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Abstract: Hollow fiber membranes were produced from a commercial polyvinylidene fluoride
(PVDF) polymer, Kynar HSV 900, with a unique sandwich structure consisting of two sponge-like
layers connected to the outer and inner skin layers while the middle layer comprises macrovoids.
The sponge-like layer allows the membrane to have good mechanical strength even at low skin
thickness and favors water vapor transportation during vacuum membrane distillation (VMD). The
middle layer with macrovoids helps to significantly reduce the trans-membrane resistance during
water vapor transportation from the feed side to the permeate side. Together, these novel structural
characteristics are expected to render the PVDF hollow fiber membranes more efficient in terms of
vapor flux as well as mechanical integrity. Using the chemistry and process conditions adopted from
previous work, we were able to scale up the membrane fabrication from a laboratory scale of 1.5 kg
to a manufacturing scale of 50 kg with consistent membrane performance. The produced PVDF
membrane, with a liquid entry pressure (LEPw) of >3 bar and a pure water flux of >30 L/m2·hr
(LMH) under VMD conditions at 70–80 ◦C, is perfectly suitable for next-generation high-efficiency
membranes for desalination and industrial wastewater applications. The technology translation
efforts, including membrane and module scale-up as well as the preliminary pilot-scale validation
study, are discussed in detail in this paper.

Keywords: PVDF; hollow fiber membranes; vacuum membrane distillation; flux; liquid entry
pressure; wastewater treatment; desalination

1. Introduction

Freshwater scarcity is becoming a major challenge for meeting requirements toward
basic human needs for agriculture and industry, impeding efforts to meet the global water
demand due to an increase in population and industrialization, particularly in coastal
countries due to the lack of sufficient fresh water sources or storage capacity [1–5]. Only 3%
of the water on Earth is considered fresh water and only 1.2% has potential use as drinking
water because the rest is locked in glaciers, ice caps, and permafrost. To deal with water
scarcity and freshwater shortage, seawater desalination processes are being widely used.
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The current solutions utilized for producing drinking water from seawater largely rely
on thermal methods such as multistage flash and multi-effect distillation (MSF and MED,
respectively) [5–8] as well as pressure-driven seawater reverse osmosis (SWRO) [8,9], which
comprises about 70% of the desalination processes worldwide. However, both thermal and
pressure-driven RO technologies are extremely intensive in terms of energy consumption
and, currently, they strongly depend on fossil fuels for their operation [8,9]. In addition,
although the brine resulting from the SWRO process still has the potential for additional
water recovery, it is very difficult to treat [10,11].

Another potential freshwater source is found through wastewater reclamation. In this
process, the use of reverse osmosis (RO) by itself is not enough and using conventional
processes or a combination of these with RO systems tends to be costly and the purifica-
tion ineffective [11–13]. Due to these reasons, alternative desalination technologies and
the use of renewable energies are being researched and developed to reduce the energy
consumption and improve overall process productivity [14–18].

Membrane distillation (MD) is a promising technology that can potentially compete
with the existing MSF/MED and SWRO solutions and could be capable of overcoming
the issues previously described [17,19,20]. The key benefits of using MD technology
include: (1) less stringent operation conditions compared to conventional desalination,
including lower vacuum, or pumping pressures, (2) higher rejection of salts (theoretically
approaching 100%), (3) larger contact areas in smaller modular footprints, and (4) ability to
treat extremely high salinities of feed water beyond the SWRO tolerance limit. Salts and
non-volatile compounds are rejected by the membrane and could produce an even more
concentrated brine than the one typically obtained by the RO processes, facilitating efforts
toward zero liquid discharge [21–23]. This latter characteristic is an advantage because,
in theory, one can have higher recoveries using MD compared to RO. Finally, (5) the use
of low-grade heat sources, which opens the possibility of the use of renewable energy
sources [10,18,20,24,25].

In membrane distillation, the membrane is one of the key factors that govern the sepa-
ration process in different applications. The MD membrane works as a barrier separating
a feed water solution from the permeate vapor stream and simultaneously transfers the
vapor produced from the feed stream through the membrane wall to the permeate stream.
The permeate stream is condensed on the permeate side or externally using different tech-
niques. MD is a process based on the change in phase due to a thermal gradient allowing
the separation of the volatiles, in this case, water from the feed solution, and applying
the principles of vapor–liquid equilibrium and heat and mass transfer [24,26]. An ideal
MD membrane should be highly porous and hydrophobic, with a very tight pore size
distribution and small pore size, and it should have cheap and easy fabrication conditions
for large-scale production. Many technology breakthroughs using hydrophobic materials in
both flat sheet and hollow fiber membrane configurations have been accomplished, includ-
ing polyvinylidene fluoride (PVDF), polytetrafluoro-ethylene (PTFE), and polypropylene
(PP) [27,28].

