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Abstract: Mobile robots designed for agricultural tasks need to deal with challenging outdoor
unstructured environments that usually have dynamic and static obstacles. This assumption signifi-
cantly limits the number of mapping, path planning, and navigation algorithms to be used in this
application. As a representative case, the autonomous lawn mowing robot considered in this work
is required to determine the working area and to detect obstacles simultaneously, which is a key
feature for its working efficiency and safety. In this context, RGB-D cameras are the optimal solution,
providing a scene image including depth data with a compromise between precision and sensor cost.

check for For this reason, the obstacle detection effectiveness and precision depend significantly on the sensors
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used, and the information processing approach has an impact on the avoidance performance. The
study presented in this work aims to determine the obstacle mapping accuracy considering both
hardware- and information processing-related uncertainties. The proposed evaluation is based on
artificial and real data to compute the accuracy-related performance metrics. The results show that
the proposed image and depth data processing pipeline introduces an additional distortion of 38 cm.
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In complex robotic tasks, such as in agricultural applications, sensing systems are a key
element influencing the functionality and effectiveness of job execution. Proper selection of
the sensing system is usually made in the light of defined functionalities and requirements
established at the robot design stage. In this context, a sensory system based on computer
vision has a special place due to its versatility. It can be used in numerous applications,
ranging from fruit detection (including size, color, ripeness, etc.) to object tracking and
establishing the robot path after scene analysis [1]. For this reason, vision systems are the
basis for autonomous robot navigation, since in a large number of applications, paths are
marked/defined /detected visually [2]. As an example, the orchard’s robot navigation can
be introduced, where the mobile robot needs to detect the path autonomously (e.g., defined
as the position in the middle of the row) to accomplish their task (recollection, spraying,
crops stand counting, plant phenotyping, etc.) [3-6]. In agricultural applications, the path
detection and navigation strongly depend on the robotic task goals. There are different ways
the path is specified /defined, and various constraints affect robot operations, including
image recognition and maneuvering—the most typical examples include road detection [7],
crop row guidance for agriculture robots [3,8], area detection for lawn movers [9], and
obstacle detection and procedures for their avoidance [10].
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Simultaneously with the task’s objectives, most autonomous robots need to detect
and avoid obstacles to ensure safe operation. Obstacle detection systems can include
a large number of sensors and techniques ranging from ultrasonic sensors and lidars
to more complex solutions relying on computer vision systems. Due to their flexibility,
cameras are universal and widely applicable in tasks where a complex perception system is
required [1,5,6]. In this context, physical camera characteristics, such as resolution, field of
view, etc., are only part of the overall computer vision system properties. In these systems,
most features are defined by the implemented software and data processing algorithm.
For this reason, in robotic applications, where the computer vision system is used for
navigation purposes (e.g., obstacle detection and mapping), the accuracy error introduced
by the processing software should also be considered to improve the localization and
navigation effectiveness. The robotic agricultural application considered in this work, lawn
mowing, assumes the robot knows only the working area boundary, expressed by the GPS
coordinates, and the robot’s main objective is to cover the working area [9,11]. To complete
this goal, the robot global path is generated to optimize robot movements and to perform
tasks more efficiently. However, in this approach, the robot has no information regarding
the obstacles” positions and needs to detect and avoid them in an autonomous manner
using its sensors. Detected obstacles need to be mapped in order to be avoided by the robot.
To accomplish this task, the robot’s global path must be divided into smaller parts (e.g.,
using the idea of moving horizon), known as a local plan. Afterwards, the local planner
takes into account the global goals and obstacles and generates the local plan, allowing
obstacles to be avoided and simultaneously performing as close as possible to the global
path. The described approach is widely used in many agricultural tasks [12,13]. The
performance of the job execution depends mainly on the type (static or dynamic) and the
number of obstacles, influencing the obstacle mapping precision and, as a consequence,
obstacle avoidance performance and effective area coverage. Additionally, for safety
reasons, the obstacle’s shape is augmented (“inflated”) with a safety distance that is added
to the original dimension to make the avoidance procedure safe [10,14]. To make this
navigation strategy efficient (maximize area coverage), obstacles in working areas should
be localized with high precision. In practical applications, obstacle localization is usually
not very precise, the safety distance is overestimated (to promote safety over performance),
and the efficiency in area coverage drops. However, if one can improve the estimation of
the required safety distance, the criteria for both safety and performance can be satisfied,
while the area coverage can be maximized. This paper describes a novel methodology to
determine the obstacle detection accuracy for a RGB-D camera-based vision system. The
main objective is to compute the real precision of the system considering both hardware-
related and information processing pipeline (software)-related accuracy. The methodology
used here exploits virtual and real data to calculate the accuracy error related to the
sensor and to the data processing pipeline. In this approach, artificial data are used to
determine the average mapping distortion introduced by the software processing. Using
this information and computed indexes from the real scene analysis, the accuracy related
to the sensor precision can be established. As a consequence, the real accuracy of obstacle
mapping is determined, and then the real precision can be considered in the planning
algorithm for obstacle avoidance. Thanks to this, the safety margin can be set within
real needs, resulting in better planning and an improved ratio between working and
covered areas.

