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Color texture classification is a significant computer vision task to identify and categorize textures that we often observe in natural
visual scenes in the real world. Without color and texture, it remains a tedious task to identify and recognize objects in nature.
Deep architectures proved to be a better method for recognizing the challenging patterns from texture images. This paper
proposes a method, DeepLumina, that uses features from the deep architectures and luminance information with RGB color space
for efficient color texture classification. This technique captures convolutional neural network features from the ResNet101
pretrained models and uses luminance information from the luminance (Y) channel of the YIQ color model and performs
classification with a support vector machine (SVM). This approach works in the RGB-luminance color domain, exploring the
effectiveness of applying luminance information along with the RGB color space. Experimental investigation and analysis during
the study show that the proposed method, DeepLumina, got an accuracy of 90.15% for the Flickr Material Dataset (FMD) and
73.63% for the Describable Textures dataset (DTD), which is highly promising. Comparative analysis with other color spaces and
pretrained CNN-FC models are also conducted, which throws light into the significance of the work. The method also proved the

computational simplicity and obtained results in lesser computation time.

1. Introduction

The texture represents the surfaces based on roughness,
regularity, repeating patterns, homogeneity, and granularity
[1]. Textured surfaces in the real world can be categorized
based on their homogeneity or heterogeneity, coarse or grain
details, rough or smooth patterns, regularity or irregularity,
and structural or nonstructural patterns within an image.
Identifying and classifying texture patterns across nature are
essential in machine vision applications such as automated
visual inspection, visual fine-grained object classification,
forest species classification, wood classification, and fabric
defect classification. Materka et al. [2] discussed texture
classification methods, which include statistical, structural,
model-based, and transform-based methods. Texture fea-
tures and color are vital visual attributes for identifying the
realistic view of the natural scenes such as grass, tree bark,

flowers, food grains, wood, fabric, and metals through color
texture classification. The texture-color amalgamation is a
perfect model, and it is effective in classifying texture images
[3]. Usually the color images are represented in RGB color
space for pattern recognition and computer vision appli-
cations. The significance of the color spaces other than RGB
for better color representations is not often investigated [4].
Since different color spaces have distinct color representa-
tion patterns, it affects the accuracy of the machine vision
algorithm [5-7]. Kahu et al. [8] discussed the lack of lu-
minance information in the RGB color space in image
compression applications. Since RGB color space is not well
suited for human perception, it has no direct luminance
information [9]. RGB color space cannot capture luminance
information during the processing of texture images. Kahu
et al. inferred that RGB color space is not efficient for
processing the images from natural, realistic scenarios and
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also for machine vision applications such as emotion rec-
ognition and image classification [8]. This work throws light
into the efficiency of the luminance information applied with
RGB color space which can perceive the texture features
better. Luminance represents the number of photons (light)
emitted to pass through a textured surface. The human brain
captures the visual attributes of texture and luminance from
a natural scene [10]. In neurophysiology and visual psy-
chophysics, we find that statistical characteristics of the
visual scene are better perceived by humans who are based
on the biologically inspired responses from the brain [11].
Johnson et al. [12] discussed that the biological responses
correspond to the first-order information “luminance” and
second-order response “texture” information in natural
images. This work demonstrated the significance of lumi-
nance and texture information, the first-order and second-
order information captured from the realistic natural images
as filter response strength and a mutual correlation. Okada
etal. [13] discussed that visual texture perception constitutes
energy and luminance. In luminance, the visual texture
features can be represented better. Deep convolutional
neural network (CNN) behaves like the visual cortex brain.
Deep CNN applies a kernel or filters of various sizes in a
texture image to generate a feature map representing the
image with its features.

With the significant increase in computation facilities,
the deep learning framework continued to be a thriving
research area for efficient texture classification. Literature
demonstrates that representing texture based on deep neural
networks is a promising thrust area to recognize natural
textures. Last decade onwards, active progress in deep
learning research grabbed attention in solving computa-
tionally intensive machine vision tasks. Deep learning
models are better at perceiving the pattern or features from
an image. The major challenge of deep learning for classi-
fication tasks is that it requires enormous computation time
for processing an algorithm. The success of the convolu-
tional neural networks design relies upon how well the
hyperparameters are chosen and fine-tuned. Despite the
advancements in handcrafted features, convolutional neural
network (CNN) models generate better-learned feature
patterns corresponding to the input image. The deep net-
work constructs feature with the edges, corners, contours,
regions based on the feature layers from CNN pretrained
models. In convolution operation, applying the same filter to
input results obtain a map of activation values; they are
feature maps [14]. Feature maps indicate the location,
strength, orientation response of a detected feature in an
input image. These feature maps better represent deep
features and the luminance information in a texture image.
The proposed method DeepLumina is designed on RGB and
luminance-based color space in which luminance is gen-
erated from YIQ color space and deep features from pre-
trained ResNet10l model. Even though accuracy is an
inevitable factor in assessing the algorithm performance,
computational time also plays a significant part in affecting
the performance and design of a vision based application.

The contributions of the proposed work are summarized
as follows: In DeepLumina, we investigate the efficiency of
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applying deep features and luminance extracted from dif-
ferent color models and classify features using Support
Vector Machine. DeepLumina uncovers the significance of
luminance from YIQ color space and applies ResNet101
pretrained model for color texture classification. The ac-
curacy of DeepLumina showed a substantial improvement in
YIQ color space over the different color models when tested
in the challenging texture datasets DTD and FMD. Com-
putation time is minimal for DeepLumina.