The techniques using MD to recover water vary according to what is used in the
permeate side to drive the separation; these include Direct Contact Membrane Distillation
(DCMD), where the permeate side is in contact with cold pure water coming from the
DCMD process itself. In Air Gap Membrane Distillation (AGMD) and Sweeping Gas
Membrane Distillation (SGMD), air or an inert gas is used to collect water vapor that will
be condensed in situ or externally, respectively. In vacuum membrane distillation (VMD),
water vapor is removed by applying vacuum on the permeate side and is subsequently
condensed externally, similar to the SGMD process [12,17,21]. Other liquids and materials
have been used in MD configurations, which are combinations of the above techniques [25].

From these configurations, VMD is one of the most attractive MD processes for
water reclamation purposes due to its lower costs in operation. These costs are related to
fewer stringent mechanical properties needed for the membrane material given that VMD
needs lower temperatures and pressures to work with, including pumping and vacuum
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pressures [29,30]. Using vacuum boosts the water flux due to the gradient in vapor pressure
across the membrane and improves heat and mass transfer as there are no separation
media involved compared to DCMD, for example [31,32]. These characteristics make VMD
suitable for decreasing energy consumption by replacing SWRO or complementing it using
the SWRO brines to extract even more freshwater [29].

The main shortcomings of using vacuum are that the vacuum pressure cannot exceed
the liquid entry pressure (LEPw) to avoid membrane wetting and breaking. Another issue
is the energy consumption related to the heating of the feed solution and the condensation
of the permeate [24,32]. To assess these drawbacks, several works using hollow fiber mem-
branes have addressed different methods to increase the efficiency of the membranes. The
most relevant is membrane fabrication through a spinning process that includes the for-
mulation of the dope composition and the spinning process itself, conducted by thermally
induced phase separation (TIPS) or non-solvent induced phase separation (NIPS) [25].

The dope composition coupled with the preparation are the main obstacles that need
to be overcome for the transition from a bench-scale to a commercial product. PVDF has
been employed for MD membrane manufacturing via NIPS due to its processing versatility,
hydrophobicity, and resistance to a wide range of chemical products [25]. However, the
LEPw values and the mechanical strength of such PVDF membranes have proven to be
unsuitable for scaling up as commercial products. A good hollow fiber PVDF membrane
must have a spongy internal structure with a reduced presence of macrovoids, which are
important to avoid membrane malfunction when they are working under high stresses
from the feed pressure and the vacuum. However, there must be a balance, as a more open
structure (low tortuosity, higher porosity including macrovoids, and pore size) increases
flux, whereas the opposite is important to prevent membrane wetting and failure [33,34].

To design a PVDF hollow fiber membrane for MD with greater mechanical strength
and excellent hydrophobic properties, it is necessary to tackle some intrinsic characteristics
of the dope, specifically the viscosity, which affects the phase inversion and the general
structure of the membranes [25,35]. The concentration of the polymer as well as the solvents
and additives must be formulated to have the correct balance as previously described, and
this has to be coupled with an optimized set of phase inversion conditions [33–37].

The present article is primarily focused on scaling up a patented MD technology for
manufacturing PVDF hollow membranes, which have a unique sandwich structure, from
laboratory scale to commercial scale and producing commercial size modules for pilot
validation [19,20,28,37]. Furthermore, the effects in the final product characteristics of the
PVDF source in the dope formulation, the coagulation bath composition and temperature,
the bore fluid temperature, and the high-speed spinning are investigated in this work. After
the membranes were successfully manufactured, they were used for module fabrication
at various scales, namely 0.5-inch modules (bench scale) and 2-inch modules (large scale).
Two-inch modules were further tested for ≥100 h in a VMD pilot plant, simulating a
seawater desalination process using NaCl solutions (≈35 g/L).

2. Materials and Methods
2.1. Materials

All chemicals used during the membrane fabrication and scale-up were of industrial
and reagent grade and used without further purification. Polyvinylidene fluoride (PVDF 1,
PVDF 2) (Kynar HSV 900 PWD resin, Arkema, Calvert City, KY, USA and Changshu, China,
respectively); lithium chloride (LiCl) (GCE Laboratory Chemicals–TACT Chemie S.E.A.
Pte. Ltd., Singapore); N-Methyl-2-Pyrrolidone (NMP) (Puyang Guangming Chemicals Co.,
Ltd., Puyang city, China); ethylene glycol (EG) (TACT Chemie S.E.A. Pte. Ltd., Singapore);
methanol (MegaChem Ltd., Singapore); hexane HPLC grade (Fisher Scientific, Fairlawn,
NJ, USA); sodium chloride (NaCl) (Pure Dried Vacuum Salt, INEOS Enterprises, Runcorn,
UK). Deionized water was acquired from a PURELAB Option-Q DV 25 unit from ELGA
with a resistivity of 18.2 MΩ·cm.
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2.2. Polymer Characterization

The molecular weights of the two PVDF 1 and PVDF 2 polymers were not provided by
the manufacturer. However, the gel permeation chromatography (GPC) of the commercial
Kynar® HSV900 has been reported to contain two peaks corresponding to the number-
average molecular weights (Mn); one at ~92,840 kDa (24.92%) and another one at ~1367 kDa
(75.08%) [38]. It is possible that the molecular weights of the two polymers may differ from
each other due to process variations at different locations. The potential differences in the
molecular weights of PVDF 1 and PVDF 2 are reflected in the slightly different solution
viscosities measured at the spinning temperature (~50 ◦C), as shown in Table 1.