The main contribution of the paper is related to a new evaluation method for obstacle
detection, i.e., marking obstacles on the map, which is used by the navigation module.
To determine the mapping accuracy, a new metric in terms of obstacle detection was de-
fined. The described research has also shown that segmentation metrics are not sufficient
for vision/depth systems in terms of obstacle detection and the navigation module, and
additional metrics are required to unequivocally determine the mapping performance.
The proposed accuracy verification method was tested on sequences collected from real
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sensors. The experimental evaluation performed confirmed the effectiveness of the intro-
duced method.

This paper is organized as follows: Section 2 presents a detailed analysis of related
works. Section 3 summarizes the system architecture used for obstacle detection. In the
first place, vision based techniques for obstacle detection are described. Subsequently, it is
shown how these obstacles are mapped and handled in a navigation task. The motivation
and methodology for accuracy determination in the presented system are also proposed.
Section 4 deals with the experimental evaluation of the proposed methodology using
artificial and real data sets. Additionally, the verification measures and the procedure
for the avoidance system setup, including determined accuracy, are proposed. Finally,
conclusions are given in Section 5.

2. Related Work

Movement, navigation, and obstacle avoidance are crucial aspects of all robotic sys-
tems, irrespective of robot design, application field, and performed tasks (e.g., [15-17].)
While most agricultural robots move on fields and navigate their path along crop or orchard
rows [3,8,15,18], lawn mowers traverse soft surfaces, require high maneuverability, and
navigate through an area which is quite uniform with no natural landmarks to follow. This
makes it more challenging to navigate the robot, detect deviations from the desired path,
and complicate obstacle detection. As a result, the safe operation of lawn mowers requires
various sensing technologies including RGB and depth cameras [19,20].

2.1. Obstacle Detection

Ball et al. [15] developed a vision-based obstacle detection and navigation for a
robot operating in the crop field. The robot navigates the area using a fusion of GPS,
inertial sensors, and a camera sensor to follow the crop rows. An additional pair of
stereoscopic wide angle cameras are used to observe the area 10 m ahead of the robot and
detect obstacles. Obstacles are detected by looking for so-called novelty in the cropping
image [21]. The method aims to detect the difference between the current and recent image-
detecting candidates for obstacles. This is possible for robots operating in fields where
crops/stubble are straight and parallel because the majority of crops and stubble can be
removed from consideration, simplifying image processing. Unfortunately, this approach
generates a number of false positive detections, especially when the robot moves across the
crop rows and turns at the headland turning regions. Additionally, it is sometimes difficult
to distinguish between obstacles and the ground when the obstacle is close to the ground.
Delayed detection and a short range make it challenging for the robot to respond to the
detected obstacles correctly.

Fleischmann et al. [22] also developed a system based on stereo vision. The whole
classification algorithm is based on splitting the generated point cloud into cells and
the further analysis of the cells, including the density and distribution of the points and
neighborhood of the cell.

The use of an RGB camera and distance measurement was investigated by Brown et al. [23].
They attempted to use a monocular vision camera and a single range measurement to
improve depth estimation in agriculture settings. The goal was to mitigate the ambiguity
of the scale that exists when only vision images are considered. The results presented
show improvements when run on NYUv2 and KITTI datasets but fail to work correctly on
agricultural objects which exhibit fractal properties.

Past articles [19,20] present a platform for the evaluation of human detection in
autonomous mowers using RGB, stereoscopic, infrared and 360° cameras, LIDAR, and
radar. The result of these works is the performance analysis for human detection in different
settings and poses. Additionally, they developed a database of sensor recordings and
corresponding annotations that can be used for the evaluation of other obstacle detection
algorithms. The database includes recordings and locations of humans, buildings, vehicles,
and vegetation.
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Christiansen et al. [17] proposed a method for obstacle perception using anomaly
detection. They benefit from combining deep convolutional neural network (CNN) with
anomaly detection to solve the problem of detecting distant and occluded objects, which
might not be recognized as an obstacle by typical CNNSs. The presented tests show that
the proposed technique enables a human to be detected at longer ranges, up to 90 m,
preserving real-time operation.

