G.; Rivero, I. Effect of the Alumina Shell on the Melting Temperature Depression for

Aluminum Nanoparticles. J. Phys. Chem. C 2009, 113, 14088–14096. [CrossRef]
4. Lai, S.L.; Ramanath, G.; Allen, L.H.; Infante, P.; Ma, Z. High-speed (104 ◦C/s) scanning microcalorimetry with monolayer

sensitivity (J/m2). Appl. Phys. Lett. 1995, 67, 1229–1231. [CrossRef]
5. Dick, K.; Dhanasekaran, T.; Zhang, Z.; Meisel, D. Size-Dependent Melting of Silica-Encapsulated Gold Nanoparticles.

J. Am. Chem. Soc. 2002, 124, 2312–2317. [CrossRef] [PubMed]
6. Coombes, C.J. The melting of small particles of lead and indium. J. Phys. F Met. Phys. 1972, 2, 441–449. [CrossRef]
7. Skripov, V.P.; Koverda, V.P.; Skokov, V.N. Size effect on melting of small particles. Phys. Status Solidi 1981, 66, 109–118. [CrossRef]
8. Jiang, H.; Moon, K.-S.; Dong, H.; Hua, F.; Wong, C. Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 2006,

429, 492–496. [CrossRef]
9. Cui, Q.; Rajathurai, K.; Jia, W.; Li, X.; Gao, F.; Lei, Y.; Gu, Z. Synthesis of Single Crystalline Tin Nanorods and Their Application as

Nanosoldering Materials. J. Phys. Chem. C 2010, 114, 21938–21942. [CrossRef]
10. Zou, G.; Yan, J.; Mu, F.; Wu, A.; Ren, J.; Hu, A. Low Temperature Bonding of Cu Metal through Sintering of Ag Nanoparticles for

High Temperature Electronic Application. Open Surf. Sci. J. 2010, 3, 70–75. [CrossRef]
11. Goldstein, A.N.; Echer, C.M.; Alivisatos, A.P. Melting in Semiconductor Nanocrystals. Science 1992, 256, 1425–1427. [CrossRef]
12. Pawlow, P. Über die abhängigkeit des schmelzpunktes von der oberflächenenergie eines festen körpers. Z. Phys. Chem. 1909, 65,

1–35. [CrossRef]
13. Shi, F.G. Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 1994, 9, 1307–1314. [CrossRef]
14. Letellier, P.; Mayaffre, A.; Turmine, M. Melting point depression of nanosolids: Nonextensive thermodynamics approach.

Phys. Rev. B 2007, 76, 045428. [CrossRef]
15. Nanda, K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana 2009, 72, 617–628.

[CrossRef]
16. Petters, M.; Kasparoglu, S. Predicting the influence of particle size on the glass transition temperature and viscosity of secondary

organic material. Sci. Rep. 2020, 10, 15170. [CrossRef]
17. Zhang, M.; Efremov, M.Y.; Schiettekatte, F.; Olson, E.A.; Kwan, A.T.; Lai, S.L.; Wisleder, T.; Greene, J.E.; Allen, L.H. Size-dependent

melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 2000, 62, 10548–10557. [CrossRef]
18. Reiss, H.; Wilson, I.B. The effect of surface on melting point. J. Colloid Sci. 1948, 3, 551–561. [CrossRef]
19. Lai, S.L.; Carlsson, J.R.A.; Allen, L.H. Melting point depression of Al clusters generated during the early stages of film growth:

Nanocalorimetry measurements. Appl. Phys. Lett. 1998, 72, 1098–1100. [CrossRef]
20. Couchman, P.R.; Jesser, W.A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 1977, 269,

