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Malonylation, which has recently emerged as an important lysine modification, regulates diverse biolog-
ical activities and has been implicated in several pervasive disorders, including cardiovascular disease
and cancer. However, conventional global proteomics analysis using tandem mass spectrometry can be
time-consuming, expensive and technically challenging. Therefore, to complement and extend existing
experimental methods for malonylation site identification, we developed two novel computational meth-
ods for malonylation site prediction based on random forest and deep learning machine learning algo-
rithms, RF-MaloSite and DL-MaloSite, respectively. DL-MaloSite requires the primary amino acid
sequence as an input and RF-MaloSite utilizes a diverse set of biochemical, physiochemical and
sequence-based features. While systematic assessment of performance metrics suggests that both ‘RF-
MaloSite’ and ‘DL-MaloSite’ perform well in all metrics tested, our methods perform particularly well
in the areas of accuracy, sensitivity and overall method performance (assessed by the Matthew's
Correlation Coefficient). For instance, RF-MaloSite exhibited MCC scores of 0.42 and 0.40 using 10-fold
cross-validation and an independent test set, respectively. Meanwhile, DL-MaloSite was characterized
by MCC scores of 0.51 and 0.49 based on 10-fold cross-validation and an independent set, respectively.
Importantly, both methods exhibited efficiency scores that were on par or better than those achieved
by existing malonylation site prediction methods. The identification of these sites may also provide
important insights into the mechanisms of crosstalk between malonylation and other lysine modifica-
tions, such as acetylation, glutarylation and succinylation. To facilitate their use, both methods have been
made freely available to the research community at https://github.com/dukkakc/DL-MaloSite-and-RF-

MaloSite.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Post-translational modifications (PTMs) play a central role in
the regulation of nearly all cellular processes. Among the twenty
canonical amino acids, lysine residues undergo the most diverse
range of modifications [1,2]. For instance, positively-charged lysine
residues can be acetylated, ubiquitinated, SUMOylated, glycated,
butyrylated, succinylated, and methylated, with different types of
modifications leading to different functional outputs in the cell.
Recently, malonylation was discovered as yet another type of
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lysine PTM [3]. Malonylation, which occurs in both eukaryotic
and prokaryotic cells, involves a covalent linkage between the &-
amino group of lysine and a malonyl moiety. Unlike acetylation,
which involves the addition of relatively small two-carbon chain,
malonylation extends the lysine side chain by an additional 4 car-
bons, making it one of the bulkier acylation modifications. More-
over, because the malonyl moiety contains a negatively-charged
carboxylic acid group at the y-position, malonylation effectively
switches the charge of the modified lysine residue from +1 in the
unmodified state to —1 following malonylation [3-6]. As a conse-
quence, malonylation can have a profound influence on protein
function. Indeed, several studies have found that malonylation
influenced signaling processes in a variety of organisms, including
humans [4,7], mice [7,8], and the bacterium, Saccharopolyspora
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erythreae [9]. Likewise, malonylation has also been implicated in
the regulation of inflammation and core metabolic processes
[10-12] as well as numerous pathophysiological disorders, such
as cancer, cardiac ischemia and muscle weakness [6,7].

Recently, several proteomics strategies have been developed to
identify malonylation sites in cells, including mass spectrometry-
based methods, chemical probes, affinity enrichment and label-
free quantitative methods [3,4,13-15]. However, these approaches
are often time-consuming, expensive, and require a high level of
technical expertise. As a consequence, several groups have recently
developed computational methods to predict malonylation sites in
silico. These methods, which complement existing experimental
methods, not only have the potential to identify novel malonyla-
tion sites on proteins that might not be detected by experimental
methods (e.g., low abundance proteins or proteins that are only
modified under specific cellular conditions), but they also have
the potential to offer new insights into the molecular characteris-
tics that lead to malonylation. The first malonylation site predictor,
Mal-Ly, was developed using a support vector machine (SVM) algo-
rithm with feature selection of minimum redundancy/maximum
relevance (mRMR) based on experimentally identified malonyla-