In the literature, there are more approaches that use deep learning. In [24], the authors
fine-tuned the popular AlexNet CNN [25]. The method was examined in terms of the
ISO/DIS 18497 norm, which defines a barrel-shaped obstacle. To comply with the standard,
the obstacle should be fully detectable by the system. The authors conclude that cameras
may also be used as a part of safety systems, showing that precision is more than 90%.

Cameras are not an obligatory part of the obstacle detection system. Other studies
show that only range sensors may be used. In [26], researchers utilize LIDAR data. The
SVM algorithm based on the point cloud originating from sensors classifies points as obsta-
cles, vegetation, or objects. The accuracy of the classification was 91.6%. Dvorak et al. [27]
investigated the ultrasonic sensor in terms of the capability of detecting numerous obstacles
and the possibility of finding in an agricultural field a human model, a Dracaena plant, a
wooden fence, and more.

For more results on obstacle detection and techniques used in agricultural applications,
the reader is advised to peruse the contents of the available survey articles [28-30].

2.2. Autonomous Lawn Mower

The article by Inoue et al. [31] investigates the operation of an autonomous lawn
mower that is navigated without a global navigation satellite system (GNSS). Instead, they
use cameras and IMU to simultaneously locate the mower, map the area (SLAM), and
detect and avoid obstacles. This approach allows the mower to be used in areas where
the GNSS signal is weak. The proposed approach was verified in a small 20 by 10 m lawn
where the robot traveled a predefined path in the forward and backward directions. Using
additional landmarks with known positions, the robot positioning accuracy at the end of
the path is equal to 0.38 m and is worse when no landmarks are used. The authors report
that an important factor of the error is the drift of the robot during turnaround. Results on
obstacle detection and avoidance are not presented.

Visual-only obstacle detection for a lawn mower is presented by Franzius et al. [32]. As
presented, the use of a low-cost camera and color-based obstacle detection can navigate the
mower on a flat lawn, avoiding objects. In this approach, object detection is based on grass
segmentation based on hue and saturation components of the image. The parameters of
the segmentation are adapted based on the sequence of images to improve the accuracy of
segmentation in variable lighting conditions. The robot operates under several assumptions
regarding the operational area: the future driving path is on the same plane as the mower,
obstacles lay on the ground, and the distance to the obstacle can be estimated from its pixel
coordinates on the image. These assumptions eliminate the need for 3D information and
simplify image processing and navigation but simultaneously restrict practical applications.
As a result, good avoidance rates (above 90%) are achieved only for obstacles that do not
stand out high from the ground. For poles, trees, and other plants, the avoidance rate is
much smaller—unacceptable in industrial applications.

3. Obstacle Detection System Architecture

This section presents a novel RGB-D camera-based obstacle detection approach for
mobile robots. The proposed method consists of four stages. First, the synchronized and
aligned pair of an RGB image and a depth image is collected. Following this, the semantic
mask of the environment is obtained based on the RGB image. Next, based on the semantic
segmentation result and the depth image, the reconstruction of the point cloud occurs.
Finally, the points are projected on the 2D occupancy grid [33], determining the position
of obstacles on the map. The obtained grid is then utilized by the navigation algorithm.
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Figure 1 shows a general scheme of the proposed obstacle detection approach implemented
using the robot operating system [34]. Each step of the system is described in more detail
in the following subsections.

Obstacle Detection System

Data . Semantic - L.abeled .| Obstacle .| Navigation
Acquisition >| RGB Image »| _Point Cloud 7 Mappin algorithms
a Segmentation Reconstruction pping 9

Figure 1. Obstacle detection system overview.

3.1. Autonomous Mower Platform Overview

The autonomous mower platform is a modified lawn mower for professional use,
which is available on the market. Additional components were installed to reach the
autonomous features, including sensors, actuators, and a computer. This provides a
localization accuracy of 2 cm, which is a result of combining the Piksi Multi RTK module,
SICK incremental encoders, and Xsens Mti-7 IMU data. Moreover, it is equipped with
obstacle detection sensors which are four Intel RealSense D435i RGB-D cameras and two
units of RP-Lidar-S1. All computations are done on an Intel Core i7 8700 PC equipped with
an Nvidia GeForce 1050Ti and 16 GB of RAM. The mower can move at up to 0.4 m/s which
gives a mowing efficiency at 1800 m?/ha. Its width, depth, and height are equal to 1.64 m,
1.43 m, and 0.93 m accordingly.

The platform is equipped with a high-pressure hydraulic circuit that regulates and
distributes the oil flow. In this application, the hydraulic system is powered by a gaso-
line engine that drives the hydraulic pump. The gasoline engine operates at a constant
revolution rate to deliver constant power. The compressed oil flow is distributed by the
hydraulic regulation circuit. In the analyzed scheme, two hydraulic motors are used to
rotate the wheels, one for each side of the robotic platform. The wheel direction can be
controlled by the solenoid valves, which are activated by binary signals. Depending on the
valve configuration, the wheels can operate as follows: both sides in a forward direction,
both sides in a backward direction, or each side in opposing directions. The last configura-
tion is used to perform the skid steer maneuver, which allows the platform to execute a
zero-radius turn [35].