The organization of the paper proceeds as follows.
Section 2 presents concise related literature works on deep
neural networks for texture classification. Section 3 elabo-
rates the materials and methodology and explains the
proposed approach DeepLumina for texture classification.
Section 4 discusses the experiments and analysis of the
results obtained. Section 5 describes a concise description of
the contribution and compendium of the paper.

2. Related Research

Texture represents the statistical characteristics and the
repetitive arrangement of patterns on a surface. Discrimi-
nating and understanding the texture patterns in an image is
a significant task, especially in pattern recognition appli-
cations since the 1960s [15] and 1980s [16, 17]. It is still a
tedious task to classify and represent the complex textures of
objects that we encounter in our daily life. Color texture
classification has been an active research area over the past
four decades. In state-of-the-art techniques, the texture
classification method selects appropriate handcrafted tex-
ture descriptors and classification is performed. The feature
descriptors commonly used are Local Binary Pattern (LBP),
LBP variants, Gray Level Co-occurrence Matrix (GLCM),
and Law’s Texture, which demonstrate better texture rep-
resentations. The widely used classifiers are K-Nearest
Neighbour with Chi-Squared Distance and Support Vector
Machine [18].

Deep Texture Classification is a subclass of machine
learning where the neural network automatically extracts the
distinct image features which characterize the textures. The
authors elaborated different approaches for deep texture
classification and represented in Figure 1.

First approach focuses on the usage of Convolutional
Neural Network (CNN) and handcrafted features for texture
classification. Also, it exploits the possibility of applying the
machine learning classifier along with deep CNN features.
CNN can function as a feature extractor as well as a classifier.
In this approach, the feature maps generated have better
characteristics of the deep features and handcrafted features.
Here CNN can perform feature extraction as well as clas-
sification. The second approach is to develop and design a
new CNN architecture that extracts texture features and
performs classification. It is necessary to ensure the selection
of proper optimizers and hyperparameters for classification.
The usage of the well-known pretrained models is another
approach and such models perform transfer learning. This
method uses the pretrained model where the model has
thoroughly learned features from the vast ImageNet data-
base. This approach is ideal when the number of images in
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FiGure 1: Deep Neural Network Approaches for color texture Classification.

the dataset is less and computational facilities are limited.
Another is a blended approach that utilizes both machine
learning classifier and deep learning feature generation
techniques.

In DeepLumina, the deep features are extracted using
pretrained ResNet101 model, which captures luminance
information from YIQ color space and color information
from RGB images. Texture classification is performed using
a machine learning based classifier support vector machine
(SVM). A brief review of approaches to deep texture clas-
sification is discussed in this section.

2.1. Hybrid CNN-Handcrafted Features with Machine
Learning Classifier. Wang et al. [19] discussed deep neural
network based feature fusion for identifying the malig-
nancies in breast cancer. The authors used hybrid CNN and
handcrafted features such as texture, density, morphological
features, and an extreme machine learning classifier. Shi
et al. [20] used the feature fusion for ship classification to get
a MultiScale-Completed Local Binary pattern (MS-CLBP)
and deep features and classified the image features using a
support vector machine. These features capture the rotation
invariance of the ship images. JBene et al. [21] discussed a
method based on handcrafted and CNN features for texture
classification. This work demonstrated that statistical fea-
tures boost the classification performance of CNN when the
deep features are concatenated with the handcrafted fea-
tures—in that work, pretrained models, namely Xception
and ResNet50 networks with handcrafted features LBP
histogram, GLCM, Wavelet histogram, and Scale Invariant
Feature transform-Fisher Vector (SIFT-FV) features for
classification.

2.2. Texture Classification Based on Pretrained Models.
Roy et al. [22] proposed TexFusionNet, fusion-based CNN,
where the pretrained AlexNet and VGGNet last dense layers
are fused. A fully connected layer is utilized to the class
scores with categorical entropy as the loss function. Saleem
et al. [23] discussed the deep learning architecture for plant
disease detection and classification. Cimpoi et al. [24] ex-
amined the significance of fisher vector (FV) based feature
space and proposed FV-CNN, FC-CNN for real-life de-
scribable texture recognition. The backbone of the FC-CNN
and FV-CNN is the VGG model. The work also presents
another feature, Fully Connected CNN (FC-CNN), which
extracts the shape features of a region present in the image.
FV-CNN captures local features from the regions selected

and eliminates the global information. Inspired by the fact
that feature reduction from the high dimensional texture
features leads to the improvement in accuracy, Song et al.
[25] modified the Cimpoi et al. work by introducing the
feature reduction and developing a discriminative neural
network to reduce the feature dimensions. This work [25]
demonstrated the efficiency of the CNN features and eval-
uated them in DTD, KTIPS2a, and FMD datasets. Motivated
by the fact that the deep features can represent better texture
feature space, Simon et al. [18] proposed a deep framework
that extracts deep features from pretrained models and used
a support vector machine for texture pattern classification to
classify the images. This method is computationally efficient
as fine-tuning the CNN hyperparameters is not required.
Hafemann et al. presented a transfer learning based texture
classification. This work [26] uses CNN to obtain a new
feature vector representation based on softmax classification
and machine learning classifiers.

3. Materials and Methods

In color texture classification, deep neural networks can
better capture color and luminance features. The proposed
method DeepLumina investigates the advantage of using
RGB and luminance information captured from real-world
texture images. RGB color space is display-oriented, whereas
human eyes are sensitive to luminance. So incorporating the
luminance from the YIQ model have a prominent influence
in accuracy for the texture classification.