853

tion sites from M. musculus [16]. Subsequent methods, including
MaloPred [17], SPRINT-Mal [18], iLMS [19] and the method of
Xianget [20], also employed SVMs with distinct feature sets to inte-
grate malonylation site data from various organisms, including
humans, mice, S. erythraea and E. coli [17-21]. Likewise, several
methods, such as LEMP [22] and the method developed by Zhang
et al. [23], utilized ensemble methods to identify malonylation
sites from diverse species. Notably, during the development of
LEMP, which is the most recent and best performing malonylation
site prediction method developed to date, Chen et al. integrated a
deep learning (DL) network classifier based on long short-term
memory (LSTM) with word embedding (LSTMwg) and RF with
enhanced amino acid content (EAAC) features [22]. Nonetheless,
there is still room for improvement, as evidenced by MCCs of just
0.246 and 0.244 using 10-fold cross-validation and an independent
dataset, respectively. Indeed, though great strides have been made
in the performance of malonylation site predictors over the past
several years, most successfull methods still suffer with respect
to sensitivity (SN) and overall performance (as assessed by MCC).
Therefore, we sought to develop malonylation site prediction tools
based on DL and RF/Xgboost (Fig. 1). While a DL-based strategy is
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Fig 1. Schematic diagrams illustrating the architectures of RF-MaloSite (A) and DL-MaloSite (B).
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highly efficient and not dependent on manually extracted features,
the use of RF/Xgboost permits identification of informative
features along with different numbers of features. Our methods,
which we termed DL-MaloSite and RF-MaloSite, respectively,
each improved prediction of malonylation sites considerably and
provide complementary information about malonylation site
selection.

2. Materials and methods
2.1. Dataset and pre-processing

The original dataset used in the development of our methods
was retrieved from previous studies and contained experimentally
identified malonylation sites from mice and humans [8,13]. The
training and independent sets were assembled in a manner similar
to that described by Chen et al. [22]. We also employed the same
procedure outlined in Chen et al. [24] and Olsen et al. [25] to keep
only non-redundant data. To this end, we used CD-Hit to remove
homologous sequences that shared greater than 30% identity
[26]. Any sequences that contained “placeholder” resides, such as
X, O, U, Z or ] were discarded. Briefly, we first defined
experimentally-verified malonylation as positive sites and lysine
residues not known to be malonylated as negative sites. We then
took a certain number of residues upstream and downstream of
the positive/negative site to define a window. To determine the
optimal window size, different window sizes were tested and the
window with the highest MCC was selected. Finally, we randomly
split our dataset so that one-fifth of the dataset was set aside for
the independent set and the remaining four-fifths were used for
training. Summary statistics for the training and independent sets
are given in Table 1.

Feature encoding. To develop a computational tool to distinguish
malonlaytion sites, we first needed to convert each residue in the
protein sequences into a numerical value. Recently, several fea-
tures have been proposed to convert protein primary amino acid
sequences into mathematical expressions, including amino acid
composition (AAC), pseudo amino acid composition (PSAAC), gene
ontology (GO), position specific scoring matrix (PSSM), and various
other physicochemical properties [24-31]. Likewise, other studies
have generated features based on structural information, such as
secondary structure, super secondary structure, accessible surface
area and local backbone angles [32-36]. Each of these features
can provide insights into distinctive types of posttranslational
modification. There have been some ensemble approaches for
bioinformatics problems [37,38]. In this study, we extracted some
features from the Features Extraction from Protein Sequence (FEPS)
web application [39]. In total, we extracted 4246 features from the
FEPS server. We also combined these features with three types of
physiochemical properties, such as amino acid properties (AAP),
binary encoding (BE) and enhanced encoding features (EAAC).
The final number of features was 6590. The feature classes, many
of which are similar to those used to develop our glutarylation site
predictor, RF-GlutarylSite, are summarized in Table 2 [40]. A
detailed description of each feature class can be found in [40].
The other features are EAAC, amino acid index (AAI) derived from
this study [22], and AAP that has been implemented in prediction
of S-sulfenylation sites [41]. Here, we briefly describe EAAC.

Table 1
The number of positive and negative sites in the training and independent sets before
(left) and after (right) balancing:

Original data Positive sites (before/after) Negative sites (before/after)
Training 3978/3978 68,595/3978
Testing 988/988 16,097/988

Table 2

Composition of the complete feature set used during initial model development.
Detailed descriptions of each feature class except EAAC, AAP, and AAI are provided in
[40].