Table 1. Characterization of PVDF and dope samples.

Polymer PVDF 1 PVDF 2

Melting point (◦C) 162.65 162.64

Crystallization point (◦C) 127.68 126.81

Max. thermal degradation (◦C) 472.49 472.66

Melting enthalpy (J/g) 36.08 33.92

Crystallization enthalpy (J/g) 41.41 36.64

Dope viscosity (Pa·s) 101.93 (@50.1 ◦C) 167.27(@ 51.7 ◦C)

These samples were analyzed using differential scanning calorimetry (DSC), ther-
mogravimetric analysis (TGA), and pyrolysis–gas chromatography–mass spectrometry
(pyrolysis-GCMS).

The DSC analysis (Q20, TA Instruments, New Castle, DE, USA) was performed in
a dry nitrogen atmosphere. Around 5–10 mg of powder was tightly encapsulated into
an aluminum pan. The melting behavior of polymer/diluent samples was analyzed after
equilibrating the sample at 40 ◦C and then heating it at a rate of 10 ◦C/min until reaching a
temperature of 250 ◦C, and subsequently sustaining this value for 2 min. The crystallization
curve was later obtained by cooling the sample to 40 ◦C at a rate of 10 ◦C/min after
equilibrating at 250 ◦C for 2 min. The thermogravimetric analysis (TGA) was conducted
using a thermal analyzer (SDT Q600, TA Instruments, New Castle, DE, USA) under a
nitrogen flow at 100 mL/min. The samples were tested after equilibrating the sample at
40 ◦C and then heating it in a temperature range of 40–700 ◦C at a rate of 20 ◦C/min with
an isothermal treatment at the end point for 5 min.

To perform the pyrolysis-GCMS tests, a GCMS-Pyrolyzer (Agilent Technologies 7890B
GC, Agilent Technologies 5977A MSD, Frontier Lab Multi-Shot Pyrolyzer EGA/PY3030D)
was used. The analysis cup containing a 0.2 mg sample was inserted into the Multi-
Shot Pyrolyzer EGA/PY3030D. Samples were pyrolyzed at 600 ◦C for 1 min. Pyroly-
sis products were injected with a split of 50 using the Agilent Technologies 7890B GC
(equipped with an Ultra ALLOY-5 column (30 m, 0.25 mm, 0.25 mm film of 5% diphenyl–
95% dimethylpolysiloxane) (Frontier Lab). The temperatures of the pyrolizer interface
and the injection port were both set at 300 ◦C. Helium was used as a carrier gas with a
constant flow of 1 mL/min. The initial oven program was set as follows: 40 ◦C for 2 min,
then increased to 320 ◦C at 20 ◦C/min and then maintained for 13 min. Mass spectra were
obtained by the Agilent Technologies 5977A MSD. The interface temperature was set at
300 ◦C, the ion source temperature was set at 230 ◦C, the ionization voltage was set at 70 eV,
and a mass range from 33 to 600 m/z was scanned at a scan speed of 1526 µ/s.

2.3. Fabrication of Hollow Fiber Membranes

The PVDF hollow fiber membranes were fabricated with a formulation of the polymer
dope and spinning conditions developed by Zuo and Chung [28,37]. The spinneret used
is a dual-layer spinneret with a bore output of 0.44 mm and an inner channel between
0.6 and 1.14 mm. The bore fluid was fed from the top and the dope from the side of the
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spinneret. Table 2 summarizes the spinning parameters, such as line speed, air-gap distance,
dope flowrate, and bore fluid flowrate, and includes temperatures of the dope, bore liquid
solution, and the coagulation bath. However, some of the conditions for the mix of the
dope and the spinning of the membranes were modified to adapt the process to large-scale
production and have consistent results. Briefly, PVDF 1 and PVDF 2 were mixed separately
in each batch for 24 h at 65 ◦C. Then, (1) each dope was degassed for another 48 h in the
reactor to guarantee complete dissolution of the polymer and removal of entrapped air
bubbles in the mix; (2) the take-up speed (line speed) of the fiber and the temperature of the
coagulation bath were optimized during the spinning process; (3) dope and bore flowrates
were adjusted to the line speed and to obtain similar results as the baseline work cited;
(4) after spinning, the new fibers were stored in water for 3 days to remove the residual
solvents; (5) the membranes were post-treated with alternate baths of methanol followed by
hexane to remove the water from the fibers and increase hydrophobicity; (6) the membranes
were dried in a dry room at room temperature (RT) at least two days before being inspected
and selected for testing and module production.