3.1. Materials. In color texture classification, the texture
datasets Flickr Material Dataset (FMD) and Describable
Texture Dataset (DTD) depict the various natural and de-
scribable textures in daily life. DTD and FMD provide a view
of realistic textures that are commonly encountered in day-
to-day life. These are complex datasets and are considered to
be the most challenging for texture classification. Describ-
able Textures dataset (DTD) is a colored-texture database
[27] that contains the textures in the wild describing the real-
world textures in nature such as cobwebbed, braided, dotted,
blotchy, frilly. DTD has 120 images each for 47 texture
categories adding up to 5640 images. The Flickr Material
Database (FMD) [28] is another challenging texture dataset
that captures the material appearance and visibility. FMD
dataset has 10 classes, and each class contains 100 images. In
the work, Liu et al. [3] considered DTD and FMD chal-
lenging because of large intraclass variations and appearance



variations in the datasets. A glimpse of the FMD and DTD
dataset is shown in Figures 2 and 3 respectively.

3.2. Significance of Color Spaces in Texture Classification.
Color models [5] represent the images with different levels of
perception, and it varies based on the discriminating power
of the different colors and the intensity channels. Color
spaces play a competent attribute for recognizing the visual
scenes from real-world texture images. The selection of the
color system has a significant influence on processing color
images. The discriminative characteristics of a color space or
color model vary based on the particular visual tasks and the
provided texture image data. Cernadas et al. [29] categorized
color systems as RGB based color space, visual perception
based color models (HSV), and brightness-color based color
spaces, which captures luminance chrominance (YCbCr,
YUV, YIQ, L*a"b™) information. The limitation of the
RGB color system is due to the high correlation between the
R, G, B components [4]. Texture image or pattern can better
be represented with RGB model with luminance obtained
from color spaces including YIQ, YCbCr, HSV, and L*
a"b". In this work, the significance of luminance infor-
mation from the above-mentioned color spaces is widely
exploited for texture classification. Luminance information
influences the representation of texture feature space. HSV
and L"a"b [30] follow nonlinear transformation, whereas
YCbCr and YIQ follow a linear transformation because of
the visual perception of the images. The literature shows that
HSV and YCbCr [31] color spaces are applied for face image
retrieval applicationsand L *u*v“and L "a " b * in saliency
detection. Broek et al. [32] presented a texture classification
approach in applying texture descriptors such as color
correlogram and cooccurrence matrix in six color spaces,
including RGB, HSV, YUV, LUV, and YIQ. ColorNet is a
CNN network developed by exploiting the concepts of the
color spaces and pretrained models for classification. In
ColorNet, Gowda et al. [6] used DenseNet model for clas-
sifying the CIFAR10 dataset and obtained good results.

3.3. Distinctiveness of Luminance. Luminance provides the
illumination or brightness in an image. This channel extracts
meaningful information by considering the illumination
variance from a texture image [29]. L"a" b color space is
similar to the HSV model in representing images based on
human visual perception. According to Pietikainen et al.
[33], distinct texture information can be found from the
regions that represent high spatial frequency information
from edges and boundaries. Prabhakar et al. [34] investi-
gated that structure, edge details, and brightness variations
can be extracted from the luminance channel than chro-
minance channels. Texture features can be effectively cap-
tured from luminance rather than color. Distinct color
spaces provide diverse degrees of luminance separation from
color [35]. R, G, and B variances are all similar for a given
local area of space. Ware et al. [36] analyzed that the image
feature information present in luminance channel and
chroma channels are different. So it is advisable to segregate
luminance from chroma dimensions in a color specification
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system. From the above literature, we can infer that the
luminance channel is significant and there is a need to
separate luminance from other color models for extracting
the structural details and better feature representation for
texture classification problems. In CNN-based super-
resolution [37], features are extracted from the luminance
channel of YCbCr color space from deep neural networks.
The significance of the luminance information needs to be
better investigated for texture analysis applications. The
literature shows that the color coordinate system can im-
prove classification accuracy in different applications. The
effect of luminance in color models with deep features needs
turther investigation. Li et al. [38] proved in their experi-
ments that in deep network generated images, the chro-
minance components are more discernible than the
luminance component. Deep generated images are more
distinguishable in the residual domain of chrominance
components. The deep network captures major chromi-
nance features, and the image luminance information gets
less prominence during the feature extraction. In such cases,
the deep network may not capture the luminance infor-
mation present in the image. It is worth promising to in-
vestigate the influence of luminance information for color
texture classification. In our work, experimental analysis
proved that texture classification accuracy improved in-
credibly when the deep network captured both color and
luminance information. The impact of applying the lumi-
nance information from various color spaces and deep
features influences the classification accuracy. The proposed
method DeepLumina exploits the possibility of using lu-
minance information with RGB color space, and it works in
the RGB-Luminance feature space.

3.4. DeepLumina—Deep Learning Framework with Lumi-
nance Information for Color Texture Classification. In color
texture classification, deep networks can better capture color
and luminance features from RGB and luminance from the
YIQ model, respectively. The proposed method investigated
the impact of RGB and luminance information obtained
from textures. In realistic natural images, first-order and
second-order information corresponds to luminance and
texture, respectively [12]. Inspired by the fact that luminance
and texture are significant features that need to be captured
from an image, we proposed DeepLumina.