NO Feature Class Abbreviation Feature Length

1 Binary feature BIN 560

2 Amino Acid Composition AAC 20

3 Composition of amino acid pairs  AACP 400

4 K-space amino acid pairs KSAAP 2400

5 Composition, Transition and CTD 147 (C:21; T:21,
Distribution D:105)

6 Conjoint triad CT 512

7 Pseudo-amino acid composition ~ PseAAC 47

8 Autocorrelation Ay 720

9 Amino acid factor AAF 140

10  Amino acid properties AAP 392*

11 Amino acid index AAI 812*

12 Enhanced amino acid EAAC 440*
composition

13 Combined all features Total 6590

2.2. Enhanced amino acid composition

EAAC, which was applied by Chen et al. during the development
of LEMP [22], is an enhanced version of amino acid composition
that counts the frequency of sliding window across the peptide
or sequences. Instead of counting the frequency of individual
resides within a given fragment, EEAC starts upstream of the site
and ends downstream. In our work, we calculated the occurrence
of a sliding window that consisted of eight residues, yielding a final
dimensional vector of 440.

3. Feature selection

Though using a larger number of relevant features can provide
clearer information about the target, if the feature set consists of
many irrelevant or correlated features, classification performance
can actually be diminished with an expanded feature set. More-
over, large numbers of features cause major issues for computa-
tional problems and can increase computational time. Therefore,
it is often advantageous to reduce the number of irrelevant and
redundant features when employing machine-learning methods
[42,43]. To this end, we employed the Gradient Boosted Trees
method, Xgboost [44], to detect non-linear associations from the
features set. Xgboost has been applied to extract the highest valu-
able features in many studies [40,45,46]. We applied Xgboost [44]
in Python with the Scikit-learn (v 0.19.0) package [47] to capture
significant attributes from our training set.

Essentially, we calculated Gini impurity for each feature to find
the one that had the best split. This means that we reduced the
impurity for each node and reached to the terminal node. High
impurity values would suggest more uncertain in identifying class
labels. It required more split until reaching to the leaf node.

Next, we computed information gain for each feature and found
the one that had maximum values, which was used as important
features for the first tree. The same procedure was repeated for
other trees. After that, we determined the average importance of
each feature from aggregated trees and recorded those as impor-
tant features for our method.

Gini impurity can be described by:

G= " tm(1—tn) (1)

where C, is the number of classes and t;, is the probability value of
m. Operating values of each node in the gradient boosted trees, we
computed Gini Importance by Gini Importance formula as follows:

A = Gparent — Genita1 — Gehilaz (2)
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Any attribute (A) with a significance value lower than 0.002 as
threshold was considered as an unimportant attribute and was
therefore removed from the feature set. We selected only 104 fea-
tures as informative features for our approach whereas the rest of
the attributes were rejected from the training set due to small
importance impact.

Random forest method. RF is a supervised machine-learning
technique that uses a bootstrapping algorithm [48-50]. It has been
broadly applied to many bioinformatics problems, such as those
described in [51-53]. The construction of a random forest is
achieved by aggregation of decision trees. Each tree is a random
subset of data points (d) from samples (S) with a random subset
of attributes (A). It is assumed that data point (d) was randomly
chosen with replacements from samples (S) with a random subset
of attributes (A). Following that, the best select node was desig-
nated from A. Next, each decision tree was expanded as likely
without trimming. Finally, using this information, each tree will
assign positive or negative class, but the last categorization is made
based on maximum voting from the entire tree. In this work, RF
was employed using Python (v 3.6.0) with the Scikit-learn (v
0.19.0) [47], and pandas (v 0.20.3) [54], packages were executed
to build our approach.

Deep learning based approach. One of the principle advan-
tages of DL over traditional machine learning approaches is the
ability to learn relevant features itself. The input for our DL
approach, which we named ‘DL-MaloSite’, is the FASTA format
sequence windows. A window size of 29 gave us the optimal
results, so it was used in this study. First, the alphabetic sequence
for each peptide was converted to respective integers from 0 to 20
for 20 amino acids. These integers were encoded with the window
size 29, which were then fed into the DL network.

Model architecture. The overall DL architecture is shown in
Fig. 1. The integer encoded input is passed to the embedding layer
[55]. Embedding dimension of 21 gave us the optimal results. At
the beginning, weights are initialized randomly but the model
learns gradually for the improved vector representation. Each vec-
torization is an orthogonal representation in another dimension, so
commonly co-occurring items are together in the vector space,
thus performing better than one-hot encoding used in [56,57].
The output dimension is 29 x 21. A lambda layer was then used
to add pseudo dimension before passing to 2-dimensional convolu-
tional layer.