Table 2. Spinning conditions for production of PVDF MD hollow fibers. Based on conditions
from Zuo and Chung [28,37]. Design of experiments (DOE) using speed line and coagulation bath
temperature as variables. Bore flowrate was adjusted to the DOE parameters.

Batch Number B1 B2 B3 B4 B5 B6 B7 B8
Onwards

Dope
(wt. %)

PVDF/LiCl/EG/NMP:
13/5/5/77

Bore solution
(wt. %)

NMP/Water:
50/50

Scale-up (kg Dope) 1.5 1.5 1.5 1.5 20 20 50 50
Air gap (mm) 30 30 30 30 30 30 30 30
PVDF source 1 2 1 1 2 1 2 1
Coagulation bath, tap water (◦C) RT and 40 40 40 40 40 40 40 40
Line speed (m/min) 3 9 3 9 9 9 9 9
Dope flowrate (mL/min) 4.5 13.5 4.5 13.5 13.5 13.5 13.5 13.5
Bore flowrate (mL/min) 1.5–4.5 4.5–9.0 1.5–3.0 4.5–6.8 4.5–6.8 4.5–6.8 4.5–6.8 4.5

As part of the initial scale-up trials from a lab-scale fabrication line to pilot-scale
production, two different PVDF (PVDF1 and PVDF 2) sources were identified based on the
prior data, cost of materials, and ease of availability for large-scale production. Different
spinning conditions were employed to optimize the membrane fabrication process, which
could be scaled-up from small 1.5 kg batch sizes to 50 kg batch sizes. The coagulation
bath temperatures and the bore fluid flowrates were varied for both the PVDF materials
employed, as shown in Table 3.

Table 3. Hollow fiber casting conditions for small 1.5 kg batches using PVDF 1 and PVDF 2.

PVDF Batch No Bore Fluid Flowrate
(mL/min)

Coagulation Bath Temperature
(◦C)

Outer Diameter
(mm)

Inner Diameter
(mm) Contact Angle (◦)

1 B1-a 1.5 ≈24 1.13 ± 0.01 0.73 ± 0.01 69.3
1 B1-b 3 ≈24 1.29 ± 0.02 0.95 ± 0.01 77.2
1 B1-c 4.5 ≈24 1.38 ± 0.01 1.09 ± 0.01 72.3
1 B1-d 1.5 38.3 1.12 ± 0.01 0.70 ± 0.00 66.6
1 B1-e 3 38.3 1.25 ± 0.03 0.89 ± 0.01 64.1
2 B2-a 4.5 38.6 1.07 ± 0.02 0.66 ± 0.03 70.6
2 B2-b 6.8 38.6 1.16 ± 0.01 0.79 ± 0.01 72.6
2 B2-c 9 38.6 1.25 ± 0.01 0.90 ± 0.01 n/a

The temperatures of the polymer dope were constantly monitored during mixing,
degassing, and spinning. The spinning required up to three working days for batch sizes of
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≥20 kg of dope, which required degassing at the end of each working day. The viscosity
of the different dopes was measured close to the spinning temperature of 55 ◦C using a
viscometer (Cole-Palmer VCPL 340015, Vernon Hills, IL, USA).

The membranes were characterized with a Field Emission Scanning Electron Micro-
scope (FESEM) (JEOL JSM-7200F) operated at 5.0 kV of accelerating voltage. A goniometer
(OCA15EC, DataPhysics Instruments, Filderstadt, Germany) was used to test the static
water contact angle of each membrane using the sessile drop method. A droplet of deion-
ized water was mechanically pipetted onto the membrane surface and a static image of the
droplet on the membrane surface after the equilibrium was taken. This was repeated five
times at different locations of the membrane and the average results were reported. The
optical images of hollow fibers were obtained using a Leica DVM6 optical microscope.

The pore size distribution was determined by a capillary flow porometer (CFP 1500AEX,
Porous Material. Inc., Ithaca, NY, USA), whose working principle was based on the bubble-
point and gas permeation tests. The hollow fiber samples were potted into the sample
holder and soaked by the wetting fluid (Galwick, with surface tension 15.9 × 10–3 N/m)
until completely wet. During the test, the gas flowrate was increased stepwise and passed
through the saturated sample until the applied pressure exceeded the capillary attraction
of the fluid in the pores. By comparing the gas flowrates of both wet and dry samples at
the same pressures, the percentage of flow passing through the pores larger than or equal
to the specified size can be calculated from the pressure–size relationship. The mechanical
properties of hollow fiber membranes were examined using a universal tensile tester (In-
stron 3342, Norwood, MA, USA). Each specimen was firmly clamped by the testing holder
and pulled longitudinally at an elongation rate of 50 mm/min at room temperature. The
corresponding mechanical properties were determined by the built-in software.

In another method, the contact angle was determined using a tensiometer (DCAT11
Dataphysics, Filderstadt, Germany). The contact angle quantifies the wettability of a solid
surface by a liquid. The sample was inserted into an electro balance for cyclical immersion
into DI water. The contact angle was calculated from the wetting force using Wihelmy’s
method. The overall porosity of membranes was determined by the gravimetric method
with the following Equation (1):

Porosity = 1−
VolumePolymer

Volumetotal

= 1 − Membrane weight/Membrane volume
Polymer density

(1)

where the PVDF density was 1.78 g/cm3 and the membrane volume was calculated based
on OD and ID of the fibers.