The DeepLumina framework is summarized in Figure 4.
Luminance provides better visual perception. The proposed
method incorporated luminance along with RGB color
features for deriving better texture feature space and per-
forming classification by SVM. In the DeepLumina
framework, we investigate the efficiency of luminance fea-
tures with deep features. RGB texture images are converted
to YCbCr, L*a"b ", YIQ, HSV color space and the cor-
responding luminance images are extracted. The chroma
components are not considered since the color information
can be preserved well in the RGB color space. These lu-
minance images, along with the RGB images, are applied to
the ResNet101 pretrained model. RGB images and Y channel
from YIQ model (luminance) images are processed
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FIGURE 4: DeepLumina texture classification- proposed framework.

separately and then concatenated together into a feature
vector for classification. The color features from RGB and
luminance features are concatenated. The luminance
channel has the power of discriminating the textures in a
better way [34]. Pretrained models extract deep features and
also capture luminance features from the texture images.
These features are given to the fast linear solver support
vector machine for classifying the real-world textures. RGB
and the generated luminance images are trained using the
ResNet101 model and it is compared with seven pretrained
models for analysis. The DeepLumina framework with
various color models and pretrained models is depicted in
Figure 5. The procedure for the DeepLumina is presented in
Table 1. Support vector machine (SVM) [39] can handle high
dimensional texture feature space, so it can be efficiently
applied for texture classification. The input images RGB are
resized to 224 x 224 for applying in the ResNet101 model.

3.4.1. YIQ Color Space Conversion and Luminance Image
Estimation. Color systems have a detailed role to play es-
pecially in computer vision applications. In texture classi-
fication, different color space representations aid in
improving accuracy [5]. RGB color space [40] represents the
chromaticity of a particular color and no luminance channel
is present in this color space. It is the most popularly used
color model as it is device-oriented and prominently used in

cameras display devices. RGB components are sensitive to
lightness and shading. Texture images can be perceived
better in the color spaces other than RGB as the RGB color
system does not capture the aspects of the human visual
system. RGB is nonuniform, whereas L “a * b " is a perpetual
uniform color space and HSV is an approximately uniform
color space. Human perception can distinguish objects with
hue, saturation, and intensity of colors as modeled in HSI
space. Therefore, RGB color space is not effective in solving
computer vision problems where performance is expected to
match human vision [8]. So, it is necessary to investigate the
color models other than the RGB model.

YIQ is also a nonlinear, nonuniform color space derived
from RGB. Y represents Brightness/Luminance, I and Q
represent the chroma or color components. The texture
image in the YIQ model can be used for classification ap-
plications. In this work, we derive the Y component, and
luminance is derived from the YIQ model for processing.
The RGB to YIQ color conversion equation is given below
[41]:

Y 0.299 0.587 0.114 [ R
I|1=]0.595 -0.274 -0.321 || G |. (1)
Q 0.211 -0.522 0.311 JLB

L™ a™b * color system is based on the intermediate color
space, namely CIE XYZ space. The RGB components are
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TaBLE 1: DeepLumina framework.

DeepLumina -proposed method

Step 1. Resize the input RGB images and perform color space transformation to the YIQ model
Step 2. Estimation of luminance images (Y channel images) from YIQ color model

Step 3. Apply step 1 and step 2 images to the pretrained ResNet101 model
Step 4. Extraction of deep or learned feature map from the ResNet101
Step 5. Classification using a fast linear solver support vector machine

converted into the XYZ plane, then converted to L*a* b~
color space. In DeepLumina, we consider only the L channel

of a textured image from L

L*a"b " conversion is illustrated here [41, 42]: [ /X %
Rr _ R L X() YO
255 v 7
b* =200 f| — | - f| =
g5 .f<Yo) f<Zo)]
255 1
—, if x> 0.008856
p=" %
"~ 255 where f (x) =
16
X 0.4124 0.3576 0.18057[ R’ 7.787x + 116 otherwise
Y | =(0.2126 0.7152 0.0722 || G’ |, InL™a"b "™ color space, colors are assigned with respect
to a reference white point. Xy, Yo, Zy denote the coordinates
Z 0.0193 0.1192 0.95051[ B’ of the reference white. L™ captures the luminance, a =

"a"b" color space. RGB to

L*=116:f(Y£0>]—16




extracts the color variations from green to red and b~
represents the color variations from blue to yellow. In
DeepLumina, the RGB texture images are converted to the
YCbCr model, and only the Luminance image of the YCbCr
is constructed for processing the algorithm. YCbCr color
system is derived from the RGB model, and it is a perpetual
nonlinear transformation of the RGB color model. YCbCr
color space represents an image as Y, the luma component,
and CbCr, the chroma components. YCbCr model is used in
compression algorithms such as JPEG, JPEG 2000, H.264,
HEVC.

The color conversion from RGB to YCbCr is equated as
follows [43]:

G-B
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Y 65.48 128.55 2497 IR 16
Cb|=|-37.78 -74.16 111.93 || G | +| 128 |. (3)
Cr 111.96 -93.75 -18.21]L B 128

HSV color system models the human visual system to
perceive the luminance, hue, and saturation better than the
RGB color components. HSV can handle noise better than
L"a"b * and RGB color spaces. HSV color space has wide
applications in medical images. In this work, we only
consider the luminance image (V) of the texture image from
the HSV color system, and the equations are shown below.