By using 2D convolutional layer, a filter size of 15 x 3 was pos-
sible, which in turn allowed us to include the central PTM site in
every stride. The use of this filter size, along with the disabling of
padding, allowed the model to be optimized for training time with-
out compromising performance. To avoid overfitting, a relatively
high cutoff of 0.6 was used. In this model, two convolutional layers,
one maxpooling layer, a fully connected layer with two dense lay-
ers and an output layer were used. A rectified linear unit (ReLU)
was also used as an activation function for all layers and Adam
[58] was used as the optimizer for our architecture. More informa-
tion about the model and its important parameters are provided in
supplementary materials.

Transfer learning. The performance of different DL architec-
tures greatly relies -on the quantity of dataset, which adversely
affects the outcome. To circumvent the problems posed by a lim-
ited dataset, we employed a transfer learning approach similar to
that used during the development of DeepPhos [57]. Specifically,
a model developed for a similar task was reused and retrained on
a new dataset. In our study, for the second dataset, we used a
model trained on a mouse dataset as a base for training on a
human dataset to improve the performance.

We have implemented a similar approach during the develop-
ment of our DL model, DeepSuccinylSite [59] for succinylation site
prediction, with better performance metrics than previous

machine learning models without the use of manually extracted
features.

Model assessment and performance metrics. To assess the
implementation of our approach and the current malonylation site
predictors’ methods, we evaluated our methods using two assess-
ment techniques. The first technique was established by ten-fold
cross-validation. Specifically, we divided our data into ten chunks,
of which one was used for validation while the other nine were
used for training. We then evaluated the performance for each
model. This procedure was iterated ten times for 10 models by
changing training data points and test data. Lastly, we computed
the average results from each iteration. The second technique
was using an independent test set to evaluate the overall quality
of our approaches.

To evaluate the quality of RF-MaloSite and DL-MaloSite, four
statistical metrics were adopted. These metrics were accuracy
(ACC), sensitivity (SN), specificity (SP), and Matthew’s correlation
coefficient (MCC). They have been employed to assess the perfor-
mance of many approaches in different works [39,60,61].

These measurements can be computed as follows:

TP +TN

ACC =5 N Fp N < 100 3)
SN = sz% x 100 (4)
SP = TNLEFP x 100 (5)
Mcc = V(TP ¥ Fpggr))(?l?r\l;(g)ﬁ?) (TN + FN) ®)

From these metrics, TP denotes true positives (i.e., correctly
assigned malonylation sites), TN denotes true negatives (i.e., cor-
rectly assigned non-malonylation sites), FP represents false posi-
tives (i.e., non-malonylation sites that were incorrectly assigned
as malonylation sites) and FN specifies false negatives (i.e., bona
fide malonylation sites that were incorrectly assigned as non-
malonylation sites). Since MCC reports proportions of TP, TN, FP
and FN, the assessment value of MCC is generally reflected as alter-
nate for complete quality of approach [62-65].

Receiver Operating Characteristics (ROC) curves were adopted
as an additional quality metric. The ROC curve is a graphical plot
that shows the performance of sensitivity against 1 - specificity
with every likely cutoff [66] while the area under curve (AUC)
denotes the level or quantity of separability.

4. Results and discussion

To facilitate the computational prediction of malonylation sites
in proteins, we sought to develop a series of malonylation site pre-
dictors based on machine learning strategies. To this end, we first
established datasets for training and testing of the algorithms. The
dataset used in this work was initially extracted from Chen’s study
[22]. However, this dataset had a highly imbalanced number of
positive and negative samples, with a ratio of approximately 16
negative sites for every positive site (i.e.,, a 1:16 positive-to-
negative ratio). Previous studies suggest that imbalanced datasets
can cause serious complications with machine learning algorithms,
potentially leading to reduced accuracy of prediction [67,68]. To
address this potential complication, several computational meth-
ods have been described to balance datasets, including over-
sampling and under-sampling [52,69,70]. Here, we employed an
under-sampling strategy [71], which was a technique that ran-
domly selected the same number of instances from non-
malonylation sites that equally balanced with the size of instances
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of malonylation sites. This led to a 1:1 positive-to-negative ratio
for the training sets used to establish our methods.