LEPw was determined using dead-end hollow fiber modules containing a single
membrane fiber. LEPw measures the pressure required to force water through the pores of
a dried membrane and is an indication of how easily a hydrophobic membrane could be
wetted. Water was gradually pressurized at a 0.5 bar increment. As water pressure was
increased, water could be pushed out of the membrane pores, and the pressure at which
water droplets were visible on the outer surface of hollow fibers was recorded as the LEPw
of the membranes.

2.4. Membrane Module Testing

The hollow fibers provided were assembled into 0.5-inch diameter or 2-inch diameter
modules, as shown in Figure 1, and tested at the Environment & Water Innovation Centre
of Innovation (EWTCOI) and our facility, Separation Technologies Applied Research and
Translation Centre (START), respectively. For the 0.5-inch modules, after the target tem-
perature of the feed was reached, temperature sensors for the feed inlets and outlets were
calibrated. The feed water was recirculated through the lumen side of the hollow fibers.
The liquid feed entered the module in an upward direction to minimize air bubbles in the
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module. Once the feed inlet temperature in the membrane module reached a steady state,
the vacuum pump was switched on to create a vacuum in the shell side of the hollow fibers.
The timer for permeate collection was started and permeate was collected by condensing
the water vapor either in an ice chip bath, which was periodically refilled with ice chips
(0.5-inch modules) or using a chiller at 15 ◦C (2-inch modules). The amount of permeate
collected was gravimetrically determined using a weighing scale and the electrical conduc-
tivity (EC) was measured. Table 4 shows the conditions for each of the tests and Figure 2
presents a process flow schematic for the in-to-out setup of VMD used in this study, which
was a semi-continuous operation with variation in EC. The feedwater was filled with a
NaCl solution whenever the EC value was nearly doubled or the tank was at half capacity,
whichever came first. Each time the feed was filled, the vacuum was switched off until the
target temperature of the feed was reached again.
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Table 4. Characteristics of testing modules and operating conditions for vacuum membrane distilla-
tion (VMD) of water from a NaCl solution. † Estimated values.

Testing Site Lab-Scale Module Pilot-Scale Module

Module (nominal inches) 0.5 2
VMD configuration in-to-out in-to-out
Number of fibers 15 560
Effective length (mm) 120 370
Effective membrane area (m2) 0.0035–0.0051 0.456
Packing density (%) ≈13 † 35
Feed flowrate (L/min) 0.5 8.5–9.5
Feed temperature (◦C) 88 ≥70
Vacuum (bar) −0.80 −0.85
Test duration (hr) ≥1 >100
Feed concentration (g/L NaCl) 35 ≈35.7
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3. Results and Discussion
3.1. Characterization of Polymers and Dopes

The two samples of PVDF1 and PVDF 2 were similar according to their melting,
crystallization, thermal degradation temperatures, and pyrolysis–GCMS chromatograms,
as shown in Table 1 and in Figure S1 in the Supplementary Materials, respectively. Melting
transition temperatures differed from those reported for pure PVDF (177–179 ◦C) but were
close to the reported values for commercial samples, from 159 ◦C to 173 ◦C [39–41]. Rapid
crystallization was demonstrated by sharp and narrow peaks with a degree of supercooling
of about 35 ◦C difference from the melting points for both samples, as seen in Figure S1.
These crystallization points were lower than the ones reported for pure PVDF, which are
between 139 ◦C and 141 ◦C, at the same rate of cooling [42].

Based on the TGA results, differences with pure PVDF were also observed in its
maximum temperature for thermal degradation [43,44]. However, there were no differences
among the samples examined, as shown in Figure S2 for the TGA thermograms. In the
case of the pyrolysis–GCMS, the peaks on the chromatograms differed by the number of
counts, but the times of separation were the same. The repeating unit of PVDF, vinylidene
fluoride, was separated after 2.5 min for both samples PVDF 1 and PVDF 2. On the other
hand, melting enthalpy, crystallization enthalpy, and the viscosity of the dope showed
a clear difference between the two PVDF samples, as well as with the reported value of
pure PVDF (104.7 J/g) [45]. These differences have an impact on the performance of the
final product characteristics and could be correlated to differences in molecular weight,
polydispersity, or the branching of the PVDF chains [39].

3.2. Characterization of PVDF Hollow Fiber Membranes

The bore fluid flowrate and coagulation temperature were the initial factors that were
chosen to conduct an experimental design based on the previous work [28,37]. The first and
second batches were conducted using a polymer dope of 1.5 kg. The dope B1 and B2 were
made using PVDF 1 and PVDF 2, respectively. For the batch B1, the dope flowrate was kept
constant at 4.5 mL/min and the take-up line speed at 3.0 m/min. The process conditions
for the 1.5 kg batch sizes were optimized by varying the coagulation bath temperature and
the bore fluid flowrate, as shown in Table 3.