RGB to HSV conversion is explained here [44, 45]:

Hue = <

2+(B-tR)

60 = -
(max (R,G, B) — min(R, G, B)

) R = max (R, G, B)

60 * -
(max (R,G,B) —min(R, G, B)

4+ (R-1tG)

) G =max(R,G,B),

(4)

max (R, G, B) — min (R, G, B)

Saturati =
aturation max(R.G.B)

Value = max (R, G, B).

The authors tested the proposed method with RGB,
YCbCr, HSV, and L"a"b ™ color space to investigate the
efficiency of the luminance with YIQ color space.

3.4.2. Generation of Deep-Luminance Feature Maps from
Pretrained ResNet101 Model. Deep neural networks (DNN)
are an important class of CNN that is widely used to capture
the feature space and used for computer vision applications,
including texture classification. The neural network learns
these feature patterns automatically during the training
process. DNN act as a feature extractor or a classifier for
addressing pattern recognition problems. In DeepLumina,
deep features are extracted from ResNet101 [46]. The pre-
trained models used for comparative analysis in this work
are AlexNet [47], VGGI19 [48], ResNet50 [46], ResNet101,
Inceptionv3 [49], InceptionResNetv2 [50], DenseNet201
[51] and MobileNet [52]. AlexNet is the first popular CNN
model proposed in 2012. AlexNet comprised of deep 60M
parameters and used ReLU activation function and dropout
to control the overfitting problem. VGG19 is a moderate
CNN that has a large number of parameters. It is better than
AlexNet in addressing the overfitting issue. ResNet50 and
ResNet101 are popular and demanding pretrained models
for texture analysis. The main idea behind solving the
vanishing gradient problem in ResNet is the residual blocks

60 * -
| (max(R, G, B) - min (R, G, B)

>

) B = max (R, G, B)

that get repeated in the network. This network has several
skip connections, and it learns and trains from the residual.
In the inception model, the local, global, and skip con-
nections features are captured from a 3 x 3 bock and 5x5
block, respectively. Large numbers of filters are applied, and
convolution operations are performed. ResNet101 is a CNN
with 101 layers depth. Each ResNet block is 3 layers deep.
ResNet models have fewer filters and less complex. The
number of trainable parameters in ResNet101 is 44,549,224,

The InceptionResNet model is a hybrid combination of
the ResNet model and the Inception model where the re-
sidual inception blocks are designed. In DenseNet201, more
dense blocks are present in the model, and this efficiently
performs the error propagation. MobileNet has few pa-
rameters, and it is considered as a light-weighted model that
applies the depth separable kernels. Gerihos et al. [53] in-
vestigated the prominence of the texture features captured
from the pretrained CNN models trained on imageNet
dataset. The convolution neural networks have the advan-
tage of better classifying the textured images, even if the
global structure and shape are not preserved in the image.

DeepLumina constructs a feature map from the con-
volution layers. The deep network incorporates the RGB
features and Y channel features, representing the color and
the luminance information, respectively. This method
produces a rich set of powerful and competent texture
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teatures with which the classification task becomes efficient.
The convolutional layers capture the low and high level
features from the images. The proposed method is com-
putationally efficient since deep features are getting trained
by an SVM classifier. The parameters for the convolution
feature layer of different pretrained models in extracting
the deep-luminance features are given in Tables 2 and 3.
The parameters include the number of convolution layers
used, input image size, kernel size, and feature layer. In
glorot (xavier) initilization, weight initialization is based on
the Guassian value with zero mean and variance based on
the number of fan-in and fan-out hidden nodes. The feature
maps obtained from the pretrained methods for the
DeepLumina are visualized in Figure 6.

3.4.3. Classification Using Support Vector Machine.
Support Vector Machine (SVM) classifier has high gener-
alization capability and constructs optimal hyperplane for
categorizing the texture classes. It can be considered as a
decision function, which is linear with a maximal margin
between the vectors of texture classes. Krammer et al. [54]
presented an approach for building multiclass support
vector machines. SVM is formulated as an optimization
problem. Different pixel intensities need to be classified in
such a way so as to maximize the margin between the
support vectors.

1 r L
min ~w w+ A -
wby 2 ;%

, (5)
)’i(wTﬂb (x;) + b) 21—y,

where y; denotes the distance measure to the correct margin
with y;>0,i=1,...,n,where A denotes a parameter for
regularization,w’ w = |w?|| denotes the normal vector,¢ (x;)
denotes the transformed new input space vector,b denotes a
bias value,y; denotes the i target value.

SVM proved to be a better classifier for texture classi-
fication since it can handle the high dimensional feature
space found in texture patterns. Kim et al. [39] exploit the
significance of the SVM classifier when applied for texture
classification problems. SVM uses various kernel functions
such as linear kernel, RBF kernel, and polynomial kernel.
SVM is best suited for identifying texture patterns because of
two significant reasons. First is the mapping of nonlinear
texture space to a high dimensional space. Next is the op-
timal separating hyperplane construction. In this work, we
use a multiclass support vector machine classifier with a fast
linear solver to obtain features during training. For multi-
class classification, the error-correcting output code (ECOC)
[55] is utilized, which uses the outputs of binary learners to
anticipate multitexture classes.

4. Results and Discussions

In this section, the experiments, result analysis, and com-
parison with other prior works have been discussed to
analyze and evaluate the competence of DeepLumina.