Once the training and testing sets were established, we next
used the training set to evaluate several statistical algorithms,
including SVM, RF, DL, neural network (NN) and k-nearest neigh-
bor (KNN) methods. Initially, we integrated all 6590 features uni-
formly into these algorithms and compared the performance of
each algorithm based on 10-fold cross-validation (Tables S1 and
S2). These analyses suggested that inclusion of the entire feature
set did not improve the methods’ ability to distinguish between
those sites that were malonylated and those that were not (and
may have even hindered performance). This is likely due to the
inclusion of a large number of redundant and non-associated vari-
ables. Because decision trees, such as RF and Xgboost, provide
information about the relative contribution of each feature to over-
all method performance, we used Xgboost to identify those fea-
tures that contributed most substantially to malonylation site
prediction (Figs. ST and S2; Tables S3 and S4). Based on these anal-
yses, we selected 104 features with importance greater than 0.002.
As can be seen in Fig. 2, a high percentage of the selected features
came from pseudo-amino acid composition (PseAAC; 20%),
enhanced amino acid composition (EAAC; 14%) and composition,
transition and distribution (CTD; 14%). Indeed, all 10 of the most
important features came from one of these three feature classes,
with 5 of the 10 coming from CTD, 3 of the 10 coming from PseAAC
and 2 of the 10 coming from EAAC (Fig. 3; Table 3). Together, these
data suggest that the physiochemical properties of the amino acids
surrounding the modified lysine (and particularly the presence of
positively charged residues) plays a major role in malonylation site
selection. On the other hand, sequence-based features, such as
composition of amino acid pairs (AACP) was the least important
feature, exhibiting the lowest percentage among all of the impor-
tant features.

Once determined, the 104 important features were integrated
into the RF-, SVM-, NN- and KNN-based frameworks (since DL does
not utilize feature information, it was not impacted by feature
selection). This strategy helped to improve the performance of
each algorithm substantially (Table 4). Not only did feature selec-
tion help to simplify and focus the models, but it also has the added
benefit of reducing computational time. Importantly, it also sug-
gested that DL- and RF-based methods performed the best with
respect to ACC, SN, SP and MCC. Similar results were observed
when the independent set was used for evaluation (Table 5) There-
fore, we focused on these classifiers during subsequent model
development.

In addition to a balanced dataset and feature selection, the win-
dow size used during method development is also an important
parameter in prediction quality. Indeed, when using the primary
amino acid sequence as input, evaluation of the window size helps
to identify the impact that contiguous residues have on a given
method’s ability to distinguish between positive and negative sites.
Therefore, to determine the window size(s) that yielded the best

EAACPI]KSAAP.CTDICTIPseAAC [EMoreau-broto[[lMoran-auto[[JGeary-auto[HIAAP[JAAI[JEAAC

Fig 2. The distributions of each kind of attribute for optimal features with the
corresponding percentage score. The total number of selected attributes was 104.
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Fig 3. Top ten most important features with corresponding weights.

Table 3

Top ten features ranked by information gain score. PseAAC: Pseudo-amino acid
composition; EAAC: Enhanced amino acid composition; CTD: Composition, distribu-
tion and transition.

Rank Features Type Description

1 APAAC8 PseAAC feature at a particular site

2 ChargeD1100 Distribution feature denoting positive
charge of class 1 at last position

3 SW.12.K EAAC feature denoting enrichment of lysine
at portion 12

4 PolarityC1 Composition feature of class 1 for polarity
property

5 ChargeD1001 Distribution feature which denotes positive
charge of class 1 at first position

6 APAAC1 PseAAC feature at particular site

7 ChargeD1025 Distribution feature which denote positive
charge of class 1 at second location

8 APAAC20 PseAAC feature at particular site

9 SolventAccessibilityCl1 ~ Composition feature of class 1 for Solvent

Accessibility
EAAC feature denoting enrichment of lysine
at portion 15

10 SW.15.K

Table 4

Comparison between various machine learning algorithms based on 10-fold cross-
validation using 104 features. ACC: Accuracy; SN: Sensitivity; SP: Specificity; MCC:
Matthew’s Correlation Coefficient.

Classifier ACC (%) SN (%) SP (%) MCC

DL 75 82 69 0.51

RF 71 79 63 0.42

SVM 64 71 58 0.30

KNN 61 67 56 0.23

NN 69 73 65 0.37
Table 5

Comparison between our methods and various machine learning algorithms based on
an independent test set using 104 features. ACC: Accuracy; SN: Sensitivity; SP:
Specificity; MCC: Matthew’s Correlation Coefficient.