481–483. [CrossRef]
21. Vanfleet, R.R.; Mochel, J. Thermodynamics of melting and freezing in small particles. Surf. Sci. 1995, 341, 40–50. [CrossRef]

http://doi.org/10.1143/JPSJ.9.359
http://doi.org/10.1103/PhysRevA.13.2287
http://doi.org/10.1021/jp902317m
http://doi.org/10.1063/1.115016
http://doi.org/10.1021/ja017281a
http://www.ncbi.nlm.nih.gov/pubmed/11878986
http://doi.org/10.1088/0305-4608/2/3/013
http://doi.org/10.1002/pssa.2210660111
http://doi.org/10.1016/j.cplett.2006.08.027
http://doi.org/10.1021/jp105969x
http://doi.org/10.2174/1876531901103010070
http://doi.org/10.1126/science.256.5062.1425
http://doi.org/10.1515/zpch-1909-6502
http://doi.org/10.1557/JMR.1994.1307
http://doi.org/10.1103/PhysRevB.76.045428
http://doi.org/10.1007/s12043-009-0055-2
http://doi.org/10.1038/s41598-020-71490-0
http://doi.org/10.1103/PhysRevB.62.10548
http://doi.org/10.1016/S0095-8522(48)90048-8
http://doi.org/10.1063/1.120946
http://doi.org/10.1038/269481a0
http://doi.org/10.1016/0039-6028(95)00728-8


Nanomaterials 2021, 11, 2916 12 of 12

22. Xie, D.; Wang, M.P.; Qi, W.H. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of
nanocrystals. J. Physics Condens. Matter 2004, 16, L401–L405. [CrossRef]

23. Qi, W.H.; Wang, M.P.; Liu, Q.H. Shape factor of nonspherical nanoparticles. J. Mater. Sci. 2005, 40, 2737–2739. [CrossRef]
24. Qi, W.; Wang, M. Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 2004, 88, 280–284.

[CrossRef]
25. Qi, W. Nanoscopic Thermodynamics. Accounts Chem. Res. 2016, 49, 1587–1595. [CrossRef] [PubMed]
26. Qi, W.H.; Wang, M.P.; Zhou, M.; Hu, W.Y. Surface-area-difference model for thermodynamic properties of metallic nanocrystals.

J. Phys. D Appl. Phys. 2005, 38, 1429–1436. [CrossRef]
27. Safaei, A.; Shandiz, M.A.; Sanjabi, S.; Barber, Z.H. Modelling the size effect on the melting temperature of nanoparticles, nanowires

and nanofilms. J. Phys. Condens. Matter 2007, 19, 216216. [CrossRef]
28. Safaei, A. Shape, Structural, and Energetic Effects on the Cohesive Energy and Melting Point of Nanocrystals. J. Phys. Chem. C

2010, 114, 13482–13496. [CrossRef]
29. Zhang, X.; Li, W.; Wu, D.; Deng, Y.; Shao, J.; Chen, L.; Fang, D. Size and shape dependent melting temperature of metallic

nanomaterials. J. Phys. Condens. Matter 2018, 31, 075701. [CrossRef] [PubMed]
30. Chen, T.; Ma, Y.; Fu, X.; Li, M. A Comprehensive Understanding of the Melting Temperature of Nanocrystals: Implications for

Catalysis. ACS Appl. Nano Mater. 2020, 3, 1583–1591. [CrossRef]
31. Dash, J.G. History of the search for continuous melting. Rev. Mod. Phys. 1999, 71, 1737–1743. [CrossRef]
32. Aldossary, O.M. Generalized non-integer Lennard-Jones potential function vs. generalized Morse potential function for calculating

cohesive energy and melting point of nanoparticles. J. King Saud Univ. Sci. 2020, 33, 101316. [CrossRef]
33. Aldossary, O.M.; Al Rsheed, A. A New Generalized Morse Potential Function for Calculating Cohesive Energy of Nanoparticles.

Energies 2020, 13, 3323. [CrossRef]
34. Qi, W.; Wang, M.; Hu, W. Calculation of the cohesive energy of metallic nanoparticles by the Lennard–Jones potential. Mater. Lett.

2004, 58, 1745–1749. [CrossRef]
35. Nayak, P.; Naik, S.R.; Sar, D.K. Improved Cohesive Energy of Metallic Nanoparticles by Using L–J Potential with Structural Effect.

Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2705–2711. [CrossRef]
36. Barakat, T.; Al-Dossary, O.; Alharbi, A.A. The Effect of mie-type potential range on the cohesive energy of metallic nanoparticles.