4.1. Experimental Results. The DeepLumina model is tested
on challenging datasets, namely DTD and FMD with
ResNet101 CNN features using SVM classifier. The batch
size for DeepLumina is selected as 27. The dataset is pro-
cessed and it is split at random, with 80% of the images used
during training and 20% used during testing. The loss
function used for multiclass texture classification is cate-
gorical cross-entropy which captures the error rate in deep
learning models. SVM performs classification using ECOC
[55] model and uses sparse random as a coding parameter.
In the proposed work, the FMD dataset obtained an ac-
curacy of 90.15%, and the DTD dataset obtained an accuracy
of 73.63%, which is a good improvement when compared
with the existing state-of-the-art methods. The accuracy
obtained for the DeepLumina for the datasets DTD and
FMD is discussed in this section and presented in Tables 4
and 5. These tables illustrate the efficiency of the proposed
method DeepLumina. The experiments are conducted in
system configuration Intel(R) Core(TM) i7-8565U CPU @
1.80 GHz, 8 GB RAM, NVIDIA GeForce MX150, Matlab.
We can infer from the experimental results that all the
luminance-based color space conversions with RGB produce
better results for texture classification. These results throw
light into the significance of luminance features and also the
YIQ color model. MobileNet model, a computationally ef-
ficient and light-weighted model, obtained an accuracy of
68.15% for YIQ. ResNet50 produced 73.01% for the YIQ
model, and ResNet101 produced 73.63% in the YIQ model in
the DTD dataset. In the DeepLumina framework, ResNet 50
and ResNetl01 achieved competitive results in terms of
accuracy when RGB-Luminance images and SVM are used.
It is worth noticing that the color model YIQ produced the
best results in ResNet pretrained models. In our work, we
investigated the competence of the YIQ color model for
texture classification. The combined RGB-Luminance in-
formation with deep networks demonstrates an excellent
improvement in texture classification accuracy. MobileNet
and ResNet50 model produces a better result of 87.3% and
89.7% with the L *a ™ b = color space for the FMD dataset. In
the DeepLumina framework, ResNet101 obtained excellent
accuracy of 90.15% when RGB-Luminance images and SVM
are used for the FMD dataset, which is very promising.
Texture data is high dimensional, and it provides a cue in
visual inspection and object identification. From the ex-
perimental results, we can observe a 3% to 7% increase in the
accuracy is obtained when we incorporated luminance in-
formation with RGB color space in both the datasets
compared to the RGB color model. Pretrained CNN-FC
models tested and compared show a steady improvement of
accuracy, which is highly promising. FMD dataset obtained a
high accuracy of 90.15%. We can infer that classification on
the challenging texture datasets, namely. FMD and DTD,
was efficient with the luminance features. DTD also gives a
good result for ResNet50 and ResNet101 pretrained models.
It provides a good result of about 73.63% because it can
capture the fine and coarse texture details from the pre-
trained CNN architecture. We can also observe that the
luminance from YIQ color model proved to be efficient in
identifying the texture classes. Experiments demonstrate
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TaBLE 2: CNN parameters used for feature map generation from the Pretrained Models

CNN parameters ResNet50 AlexNet Inceptionv3 DenseNet201
Convlayer name convl convl conv2d_1 convl | conv
No.of layers 177 25 316 709
Input image size [224,224,3] (227,227,3] [299,299,3] [224,224,3]
Filter size 7x7 11x11 3x3 7x7
No of filters 64 96 32 64
Stride [2,2] [4,4] [2,2] [2,2]
Dilation factor [1,1] [1,1] [1,1] [1,1]
Padding size (3,3,3,3] [0,0,0,0] [0,0,0,0] [3,3,3,3]
Weight initialization Glorot Glorot Glorot Glorot
Feature layer £c1000 fc8 Predictions £c1000
TaBLE 3: CNN parameters used for feature map generation from the Pretrained Models.
CNN parameters ResNet101 MobileNet VGG19 InceptionResNetv2
Convlayer name convl conv_1l convl_1 conv2d_1
No.of layers 347 155 47 825
Input image size [224,224,3] [224,224,3] [224,224,3] [299,299,3]
Filter size 7x7 3x3 3x3 3x3
No of filters 64 32 64 32
Stride [2,2] [2,2] [1,1] (2,2]
Dilation factor [1,1] [1,1] [1,1] [1,1]
Padding size (3,3,3,3] [0,1,0,1] [1,1,1,1] [0,0,0,0]
Weight initialization Glorot Glorot Glorot Glorot
Feature layer £c1000 Logits fc8 Predictions

that the FMD dataset performs better in the ResNetl01
model when used with color models L*a*b ", HSV, and
YIQ color models. DTD dataset performs better in ResNet50
and ResNet101 models, both with YIQ color space.

4.2. Computation Time. The computation time obtained (in
minutes) for the proposed DeepLumina method for the
benchmark datasets DTD and FMD and the comparative
analysis is given in Tables 6 and 7. MobileNet and AlexNet
take significantly less computational time but obtains sat-
isfactory accuracy improvement for the DTD dataset.
InceptionResNetv2 and DenseNet201 models take high
computation time (11 to 15 mins, respectively), but results
are of comparable accuracy. ResNet50 and ResNet101 build
computationally efficient models with good accuracy for the
DTD dataset. The rest of the pretrained models compared
for classifying the FMD dataset take nearly 0.5 to 3 minutes.
InceptionResNetv2 model obtains good accuracy, but the
execution time is comparable.