Classifier ACC (%) SN (%) SP (%) MCC
DL 74 80 68 0.49
RF 70 76 63 0.40
SVM 65 69 62 0.29
KNN 62 66 58 0.23
NN 68 76 58 0.35

performance, we examined window sizes ranging from 25 to 33
residues. During these analyses, we used MCC based on 10-fold
cross-validation as a surrogate of overall method performance.
While examination of the optimal window size for the DL method
entailed a simple sliding window strategy with no feature
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selection, during the evaluation of the RF algorithm, every pro-
posed window size used the optimal features that had been
selected by Xgboost. As shown in Table S5 and Fig. S3, the optimal
window size for both the RF- and DL-based algorithms was found
to be 29. For instance, the MCC of the RF method peaked at 0.42
using a window size of 29, suggesting that this window size con-
tains more useful information for malonylation site identification
than other windows. It is interesting to note that both the RF-
and DL-based methods showed the best performance using this
window size. This may suggest that 29 residues (i.e., 14 residues
on each side of a central lysine residue) represents the preferred
peptide length for malonylation to occur (and/or to prevent de-
malonylation by Sirtuin family members). However, the molecular
basis for this observation remains to be determined.

While both the final DL- and RF-based methods, which we ter-
med DL-MaloSite and RF-MaloSite, respectively, performed com-
parably well with respect to ACC, SN, SP and MCC, in general, DL-
MaloSite outperformed RF-MaloSite in malonylation site identifi-
cation. The same was true based on AUC and precision recall
(Figs. S4 and 4).

5. Comparison between our methods and existing methods

To determine how DL-MaloSite and RF-MaloSite compare to
existing malonylation site prediction methods, we conducted a ser-
ies of side-by-side comparisons between our methods and existing
malonylation site prediction methods. During these analyses, we
restricted our comparisons to datasets used during the develop-
ment of the existing methods, which in some cases required us
to implement transfer learning for DL-MaloSite. For instance, for
comparisons between our methods and SPRINT-Mal [18] and iLMS
[19], we used the same training and independent datasets used by
Taherzadeh et al. [18]. Because these datasets were organism-
specific (i.e., from H. sapiens, M. musculus and S. erythraea) and
DL-MaloSite was trained on a mouse dataset that contained a com-
paratively larger number of malonylation sites than the H. sapiens
or S. erythraea datasets, we implemented transfer learning for DL-
MaloSite when comparisons were made using datasets from these
organisms. To this end, the same model was used as the initial
phase to be retrained against the new dataset. The evaluations
using 10-fold cross-validation against the mouse dataset suggest
that, while SPRINT-Mal outperforms our methods with respect to
ACC and SP by an average of 16% and 21%, respectively, DL-
MaloSite and RF-MaloSite each achieved higher SN scores than
the other methods. Indeed, the SN scores exhibited by DL-
MaloSite and RF-MaloSite were ~45% and ~47% higher than those

1.0 —— RF-MaloSte.......... (AUC = 0.72)
—— DL-MaloSite.......... (AUC =0.77)

0.8

0.6
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0.4

0.2

0.0
0.0 0.2 04 0.6 0.8 1.0
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Fig 4. Precision recall (PR) curve based on the independent test set for DL-MaloSite
(red) and RF-MaloSite (blue). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

achieved by SPRINT-Mal and iLMS (Table 6). As a consequence,
DL-MaloSite and RF-MaloSite exhibited the highest MCC scores of
all of the methods tested, with MCC scores that were 54% and
38% higher than those achieved by iLMS, respectively (and 90%
and 71% higher than those achieved by SPRINT-Mal, respectively).
Similar trends were observed using the independent dataset from
mouse, where DL-MaloSite and RF-MaloSite achieved MCC scores
that were 50% and 19% higher than those exhibited by iLMS,
respectively (and 95% and 55% higher than SPRINT-Mal’'s MCC
score) (Table 7). The gains in MCC by our methods were likely
due to improved TP rates, which led to substantially higher SN
scores without sacrificing SP and ACC, where SPRINT-Mal achieved
the highest scores.

The comparisons based on 10-fold cross validation using the
human dataset showed that, while the SP scores exhibited by iLMS
outpace those of DL-MaloSite and RF-MaloSite by 23% and 29%,
respectively, our methods achieved SN scores that were 75% and
48% higher than those scored by iLMS? (Table 8). Likewise, DL-
MaloSite performed the best with respect to MCC using the human
dataset, where it achieved MCC scores that were 2.2-fold higher than
iLMS and 47% higher than RF-MaloSite. Similarly, performance eval-
uation using an independent dataset from humans suggests that,
though SPRINT-Mal achieved the highest SP and ACC scores, DL-
MaloSite and RF-MaloSite performed well with respect to all metrics
(particularly SN and MCC) (Table 9). For instance, the SN scores
observed for RF-MaloSite and DL-MaloSite were 88% and 2.2-fold
higher than that achieved by SPRINT-Mal. Likewise, DL-MaloSite
exhibited the highest MCC score using the independent dataset from
humans (0.39), followed by RF-MaloSite (0.24) and then by SPRINT-
Mal (0.20).