3.2. Data Acquisition

The autonomous lawn mowing robot platform used in this study (Figure 2) has four
Intel RealSense D435i [36] RGB-D cameras, one pair mounted at the front and the second
one at the rear. Based on the mower’s direction of movement, only one pair of cameras
is running.

Figure 2. Autonomous mower platform used in the research.
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The RealSense camera provides two types of images, RGB images and depth images.
Examples of each are presented in the first and the second column, respectively, in Figure 3.
The depth frame must be aligned with color camera coordinates. Alignment ensures that
every pixel in the RGB image corresponds to exactly one pixel in the depth image. This
property is then utilized in the labeled point cloud reconstruction step.

Figure 3. Examples of RGB images with corresponding depth maps and reference masks (from left
to right) for each sequence: Boulevard 1, Boulevard 2, Park, and Backyard (from top to bottom).

3.3. Semantic Image Segmentation

The goal of semantic segmentation is to classify each pixel in an RGB image into
one of the given classes. This allows understanding the image on the pixel level. In the
proposed approach, the set of predefined classes can be divided into two categories: one
representing the working area of the robot and the other representing obstacles. In the case
of autonomous lawn mowers [35,37], the class representing the working area is grass, and
the example of the obstacle class is person. It is assumed that every pixel that is recognized
as the other class is an obstacle. The list of classes can be adapted to different applications.

To solve the semantic segmentation task, two models were trained: the first one parses
the scene into a grass/obstacle mask, and the second one recognizes grass, obstacles, and
people. The chosen models’ architecture was the DeepLabv3+ [38] network with the pre-
trained ResNet-34 [39] as the feature extractor, whereby the models vary in the last layer: the
model grass/obstacle uses the Sigmoid activation function and the model grass/obstacle/person
applies SoftMax over features to each spatial location. The segmentation results in a one-
channel 448 x 448 mask image where pixel values represent the mower’s environment as
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follows: 0 implies class other, 1 indicates grass, and for the more complex model, the value 2
indicates the presence of the person. The mask is then up-sampled to match the depth image
size. The models were trained using 52,502 pairs of RGB images and the corresponding
image segmentation masks. The third column of Figure 3 shows the example results of
semantic segmentation using the grass/obstacle/person model.

3.4. Labeled Point Cloud Reconstruction

To obtain the labeled point cloud, the results of semantic segmentation and depth
image are fused. This uses the depth to color alighment property described in Section 3.2.
The point cloud consists of the XYZL points, which store the information about the coor-
dinates of the point in the 3D world and contain the class label assigned during semantic
segmentation. The point coordinates are computed as

X u
D(u,v) ,_4

e 1

1000 11’ ’ M

where x, y, z are the real world coordinates, u, v are the image coordinates, D(u, v) is the
depth value from the depth image in the point #, v, and K is the camera’s intrinsic matrix.
The constant 1000 is applied to obtain the coordinates’ result in meters. An example of the
point cloud reconstruction is shown in Figure 4. The resulting point cloud is then filtered
and downsampled using the Point Cloud Library [40].

Segmentation result Depth image Labeled point cloud

Figure 4. Example of the point cloud reconstruction—segmentation of the RGB image, depth image,
and resulting point cloud with labels.

3.5. Obstacle Mapping

The final stage of the pipeline is the occupancy grid update. The occupancy grid
(map) is used to represent a mobile robot workspace as a discrete grid [33]. The update
procedure projects the [x, y] coordinates of points from the labeled point cloud onto the
map cell’s coordinates (Xmap, Ymap):

, 2

|: Xmap

I_% + xoffsetJ
Ymap :| -

L% + yoffsetJ

where X,ftser and Xogsser are offsets related to map origin and dimensions, and r is the map
resolution in meters. The map update has two steps. The process starts with the map
clearing of points which were classified as grass. Then, obstacle/person points are added to
the map.

In order to include the result of the detection system in the navigation pipeline, the
costmap layer, which is the occupancy grid representation in the ROS [34] library, was
implemented using the framework proposed by Lu et al. [14].

4. Experiment Overview and Results

As was already mentioned in Section 3, our navigation module is highly dependent
on the map, which is represented as an occupancy grid [33]. To finish mowing tasks
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successfully, reliable map updates are obligatory. The whole vision pipeline processing
leads to adding or removing obstacles on the map. Therefore, the vision system evaluation
should be considered from a map perspective. In the literature, numerous papers are
available regarding obstacle detection systems for mobile robots including [15,17,32,41,42].
However, no article examines the proposed methods in terms of the generation of maps
that contain information about working area, unknown places, and obstacle position.