The membranes fabricated under these conditions were visually examined using an
optical microscope, and the fiber images are displayed in Figure 3 (B1-a to B1-e). The
membranes were visually examined and their performance in handling during spinning
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was also checked. From B1-a to B1-c, the coagulation bath was kept at room temperature
(≈24 ◦C). Membrane B1-a showed the highest strength (i.e., did not break nor collapse
during spinning) with the highest thickness and the smallest dimensions (i.e., internal
diameter, ID, and outer diameter, OD). Membrane B1-b was in the middle of B1-a and B1-c
in terms of dimensions and showed the characteristic sandwich structure, with a thin layer
of small-size macrovoids that was present in all subsequent batches. B1-c possessed a softer
structure than B1-a as it easily collapsed due to handling during spinning; therefore, B1-c
spinning conditions were not retested. Membranes B1-d and B1-e had the coagulation bath
at a higher temperature. B1-d had a similar dimension to B1-a, while the structure changed
to a more porous one than B1-a due to the higher coagulation bath temperature. The results
are consistent with numerous similar observations reported in the literature [46–48]. It has
been well established that an increase in coagulation bath temperature results in a faster
solvent–non-solvent exchange. Consequently, it leads to a more porous structure, while
a slower de-mixing at lower temperatures results in a denser film [49]. Membranes B1-d
and B1-e were fabricated at a higher coagulation bath temperature of ~40 ◦C and bore
fluid flowrates of 1.5 and 3.0 mL/min, respectively. As shown in Table 3, the increase in
bore fluid flowrate resulted in an increase in ID and OD of the membrane B1-e. A similar
trend was also observed for membranes B1-a, B1b and B1-c, where the diameter increased
as the bore fluid rate increased from 1.5 to 4.5 mL/min, also leading to a reduced wall
thickness. Membrane B1-e started to lose its round shape and the membrane strength
significantly decreased when elevating the bath temperature. From these results, it is
revealed that the membrane dimensions increase and thicknesses reduce when the bore
flowrate is boosted [25,50].

As part of our efforts to scale-up the membrane fabrication process from a lab scale to
a pilot scale, the batches with PVDF 2 were run at a higher take-up speed of 9 m/min and,
consequently, the dope flowrate had to be adjusted to 13.5 mL/min to be consistent with
the lower line speeds used for PVDF 1 batches. As shown in Table 3, membrane B2-a had
the highest strength and the highest thickness of the batch. Membrane B2-b had similar
features as B2-a but with a slightly higher ID. Membrane B2-c appeared deformed due
to its small membrane wall thickness and, therefore, these spinning conditions were not
considered for further experiments. Like the previous batch results, when the bore flowrate
was boosted, the membrane dimensions increased and the thicknesses reduced. As evident
from Table 3, the increased bore fluid flowrate resulted in larger diameters (ID and OD) as
well as a lower wall thickness, eventually leading to the loss of mechanical integrity (for
B1-c and B2-c). As the bore fluid flowrate increased, the solvent–non-solvent exchange rate
increased, leading to higher mass transfer and faster polymer de-mixing. The higher bore
fluid flowrate also radially expanded the fiber dimensions and thinned the fiber wall, thus
reducing the overall mechanical strength [50–52].

The microscopy images and the very feasible optimization of the membranes suggested
that membranes B2-a and B2-b had the potential to be scaled-up to 20 kg and subsequently
50 kg batches. Based on the performance results, it was determined that the conditions
used for the membrane B2-a were most suitable for the final scale-up stage when using
PVDF 1 in the polymer dope instead of PVDF 2.

Figure 4 shows the FESEM images of the membrane samples from a small batch size
(1.5 kg, B1-a) and a large production-scale batch size (50 kg, B8). The SEM images confirm
the formation of the novel sandwich-like structure with a porous inner layer filled with
macrovoids between two thin, denser outer layers. They are consistent with the previously
reported literature [19,33,37].

The sandwich structure, with the two sponge-like layers, improves the mechanical
properties, and increases the evaporation area and the vapor transport during the VMD
process in an in-to-out configuration. The rapid de-mixing in the outer layer is due to the
use of water as a non-solvent, which produces a closer porous structure than the inner
layer that helps to avoid membrane wetting due to condensation in the permeate side. The
inner surface is more porous due to the use of an NMP/water solution (50/50 wt./wt.)