4.3. Comparison with CNN-FC Pretrained Models. In this
section, the results obtained for the CNN-FC models are
elaborated. The ResNet-FC CNN model with a fully con-
nected layer is implemented for comparison with the pro-
posed method. We performed an analysis with different end-
to-end pretrained models for texture classification and
analyzed the results. The experiments are conducted by
training CNN pretrained networks using the RGB and RGB-
Luminance information from the YIQ model and deduced
inferences. Data Augmentation is performed with rotation,

translation, and reflection on training data. We trained the
CNN models on augmented data with epochs varying from 5
to 20. The batch size was fixed as 8. We performed tuning of
hyperparameters of CNN with different values. The opti-
mizer used is Stochastic Gradient Descent with Momentum
(SGDM) and the learning rate used is le-05. We used
ResNet50, ResNetl01, AlexNet, VGG19, Inceptionv3,
MobileNet, DenseNet201 for analysis. ResNet models have
obtained an accuracy of 72.12% and 88% for DTD and FMD
datasets. Also, VGG19 and Inceptionv3 performed better with
accuracies 72.61% and 88.50% for DTD and FMD, respectively.
From the results obtained, we inferred that processing texture
images only in the RGB color system could not improve the
performance. Luminance along with RGB information im-
proved classification results. The results are summarized in
Table 8. The computation time for the pretrained CNN-FC
models ranges from 0.5 hours to 16 hours based on the
hyperparameters specified for DTD and FMD datasets. This
analysis shows that luminance has significance in classifying
texture images, and using SVM as a classifier leads to com-
putational efficiency. The experimental results of pretrained
CNN-FC models with and without luminance in YIQ color
space are depicted in Table 8 for DTD and FMD datasets. The
accuracy-loss curve for the models with good accuracy is
provided in Figure 7. From the experimental analysis, we
inferred that DeepLumina had obtained better accuracy and
computational efficiency than pretrained CNN-FC models.

4.4. Comparison with Prior Techniques. DeepLumina is
compared with other state-of-the-art texture classification
methods and results are highlighted in Tables 9 and 10.
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VGG19 AlexNet DenseNet201

MobileNetv2 InceptionResNetv2

Inceptionv3 ResNet50

FIGURE 6: Visualization of the Deep Texture Feature Maps obtained from DeepLumina Framework.

TABLE 4: Accuracy obtained for DeepLumina on benchmark texture dataset DTD.

RGB Proposed method - DeepLumina

Pretrained models RGB RGB+Y RGB+L RGB+V RGB+Y
ColorSpaces RGB 18 YCbCr L*a"b" HSV YIQ
MobileNet + SVM 61.37 66.64 67.31 66.14 68.15
ResNet50 + SVM 67.23 72.47 72.10 70.77 73.01
ResNet101 + SVM 66.92 72.50 72.31 72.43 73.63
DenseNet201 + SVM 65.12 70.66 70.64 68.35 71.37
AlexNet + SVM 46.35 49.75 49.42 48.71 49.84
VGG19+SVM 55.78 58.60 58.86 58.73 59.53
Inceptionv3 + SVM 65.20 70.04 71.30 69.81 71.18
InceptionResNetv2 + SVM 65.94 70.78 71.29 70.85 71.39

Best values are shown in bold and they are obtained for the proposed Method DeepLumina for Luminance from the YIQ color model.
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TaBLE 5: Accuracy obtained for DeepLumina Method on benchmark texture dataset FMD.
RGB DeepLumina - proposed method
Pretrained models RGB RGB+Y RGB+L RGB+V RGB+Y
ColorSpaces RGB [18] YCbCr L'a"b” HSV YIQ
MobileNet + SVM 74.60 87.1 87.30 85.10 85.80
ResNet50 + SVM 81.60 88.45 89.70 87.85 88.80
ResNet101 + SVM 81.40 89.46 89.65 89.20 90.15
DenseNet201 + SVM 80.75 88.83 87.38 87.46 89.17
AlexNet + SVM 64.30 70.02 70.05 69.50 71.50
VGG19 + SVM 78.10 80.40 81.65 79.35 81.68
Inceptionv3 + SVM 76.60 88.70 88.15 87.55 89.80
InceptionResNetv2 + SVM 82.20 88.75 90.01 90.03 90.05

The best values obtained for DeepLumina on the FMD dataset are indicated in bold.

TaBLE 6: Computation time(in mins) for the Proposed Method - DeepLumina on DTD dataset.

RGB DeepLumina: proposed method

Pretrained models RGB RGB+Y RGB+L RGB+V RGB+Y
ColorSpaces RGB [18] YCbCr L*a*b” HSV YIQ
MobileNet + SVM 1.76 2.98 2.96 3.06 3.04
ResNet50 + SVM 2.95 5.05 5.02 5.43 5.42
ResNet101 + SVM 491 8.8 8.78 8.71 9.29
DenseNet201 + SVM 6.28 11.64 11.39 11.66 11.51
AlexNet + SVM 1.89 2.18 2.33 2.20 2.41
VGGI19 + SVM 5.17 9.16 10.01 10.19 9.51
Inceptionv3 + SVM 4.09 7.32 7.3 7.36 7.39
InceptionResNetv2 + SVM 7.95 15.69 15.33 15.59 15.53

TaBLE 7: Computation time(in mins) for the Proposed Method, DeepLumina on FMD dataset.