In comparison with other evaluation methods which only test obstacle detection
performance on images, i.e., [17,43], it has been noticed that our approach requires manual
labeling of the point clouds, which is time consuming and may be affected by errors.
However, such an approach allows obstacle detection systems to be compared in a 3D
environment where navigation occurs. Moreover, our study has shown that image-based
metrics are not sufficient to describe the whole obstacle detection system.

Our experiments could be divided into two separate categories. The goal of the
first experiment was to investigate the image segmentation performance and calculate
standard metrics for the classification problem, such as accuracy, F1, precision, recall, and
specificity [44]. Then, based on point clouds, which were created from depth images, maps
were generated. Maps may be considered as grayscale images and compared with reference
maps using the same metrics as for the results of semantic segmentation. However, this
evaluation method does not provide any information about the geometric properties of
the errors, which are crucial to evaluate the safety of the navigation. For this reason, we
propose a new metric diin opst (Minimum distance to obstacle), which is calculated for each
point on the map that belongs to an FN (false negative) set, i.e., a point that is incorrectly
classified as grass while it belongs to an obstacle. For a given FN point py,, the metric
A min-obst 18 calculated as

dmin—obst = I%}n(” pfn — Ptp; HZ)r (3)

where the point pyp,; is the map cell correctly classified as the obstacle, TP is the set of
all points correctly classified as obstacles, and tp; € TP. In the evaluation, we report the
statistics of dyin-obst Values for all FN points on the map.

The idea behind the metric is straightforward. It calculates the Euclidean distance
between the false negative map cell and the closest true positive. Figure 5 presents a
graphical interpretation of the dpinobst- The proposed metric can be used to estimate a
margin for the robot to safely pass an obstacle.

Figure 5. An example of the occupancy grid with a resolution of 1.0 m. The red color represents the
map cells that were incorrectly marked as free space for robot operation (FN). Blue cells are the correctly
detected obstacles (TP). The cell (2,1) contains an obstacle that was not detected, and the closest map cell
to it that represents the obstacle is (1,4). Therefore, the dninobst = || (2,1) — (1,4) |2 = 3.16 m.

In our research, we consider every pair of RGB and depth images as an input to the
obstacle detection system that results in a standalone map. We use these maps to evaluate
the quality of the proposed method. The results of the research are discussed in detail in
Sections 4.2 and 4.3.
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4.1. Datasets Description

Our tests were conducted on two different datasets, i.e., synthetic and real world sets.
The former is a multimodal, artificial dataset of Enclosed garDEN scenes (EDEN) [45].
The latter contains actual images and depth maps recorded by cameras mounted on the
autonomous mower.

4.1.1. Synthetic Dataset

We performed our tests using the subset of the EDEN (Enclosed garDEN) dataset,
which contained images from 20 different synthetic gardens. For each scene, there are
five sequences of images, which were generated in different lighting conditions. The dataset
provides various modalities, but in this research, we used only RGB, depth, and semantic
segmentation images. We used data obtained from the left camera. In total, 49,762 sets of
data were used to evaluate the proposed obstacle detection system. The detailed structure
of the test dataset is presented in Table 1.

Table 1. The synthetic dataset used for experiments contained the data from the images marked with
the following numbers [45]: “0003’, ‘0005’, ‘0008, “‘0018’, “0026’, “0029’, “0030’, ‘0040’, ‘0053, “‘0068’,
‘00807, “0160’, ‘02007, ‘0214, “0225’, “0257’, '0272’, “0313’, ‘03307, “0347".

Illumination Conditions Clear Cloudy Overcast Sunset  Twilight

Number of images sets 10,070 10,018 9519 10,055 10,100

4.1.2. Real-World Dataset

None of the synthetic datasets can be used to test the proposed solutions. Real-
world application requires a realistic dataset which allows carrying out tests in diversified
environments and in the presence of noise. Such an evaluation leads to conclusions
about the advantages and disadvantages of the examined methods. This is why the
second dataset was prepared. It consists of four sequences recorded at different places:
boulevard, backyard, and park. An example of each sequence is shown in Figure 3.
Each sequence contains two groups of data. The first group is dedicated to the image
segmentation task. It has both RGB images and depth maps captured with Intel RealSense
D435i camera with VGA resolution. Images were manually labeled using the Computer
Vision Annotation Tool (CVAT), which is a free, open-source, browser-based application.
It provides convenient annotation instruments [46]. The second group is intended to test
obstacle detection on maps. For each sequence, five images were chosen, and based on
these, the point clouds were generated. Then, reference point clouds were prepared
using the RViz Cloud Annotation Tool [47]. Finally, reference maps were derived from the
annotated point clouds. An example of a reference point cloud and reference map is shown
in Figure 6.