Membranes 2022, 12, 423 10 of 18

as the bore fluid, which delays the phase inversion. LiCl and EG are used to decrease the
miscibility of the solvent in the dope, allowing a more controlled liquid–liquid extraction
of the dope. LiCl, by increasing the dope viscosity, also helps to reduce the size of the
macrovoids, thereby increasing the strength of the membranes. While the inner surface of
B8 is still very porous, it is less porous than the smaller scale batches B2-a and B2-b. This
small change in the structure is probably due to the increase in dope viscosity shown in
Table 1 when using PVDF 1 as the base polymer.
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The porosity, contact angle, and thickness of the samples increased when the polymer
in the dopes was changed from PDVF 2 to PDVF 1, as shown in Figure 5. The membranes
made from PVDF 1, prepared using similar spinning and dope conditions as the membrane
B-2a (Table 3), showed higher contact angle and porosity values than the ones from PVDF 2
for batch sizes of 1.5 kg and 20 kg, as shown in Figure 5.
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Figure 5. Porosity, contact angle, and thickness of produced hollow fiber membranes in each batch.
Small scale: 1.5 kg batch; medium scale: 20 kg batch. (a) Fibers made with PVDF 1 dope; (b) fibers
made with PVDF 2 dope.

On the other hand, the tensile strength decreased when the production was scaled-up,
as shown in Figure 6. This behavior could be explained by the constant tension to which the
membranes were subjected during the long continuous fabrication process. The spinning
process was performed for up to three days due to the larger quantities of dopes, and these
conditions could have subtle changes in dope compositions from one day to the next. Here,
the tensile strength was proportionally higher when using PVDF 1 in the dope than when
PVDF 2 was used, as shown in Figure 6a. The tensile strain also decreased when increasing
the batch size using PVDF 1 (Figure 6a). On the contrary, the tensile strain values seemed
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to increase when using PVDF 2 in the dope. It is worth noting that from batch B3 onwards,
the conditions of the spinning process were adopted at larger scales of 20 kg and 50 kg
(see Table 2); thus, the values obtained by the large-scale batch (50 kg) show that there
was an optimization of conditions that led to an increase in the mechanical properties. In
addition, the LEPw values showed more consistency between batches, which is a very
important feature for obtaining better results in the VMD process. These findings suggest
that large-scale reproducibility is commercially achievable with small changes aiming to
increase production.
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3.3. VMD Tests

Once assembled, the small 0.5-inch modules prepared using PVDF 1 and 2 dopes were
placed in a vacuum membrane distillation unit at the EWTCOI facility. These modules were
tested by treating a 35 g/L synthetic NaCl feed solution, which was used to simulate sea-
water to validate the membrane modules for desalination application, as per the operating
parameters outlined in Table 4. The modules were prepared using membranes spun using
the conditions described in Tables 2 and 3 in a 1.5 kg batch size, and characteristics such as
salt rejection and flux were evaluated in VMD mode (Figure S4). The VMD tests performed
on the 0.5-inch modules showed a higher flux for hollow fibers produced from the dope 1
than from the dope 2, with differences of about 20 L/m2.h for the same spinning conditions
(B3 vs. B5). The salt rejection, based on electrical conductivity (EC) measurements, re-
mained consistent with values close to 100% for all modules tested, as seen in Figure S4. In
comparison to the research reported in the literature, the membranes produced in this work
showed higher flux values under similar operating conditions [29,32]. It is worth noting
that with each batch iteration, the consistency in the membrane characteristics increased
and was maintained, especially for the batches that used PVDF 1 (Figure S4a). These VMD
results of the 0.5-inch modules from smaller-scale batches confirmed the suitability of PVDF
1 for the full-scale spinning process, as discussed in the previous section.

Once the production conditions were selected, 2-inch modules were assembled (Figure 1b)
and tested using a custom-built MD unit capable of operating in VMD and DCMD modes.
The process flow diagram for the VMD operation using the skid is shown in Figure 2.
Figure 7 depicts the VMD test results for the 0.5-inch and 2-inch modules at EWTCOI and
START facilities, respectively. In order to evaluate the reproducibility of the membrane
characteristics as a function of dope batch sizes, two sets of 0.5-inch modules were assem-
bled with membranes prepared from small- and medium-size batches (i.e., 1.5 kg and 20 kg
dope sizes) and then compared with 2-inch modules assembled with membranes prepared
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from a large batch size of 50 kg. As shown in Figure 7, the fluxes of small 0.5-inch modules
remained high at 47 L/m2.h and 60 L/m2.hr for membranes prepared from 1.5 kg and
20 kg batch sizes, respectively. However, as the module size is increased to 2-inch, the flux
drops significantly to ~10 L/m2.h.while the salt rejection remains >90%. The high salt rejec-
tion indicates that the membrane’s microporous structure is still intact and reproducible
at different batch sizes; the decline in flux may be attributed to module characteristics
such as flow pattern, flow distribution, and temperature polarization. This flux decline
phenomenon tends to be higher in an in-to-out configuration, thus diminishing the mass
and heat transfer efficiencies in 2-inch modules [53–56].
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Due to the limitations of the existing VMD unit, the effects of some operating parame-
ters such as feed flowrate, temperature gradient, pressure differential across the membranes,
and temperature polarization coefficient (TPC) were not thoroughly evaluated in the cur-
rent study. A larger 5000 L/day capacity pilot unit with the requisite engineering design to
study the effect of the above-mentioned operating parameters on permeate flux is under
construction and the results from VMD testing of 16 4-inch modules will be the subject of a
subsequent publication.