The differences between method performance were even more
pronounced when the independent dataset from S. erythraea was
used for comparison. Indeed, though the overall trends were simi-
lar to those observed using datasets from the other organisms,
SPRINT-Mal outperformed RF-MaloSite and DL-MaloSite by 73%
and 96%, respectively, with respect to SP and by 32% and 26%,
respectively, with regard to ACC (Table 10). Conversely, DL-
MaloSite and RF-MaloSite achieved SN scores that were a remark-
able 3.9- and 3.4-fold higher than those exhibited by SPRINT-Mal.
This culminated in MCC scores for DL-MaloSite and RF-MaloSite
that were 3.3- and 2.67-fold higher than the scores observed for
SPRINT-Mal.

Finally, we compared our methods to LEMP, the current gold-
standard for malonylation site prediction [22]. For these analyses,
we used the training and independent test sets described by Chen
during the development of LEMP. Since these datasets combined
malonylation sites from human, mouse and bacteria, we did not
need to employ transfer learning under these circumstances. Based
on 10-fold cross-validation, the ACC scores obtained for RF-
MaloSite and DL-Malosite were 19% and 15% lower than those
achieved by LEMP, respectively (Table 11). Likewise, the SP scores
obtained by RF-MaloSite and DL-MaloSite were 31% and 24% lower
than those exhibited by LEMP, respectively. In contrast, the SN and
MCC scores for both RF-MaloSite and DL-MaloSite were markedly
higher than those achieved by LEMP. For instance, the SN scores
for RF-MaloSite and DL-MaloSite based on 10-fold cross-
validation were 89% and 97% higher, respectively, than the SN
score observed for LEMP. Importantly, the MCC scores for RF-
MaloSite and DL-MaloSite were 75% and 113% higher, respectively,
than that achieved by LEMP.

Similar results were obtained using the LEMP independent
dataset, with RF-MaloSite and DL-MaloSite outperforming LEMP

2 SPRINT-Mal was not evaluated by 10-fold cross-validation using the human
dataset.
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Table 6

Comparison between SPRINT-Mal [18], iLMS [19], RF-MaloSite and DL-MaloSite based on 10-fold cross-validation using a M. musculus dataset. ACC: Accuracy; SN: Sensitivity; SP:

Specificity; MCC: Matthew’s Correlation Coefficient.

Features Organism ACC (%) SN (%) SP (%) MCC AUC

SPRINT-Mal [18] M. musculus 80 49 81 0.21 0.74

iLMS [19] - 49 80 0.26 0.74

RF-MaloSite 68 72 65 0.36 0.75

DL-MaloSite 70 71 68 0.40 0.73
Table 7

Comparison between SPRINT-Mal [18], iLMS [19], RF-MaloSite and DL-MaloSite based on an independent test set from M. musculus. ACC:
Specificity; MCC: Matthew’s Correlation Coefficient.

Accuracy; SN: Sensitivity; SP:

Features Organism ACC (%) SN (%) SP (%) MCC AUC

SPRINT-Mal [18] M. musculus 90 33 92 0.20 0.74

iLMS [19] - - - 0.26 0.72

RF-MaloSite 65 65 65 0.31 0.72

DL-MaloSite 68 85 51 0.39 0.72
Table 8

Comparison between SPRINT-Mal [18], iLMS [19] RF-MaloSite and DL-MaloSite based on 10-fold cross-validation using a H.
Specificity; MCC: Matthew’s Correlation Coefficient.

sapiens dataset. ACC: Accuracy; SN: Sensitivity; SP:

Features Organism ACC (%) SN (%) SP (%) MCC AUC
SPRINT-Mal [18] H. sapiens - - - - -

iLMS [19] - 48 80 0.23 0.74
RF-MaloSite 67 71 62 0.34 0.74
DL-MaloSite (Transfer Learning) 75 84 65 0.50 0.78

Table 9

Comparison between SPRINT-Mal [18], iLMS [19] RF-MaloSite and DL-MaloSite based on an independent test set from H. sapiens. ACC: Accuracy; SN: Sensitivity; SP: Specificity;

MCC: Matthew’s Correlation Coefficient.