(a) Reference point cloud (b) Reference map

Figure 6. Example of (a) manually labeled point cloud (red—grass, green—obstacle, blue—person),
and (b) reference map from Boulevard 1 sequence (green—grass, blue—obstacle, yellow—person,
purple—unknown).
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4.2. Image Segmentation Results

The first stage of the research was to measure the performance of the two classification
models on the images. The former model detects two classes, other and grass, while the
more advanced one can also extract people. They were examined in terms of the following
metrics: accuracy, F1, precision, recall, and specificity.

Tables 2 and 3 contain results for the synthetic dataset and grass/obstacle model. In
almost every illumination condition, the accuracy is higher than 98%. Only one exception
can be observed for sunset lighting conditions, where the accuracy is slightly below 98%.
The results presented in Table 2 indicate that different illumination conditions do not
affect the classification performance significantly, which shows that our model is robust to
lighting conditions. Regarding class-dependent metrics, the grass/obstacle model performs
better for the other class in terms of F1, precision, and recall. These values are close to 99%
for the other class and 91% for grass.

The results for the real-world dataset for both models are presented in the next two
tables. Table 4 gathers calculated metrics for the grass/obstacle model, whereas Table 5
summarizes tests for grass/obstacle/person. The accuracy is higher than 96%. The only
exception is the park sequence with 87.36%. This is the most challenging scene. The people
are on the scene, but they are far away from the camera. Another difficulty is that the grass
and footpath boundaries are not clear. This may explain the lower metrics in this case.
However, the more advanced model copes with that sequence very well. Tests on real-life
images collected on an autonomous mower in various lighting conditions have shown that
we are able to correctly detect obstacles with high accuracy of 95.2%. This proves that our
models are robust to harsh outdoor environments.

Table 2. Segmentation results for grass/obstacle model under different illumination conditions.

Illumination Class Accuracy F1 Precision Recall Specificity

Conditions [%] [%] [%] [%] [%]
Other 98.88 99.06 98.7 92.92

Clear —— 98.03
Grass 91.67 90.45 92.92 98.7
Other 99.0 99.19 98.81 93.45

Cloudy — 9822
Grass 92.0 90.58 93.45 98.81
Other 98.94 99.15 98.73 93.54

Overcast ——  98.13
Grass 92.05 90.6 93.54 98.73
Other 98.8 99.02 98.58 92.49

Sunset —FF 9788
Grass 90.9 89.37 92.49 98.58
Other 98.9 99.07 98.72 92.63

Twilight —  98.04
Grass 91.34 90.09 92.63 98.72

Table 3. Segmentation results for grass/obstacle model for synthetic dataset.

Class Accuracy [%]  F1[%] Precision[%] Recall [%] Specificity [%]

Other 98.9 99.1 98.71 93.0
- 98.06

Grass 91.59 90.21 93.0 98.71
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Table 4. Segmentation results for grass/obstacle model for real-world dataset.

Sequence Class  Accuracy [%] F1[%] Precision [%] Recall [%] Specificity [%]

Other 98.48 99.69 97.29 99.69

Boulevard 1 —— 98.48
Grass 98.49 97.32 99.69 97.29
Other 92.50 92.42 92.59 97.47

Boulevard 2——— 96.25
Grass 97.50 97.53 97.47 92.59
Other 75.06 73.19 77.02 90.75

Park _ 87.36
Grass 91.54 92.34 90.75 77.02
Other 98.64 98.48 98.80 98.59

Backyard ———— 98.69
Grass 98.73 98.88 98.59 98.80

Table 5. Segmentation results for grass/obstacle/person model for real-world dataset.

Sequence Class  Accuracy [%] F1[%] Precision [%] Recall [%] Specificity [%]

Other 98.22 98.06 97.07 99.07 97.52

Boulevard 1  Grass 98.64 98.68 99.91 97.48 99.90
Person 99.44 89.83 84.63 95.72 99.54

Other 96.28 9241 92.33 92.49 97.51

Boulevard 2 Grass 96.69 97.80 97.85 97.74 93.54
Person 99.05 - 0.00 0.00 99.50

Other 97.36 94.75 92.50 97.11 97.44

Park Grass 97.50 98.32 99.12 97.55 97.34
Person 99.83 22.32 2542 19.89 99.93

4.3. Map Generation Results

We consider the evaluation of the map generation process in two ways. In the first
approach, we assume that the map is a grayscale image in which each pixel represents one
of the classes. In the application of an autonomous lawn mower, these classes are grass,
obstacle, person, and unknown. Depending on the model chosen for image segmentation,
the map uses a proper subset of those classes. The label unknown indicates that the sensor
has not covered this area. The quality of the generated map is obtained by comparison with
the reference map and is described using the following metrics: accuracy, F1, precision,
recall, and specificity. The second approach is more spatially oriented. It is used to analyze
the distance from the map cell that is not recognized as an obstacle (although it contains
an obstacle) to the closest point correctly recognized as obstacle using the din-obst metric
proposed in (3).