RGB DeepLumina: proposed method

Pretrained models RGB RGB+Y RGB+L RGB+V RGB+Y
ColorSpaces RGB [18] YCbCr L*a"b” HSV YIQ
MobileNet + SVM 0.43 0.64 0.65 0.65 0.65
ResNet50 + SVM 0.62 0.97 0.98 0.97 0.98
ResNet101 + SVM 0.92 1.57 1.58 1.57 1.55
DenseNet201 + SVM 1.29 2.18 2.20 2.19 2.19
AlexNet + SVM 0.95 1.37 2.56 1.12 1.1
VGG19 + SVM 1.03 2.18 2.20 2.19 2.19
Inceptionv3 + SVM 0.87 1.47 1.46 1.46 1.48
InceptionResNetv2 + SVM 1.81 3.04 3.02 3.06 3.06

TaBLE 8: Comparison with CNN-FC models with and without luminance for DTD and FMD Datasets.

Dataset DTD FMD

Pretrained RGB RGB+Y RGB RGB+Y
CNN-FC models RGB Luminance Luminance
MobileNet 59.49 65.50 68.50 85.00
ResNet50 63.20 72.12 75.21 88.00
ResNet101 64.10 70.50 75.56 87.50
DenseNet201 60.50 68.50 70.50 80.25
AlexNet 61.50 67.11 65.20 81.25
VGGI19 64.20 72.61 77.50 84.00
Inceptionv3 62.50 69.50 78.50 88.50

The best accuracy obtained for CNN-FC models with and without luminance for DTD and FMD datasets is indicated in bold.

Cimpoi et al. [24] presented a custom fisher vector CNN
(FV-CNN) and fully connected (FC-CNN) obtained an
accuracy of 72.9% and 63.4% on the DTD dataset. This
method is based on the VGG model, which extracts local

features from the texture images. Simon et al. [18] discussed
a deep framework that uses deep features from pretrained
models and uses the support vector machine classifier to
classify the textures in DTD and FMD datasets with 66.49%
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FIGURE 7: Accuracy-Loss curve for pretrained CNN-FC models with luminance information: Comparison.
TaBLE 9: Comparative Analysis for the DTD dataset.
Authors Method Accuracy
Cimpoi et al. [24] FC-CNN 63.4+0.9
Cimpoi et al. [24] FV-CNN 72.9+0.8
Simon et al. [18] Deep features + SVM 66.49
Cimpoi et al. [27] IFV + DeCAF 66.7
Dai et al. [56] FASON (conv5) 72.3+0.6
Dai et al. [56] FASON (conv4 + conv5) 72.9+0.7
Cerezo et al. [57] ResNet50-FC 60.8
DeepLumina (Proposed) Deep Features (ResNet101) +luminance + SVM 73.63+0.5

and 84.50% accuracy, respectively. Cimpoi [27] also pro-
posed another method based on Improved Fisher Vector
(IFV) and Deep Convolutional-network Activation Fea-
tures (DeCAF), which obtained an accuracy of 66.7% and
65.5% for DTD and FMD dataset. Dai et al. [56] presented
a Bilinear CNN model, FASON, that captured the second-
order information within the features from the deep
network and obtained an accuracy of 72.9% for the DTD
dataset. Dai et al. incorporated a bilinear model with the
first-order information fusion by gradient leaking, which
captures the deep features and reduces the feature di-
mensions. Song et al. [25] showed the efficiency of the

features obtained using CNN and designed a CNN for
obtaining the features, performed dimensionality reduc-
tion. They achieved 83.2% accuracy on the FMD dataset.
Cerezo et al. [57] analyzed the DTD dataset with
ResNet50-FC and obtained 60.8% accuracy. Bell et al.
developed a method based on Scale Invariant Feature
Transform and Improved Fisher Vector (SIFT-IFV-fc7)
and got 69.6 accuracies in the FMD dataset. The Deep-
Lumina obtained a promising accuracy of 73.6% and
90.15% for DTD and FMD datasets from the ResNet101
Deep Features with the RGB and Luminance from YIQ
Color Space classified by SVM.
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TaBLE 10: Comparative Analysis for the FMD dataset.

Authors Method Accuracy
Song et al. [25] FC-CNN 781+1.6
Song et al. [25] FV-CNN 80.2+1.8
Song et al. [25] FC-CNN + FV-CNN 832+1.6
Simon et al. [18] Deep features + SVM 84.50
Cimpoi et al. [27] IFV + DeCAF 65.5
Bell et al. [58] SIFT-IEV + fc7 69.6+0.3
DeepLumina (proposed) Deep Features (ResNet101) + luminance + SVM 90.15+1.2

The best accuracy value is indicated in bold.

5. Conclusion

Color Texture classification is a vital task performed in
machine vision, especially in visual fine-grained recognition
applications. The proposed work demonstrates the efficiency
of introducing the luminance and RGB information in
generating the deep features from the texture images.
DeepLumina extracts a better texture feature map by in-
corporating the luminance features in the deep network. The
experimental results show that DeepLumina takes minimal
computation time. Experimental results also demonstrate
the strong influence of luminance in the performance of the
DeepLumina framework. In this work, we have tested using
five-color models, namely RGB, YCbCr, YIQ, HSV, and
L*a"b”™ and used eight pretrained models, namely.
MobileNet, ResNet50, ResNet101, DenseNet201, AlexNet,
VGGL16, Inceptionv3, and InceptionResNetv2. Using the
DeepLumina method, higher accuracy of 73.63% and 90.15%
are achieved in ResNet101 on the DTD and FMD datasets,
respectively. The proposed method also throws light into the
efficiency of YIQ color space in obtaining better texture
classification accuracy.
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CVPR2010/FMD/
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