Features Organism ACC (%) SN (%) SP (%) MCC AUC
SPRINT-Mal [18] H. sapiens 91 35 89 0.20 0.70
iLMS [19] - - - - -

RF-MaloSite 62 66 59 0.24 0.66
DL-MaloSite (Transfer Learning) 69 78 60 0.39 0.75

Table 10

Comparison between SPRINT-Mal [ 18], iLMS [19] RF-MaloSite and DL-MaloSite based on an independent test set from S. erythraea. ACC: Accuracy; SN: Sensitivity; SP: Specificity;

MCC: Matthew’s Correlation Coefficient.

Features Organism ACC (%) SN (%) SP (%) MCC AUC
SPRINT-Mal [18] S. erythraea 86 23 92 0.12 0.64
iLMS [19] - - - - -
RF-MaloSite 65 77 53 0.32 0.67
DL-MaloSite 68 90 47 0.40 0.75
Table 11
Comparison between DL-MaloSite, RF-MaloSite and LEMP based on 10-fold cross-validation. ACC: Accuracy; SN: Sensitivity; SP: Specificity; MCC: Matthew’s Correlation
Coefficient.
Features ACC (%) SN (%) SP (%) MCC AUC
LEMP [22] 88 42 91 0.24 0.82
RF-MaloSite 71 79 63 0.42 0.77
DL-MaloSite 75 82 69 0.51 0.81

with respect to MCC by 1.6- and 2.0-fold, respectively (Table 12).
Likewise, the SN scores exhibited by RF-MaloSite and DL-
MaloSite were 72% and 82% higher than the SN score achieved by
LEMP.

Taken together, these the side-by-side comparisons with LEMP
suggest that both RF-MaloSite and DL-MaloSite are able to identify
malonylation sites with higher sensitivity and higher MCC scores
than LEMP. In contrast, though their SP and ACC scores were

decent, our methods did not perform as well as LEMP with respect
to SP and ACC.

More broadly, we observed that both of our methods performed
better than existing methods in predicting malonylation sites, as
evidenced by their relatively high SN and MCC scores. In contrast,
our methods had some challenges determining non-malonylation
sites (i.e., TNs in our datasets). This may be a function of our
under-sampling strategy or a consequence of the potentially large
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Table 12

Comparison between DL-MaloSite, RF-MaloSite and LEMP based on the independent test. ACC: Accuracy; SN: Sensitivity; SP: Specificity; MCC: Matthew’s Correlation Coefficient.
Features ACC (%) SN (%) SP (%) MCC AUC
LEMP [22] 87 44 920 0.24 0.82
RF-MaloSite 70 76 63 0.40 0.75
DL-MaloSite 74 80 68 049 0.81

number of as-yet-unidentified malonylation sites. There are ways
to increase the performance of our methods, especially with
respect to the SP and accuracy metrics. For instance, additional
structural features can be introduced to help the classifiers distin-
guish between malonylation and non-malonylation sites. Likewise,
as the number of experimentally-determined malonylation sites
grows, we can also increase the number of samples, which can help
our method learn more about the problem and enhance prediction.

6. Conclusions

Here, we described the development of two independent
machine-learning methods designed to predict malonylation sites
in proteins based on their primary amino acid sequences. Our
methods, which we termed ‘Rf-MaloSite’ and ‘DL-MaloSite’, out-
performed existing approaches with respect to SN and MCC. For
RF-MaloSite, this highlighted the power of using important fea-
tures generated via the Xgboost technique and integrated into
our RF algorithm. Interestingly, our DL-based model, DL-
MaloSite, was able to perform as well or better than existing meth-
ods without the need of manual feature extraction. This reduces
hassle for manual feature extraction, which can introduce bias as
well. For further improvements in our DL model, we can use
multi-windows input in a manner similar to DeepPhos [57]. We
can also add feature information and position specific scoring
matrices (PSSM) in addition to that of the current embedding
encoded input to improve performance. However, the main chal-
lenge would be the size of data, which will likely be remedied as
the number of experimentally-verified malonylation sites contin-
ues to grow. Our method can be beneficial for the signaling com-
munity and biologists interested in understanding and exploring
the impact of malonylation sites on physiological and pathophysi-
ological states. Likewise, these methods will help researchers
explore crosstalk between malonylation and other similar types
of lysine PTMs, such as acetylation, glutarylation and succinylation.
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