Tables 6 and 7 show the results acquired for synthetic data. In the first, we can
observe a significant performance loss of the classification executed directly on the maps
compared to the results obtained for image segmentation (Table 3). This occurs for both
resolution values; however, the maps generated in 0.05 m resolution are better at preserving
information about objects’ locations. It can be also noticed that the recalls of the grass class,
for both 0.05 m and 0.1 m resolutions, are considerably lower than other metrics. This
observation reveals that map cells containing grass only are more likely to be misclassified
as an obstacle. However, high obstacle class recall, above 97%, shows the robustness of
the obstacle misclassification of the proposed obstacle detection system. This property
is desirable from the safety system perspective. Despite the differences in classification
metrics for the maps of various resolutions, the dpin_obst Mmeasure shows that for resolutions
of 0.05 m and 0.1 m, the system works with similar performance.
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Table 6. Obstacle detection results based on map updates using grass/obstacle model for synthetic
dataset and various occupancy grid resolutions.

Map Class Accuracy F1 Precision  Recall Specificity
Resolution [m] [%] [%] [%] [%] [%]

Unknown 100.0 100.0 100.0 100.0 100.0
0.05 Obstacle 99.45 94.5 92.06 97.08 99.57
Grass 99.45 81.9 89.73 75.32 99.85
Unknown 100.0 100.0 100.0 100.0 100.0
0.1 Obstacle 99.07 92.85 88.74 97.35 99.18
Grass 99.07 72.62 88.25 61.69 99.83

Table 7. Summary statistics of the d i obst Measure evaluated on grass/obstacle model for synthetic
dataset and various occupancy grid resolutions.

Map Resolution [m] avg (dmin-obst) [m] var(dmin-obst) [m]
0.05 0.16 0.02
0.1 0.17 0.03

The unknown rows in Table 6 represent the map cells that have not been covered by
sensors. Because this is an artificial dataset, there is no data noise, and for that reason, it is
not possible to mark an unknown cell as an obstacle or grass.

In the case of the real world dataset, we need to deal with noise and distortion both in
RGB and depth images. The results for the first approach performed on the data processed
by the grass/obstacle/person model are presented in Tables 8 and 9 for 10cm and 5cm
resolution, respectively. For Boulevard 1 and Park sequences, the map generation with
the lower resolution (10 cm) has significantly better performance than the other one in
terms of obstacle detection. This shows that the resolution parameter can function as a
filter. However, in comparison with Table 5, significantly worse results were obtained. In
particular, for the Park sequence, the precision of obstacle detection decreased from 92.5%
to only 34.11% for 10 cm resolution and 26.13% for 5cm. This proves that the obstacle
detection system cannot be examined using RGB images only. It is also worth noting that
the depth image noise is revealed by the metrics’ values for class unknown.

Table 10 contains the evaluation of the real world map results using the dpin-obst
metric. The analysis shows again that for the sequence Park, our system obtains the worst
results. The average din-obst fOr this sequence is 2.74m and 3.13 m for a map resolution
of 0.1 m and 0.05m, respectively. However, this is the most challenging sequence from
our dataset, and it appears that the model cannot detect the pathway in the scene as an
obstacle correctly. The use of the din-obst revealed the difficulty in detecting the obstacles
in the Park scene which was not evident regarding the image-based evaluation. Figure 7
presents an example of a poorly detected dirt trail. We manage to get very good results for
the sequence Backyard, but it is the most static scene from the real world dataset. Sequences
Boulevard 1 and Boulevard 2 present dynamic scenes depicting humans. The first shows a
woman walking right in front of the robot. The second one presents a biker stopping in
front of the mower and riding away. The scene is more challenging because not only is
the person moving, but the bike is also present, which represents the class other. For the
second sequence, we achieved a mean value of the d iy obst €qual to 0.38 m for the map
resolution 0.1 m. This indicates the minimum value that should be added to the safety
margin to navigate in a dynamic environment.
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Table 8. Obstacle detection results based on map updates using grass/obstacle/person model and 10 cm
occupancy grid resolution.