Int. J. Nanosci. 2007, 6, 461–466. [CrossRef]
37. Aldossary, O.M.; Al Rsheed, A. The effect of the parameter α of Morse potential on cohesive energy. J. King Saud Univ. Sci. 2019,

32, 1147–1151. [CrossRef]
38. Kittel, C. Introduction to Solid State Physics, 8th ed.; Wiley: New York, NY, USA, 2005.
39. Morse, P.M. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 1929, 34, 57–64. [CrossRef]
40. Carlsson, A. Beyond Pair Potentials in Elemental Transition Metals and Semiconductors. Solid State Phys. 1990, 43, 1–91. [CrossRef]
41. Baskes, M.I. Many-Body Effects in fcc Metals: A Lennard-Jones Embedded-Atom Potential. Phys. Rev. Lett. 1999, 83, 2592–2595.

[CrossRef]
42. Eberhard, B. Computer Simulations for Thorium Doped Tungsten Crystals. Ph.D. Thesis, Augsburg University, Minneapolis,

MN, USA, December 2008.
43. Mardiyah, R.U.; Arkundato, A.; Misto; Purwandari, E. Energy Cohesive Calculation for Some Pure Metals Using the Lennard-

Jones Potential in Lammps Molecular Dynamics. J. Physics Conf. Ser. 2020, 1491, 012020. [CrossRef]
44. Mardiyah, R.U.; Arkundato, A.; Misto, M.; Purwandari, E. Parameters (σ, ε) of Lennard-Jones for Fe, Ni, Pb for Potential and Cr

based on Melting Point Values Using the Molecular Dynamics Method of the LAMMPS Program. J. Phys. Conf. Ser. 2020, 1491,
012022.

45. Qi, W. Size effect on melting temperature of nanosolids. Phys. B Condens. Matter 2005, 368, 46–50. [CrossRef]
46. Solliard, C.; Flueli, M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci.

1985, 156, 487–494. [CrossRef]
47. Qi, W.; Wang, M.; Zhou, M.; Shen, X.; Zhang, X. Modeling cohesive energy and melting temperature of nanocrystals.

J. Phys. Chem. Solids 2006, 67, 851–855. [CrossRef]
48. Jones, J.E. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. London. Ser. A Math. Phys. Sci.

1924, 106, 463–477. [CrossRef]
49. Guinea, F.; Rose, J.H.; Smith, J.R.; Ferrante, J. Scaling relations in the equation of state, thermal expansion, and melting of metals.

Appl. Phys. Lett. 1984, 44, 53–55. [CrossRef]
50. Periodic Table of Elements. Available online: https://www.webelements.com (accessed on 15 January 2021).
51. Lee, J.; Nakamoto, M.; Tanaka, T. Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate.

J. Mater. Sci. 2005, 40, 2167–2171. [CrossRef]

http://doi.org/10.1088/0953-8984/16/36/L01
http://doi.org/10.1007/s10853-005-2119-0
http://doi.org/10.1016/j.matchemphys.2004.04.026
http://doi.org/10.1021/acs.accounts.6b00205
http://www.ncbi.nlm.nih.gov/pubmed/27355129
http://doi.org/10.1088/0022-3727/38/9/016
http://doi.org/10.1088/0953-8984/19/21/216216
http://doi.org/10.1021/jp1037365
http://doi.org/10.1088/1361-648X/aaf54b
http://www.ncbi.nlm.nih.gov/pubmed/30523806
http://doi.org/10.1021/acsanm.9b02365
http://doi.org/10.1103/RevModPhys.71.1737
http://doi.org/10.1016/j.jksus.2020.101316
http://doi.org/10.3390/en13133323
http://doi.org/10.1016/j.matlet.2003.10.048
http://doi.org/10.1007/s40995-019-00752-y
http://doi.org/10.1142/S0219581X07005048
http://doi.org/10.1016/j.jksus.2019.11.005
http://doi.org/10.1103/PhysRev.34.57
http://doi.org/10.1016/s0081-1947(08)60323-9
http://doi.org/10.1103/PhysRevLett.83.2592
http://doi.org/10.1088/1742-6596/1491/1/012020
http://doi.org/10.1016/j.physb.2005.06.035
http://doi.org/10.1016/0039-6028(85)90610-7
http://doi.org/10.1016/j.jpcs.2005.12.003
http://doi.org/10.1098/rspa.1924.0082
http://doi.org/10.1063/1.94549
https://www.webelements.com
http://doi.org/10.1007/s10853-005-1927-6

	Introduction 
	Theory and Model 
	Results and Discussion 
	Conclusions 
	References