Sequence Class  Accuracy [%] F1[%] Precision [%] Recall [%] Specificity [%]

Unknown 100.0 100.0 100.0 100.0 100.0
Boulevard 1 Obstacle 100.0 100.0 100.0 100.0 100.0
Grass 100.0 100.0 100.0 100.0 100.0

Unknown 99.33 99.52 99.06 100.0 97.75
Boulevard 2 Obstacle 97.95 81.04 81.82 80.29 98.97
Grass 98.33 96.51 97.66 95.39 99.27

Unknown 99.08 99.31 99.31 99.31 98.60

Park Obstacle 96.42 50.27 34.11 95.51 96.44
Grass 95.69 92.69 98.38 87.63 99.34

Unknown 100.0 100.0 100.0 100.0 100.0

Backyard  Obstacle 99.91 61.97 63.37 60.27 99.96
Grass 99.99 99.87 99.92 99.92 99.96

Table 9. Obstacle detection results based on map updates using grass/obstacle/person model and 5cm
occupancy grid resolution.

Sequence Class  Accuracy [%] F1 [%] Precision [%] Recall [%] Specificity [%]

Unknown 99.85 99.91 99.82 100.00 99.24

Boulevard 1  Obstacle 98.74 62.02 99.42 45.06 99.99
Grass 98.81 96.60 93.65 99.75 98.62

Unknown 99.60 99.75 99.50 99.99 97.93

Boulevard 2 Obstacle 99.16 84.40 88.07 81.03 99.68
Grass 99.34 98.00 98.52 97.49 99.71

Unknown 98.73 99.19 99.22 99.16 97.20

Park Obstacle 97.70 40.98 26.13 94.99 97.72
Grass 96.73 91.73 97.05 86.96 99.30

Unknown 100.0 100.0 100.0 100.0 100.0

Backyard  Obstacle 99.96 66.12 69.90 63.57 99.99

Grass 99.97 99.92 99.97 99.96 99.98
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Table 10. Summary statistics of the diin-obst Measure evaluated on grass/obstacle/person model for real
world dataset in different image sequences and 10 cm occupancy grid resolutions.

Sequence Map Resolution [m]  avg(dmin-obst) [m] var(dmin-obst) [m]
0.1 0.13 0.002
Boulevard 1
0.05 0.1 0.003
0.1 0.38 0.18
Boulevard 2
0.05 0.31 0.16
0.1 2.74 55
Park
0.05 3.13 5.34
0.1 0.14 0.01
Backyard
0.05 0.13 0.07

(a) RGB image. (b) Reference point cloud.

(c) Reference map. (d) Result map.

Figure 7. Example scene from the Park sequence: (a) presents the RGB image of the scene, (b) shows
the labeled reference point cloud, and (c,d) are the reference map and the result of the obstacle
detection pipeline, respectively. The maps’ resolution is 0.1 m, and the model grass/obstacle/person
was used.

5. Conclusions

In this work, a methodology for accuracy determination in obstacle detection and
mapping using RGB-D camera-based vision was proposed. In the proposed approach,
artificial and real multimodal data containing a photo and 3D representation of the scene are
used. These data are explored in the vision processing pipeline, where the first RGB picture
is analyzed to detect obstacles in the working area. At this stage, it was shown that the scene
segmentation obtains an average accuracy of 98.11%. Later on, the obstacles are matched
with depth information for mapping the obstacle on the 3D map. Two data sources allowed
the analysis to be performed in two parts, related to data processing issues (interpolation,
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resampling, point cloud size reduction, filtering, etc.) and hardware (sensor). It was
determined that the average accuracy error introduced by the information processing is
around 38 cm. The obtained value is considered in obstacle avoidance planning to establish
the safety margin that is added to the detected obstacle radius. In this way, the safety
margin can be established within real needs and not overestimated (the usual situation
in practical implementations). Therefore, using the proposed approach in agricultural
applications can lead to significant improvements in operational performance.

The proposed methodology can be used in other autonomous systems where the
obstacle detecting system is based on RGB-D cameras. In this way, the safety margin can be
adjusted to real requirements; as a consequence, more efficient path following and obstacle
avoidance can be achieved. Finally, the task execution time can be reduced by limiting the
robotic platform maneuvering, simultaneously keeping the required safety distance. The
research also shows that obstacle detection is a complex system, and its performance cannot
be assessed only based on image segmentation tests. The study proves that the final results
of the obstacle detection system are affected by image segmentation, depth measurement
errors, and point cloud reconstruction. Consequently, a comprehensive evaluation of the
obstacle detection system needs to include navigation and mapping systems.

Future work will concentrate on increasing the system robustness in harsh, unknown
environments, while maintaining long-term safety by using the dn-obst metric proposed in
this paper. We also hope to look into the possibility of performing the scene segmentation
step using both RGB and depth image data. Additionally, we are in the process of enhancing
obstacle recognition performance for the group of obstacles that were identified in this
research as challenging to recognize for the models used, such as dirt trails.
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