In order to evaluate the long-term performance and to assess failure modes such as
pore wetting under the given test conditions, the 2-inch modules were tested with synthetic
seawater prepared with a 35 g/L NaCl, in a batch mode previously described, for over
100 h. The pilot unit was operated for 5–6 h per day with the feed water replenished
at the beginning of the day. The flux and the salt rejection data for the 2-inch modules
are summarized in Figure 8. Throughout the test duration, the salt rejection and the
permeate flux remained consistent at ~100% and within 8–9 L/m2·h, respectively, despite
the variations in feed concentrations due to the batch mode operations previously described.
The stable permeate flux through the test duration and under the given conditions indicates
that the membrane pore structure remained intact with no pore wetting, which would have
otherwise caused a spike in the permeate conductivity, not seen in this study.
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Figure 8. Rejection and conductivity of the feed and permeate as a function of runtime from pilot
tests using a 2-inch module.

It is important to highlight that the flux of the 2-inch module was nearly six times lower
than the highest flux previously reported for the 0.5-inch modules (Figure 7). The significant
drop in flux with an increase in module size can be attributed to several factors such as
(a) multi-fold increase in the membrane area as well as a much tighter packing density in a
larger module, leading to a decrease in the residence time at the feed flowrates employed,
(b) a high conductive heat loss leading to the loss of driving force for water vapor transport,
and (c) sub-optimal flow distribution either in laminar flow regime or the transition flow
regime, all resulting in less efficient mass transfer across the membrane [55,56]. Despite
this reduction in flux, the product water flux using the 2-inch module falls within the
range of previously reported works where the tests were carried out on a pilot scale [24,54].
These results confirm the long-term effectiveness and high performance of the sandwich-
structured hollow fibers developed in this study.

In addition, test conditions such as feed temperatures and flowrates, as well as the test
duration, have an impact on the flux (see Table 4 and Figure 9) [55]. For example, the lower
feed flowrate used in the 0.5-inch modules increases the residence time, leading to a higher
flux. However, these conditions are not suitable for use in industrial or commercial settings
because of the very low productivity rates. Nevertheless, the results of the 2-inch modules
show fluxes almost four times higher than and comparable rejections to SWRO systems,
which are typically in the range of 2.5–3 L/m2.h bar and ~99.7% salt rejection, respectively,
making these produced hollow fibers suitable alternatives for desalination.



Membranes 2022, 12, 423 15 of 18

Membranes 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

It is important to highlight that the flux of the 2-inch module was nearly six times 
lower than the highest flux previously reported for the 0.5-inch modules (Figure 7). The 
significant drop in flux with an increase in module size can be attributed to several factors 
such as (a) multi-fold increase in the membrane area as well as a much tighter packing 
density in a larger module, leading to a decrease in the residence time at the feed flowrates 
employed, (b) a high conductive heat loss leading to the loss of driving force for water 
vapor transport, and (c) sub-optimal flow distribution either in laminar flow regime or 
the transition flow regime, all resulting in less efficient mass transfer across the membrane 
[55,56]. Despite this reduction in flux, the product water flux using the 2-inch module falls 
within the range of previously reported works where the tests were carried out on a pilot 
scale [24,54]. These results confirm the long-term effectiveness and high performance of 
the sandwich-structured hollow fibers developed in this study. 

In addition, test conditions such as feed temperatures and flowrates, as well as the 
test duration, have an impact on the flux (see Table 4 and Figure 9) [55]. For example, the 
lower feed flowrate used in the 0.5-inch modules increases the residence time, leading to 
a higher flux. However, these conditions are not suitable for use in industrial or commer-
cial settings because of the very low productivity rates. Nevertheless, the results of the 2-
inch modules show fluxes almost four times higher than and comparable rejections to 
SWRO systems, which are typically in the range of 2.5–3 L/m2.h bar and ~99.7% salt rejec-
tion, respectively, making these produced hollow fibers suitable alternatives for desalina-
tion. 

 
Figure 9. Flux and feed temperature profile from pilot tests using a 2-inch module. 

4. Conclusions 
In this study, we successfully scaled-up a lab-scale membrane fabrication process to 

produce a novel sandwich-like structure comprising an inner porous layer with control-
lable macrovoids between two thin layers of sponge-like dense layers. The membrane 
morphology was optimally designed for membrane distillation applications. The mem-
brane fabrication processes were scaled-up from 1.5 kg batch sizes to 20 kg and 50 kg, 
clearly demonstrating the feasibility of translating the chemistry and process to a manu-
facturing set up. The membrane properties such as porosity, mechanical strength, and 

60

65

70

75

80

85

90

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

T (°C
)

Fl
ux

 (L
/m

2 .h
)

Runtime (h)

Flux

T of  Chiller = 15 °C

Figure 9. Flux and feed temperature profile from pilot tests using a 2-inch module.

4. Conclusions

In this study, we successfully scaled-up a lab-scale membrane fabrication process to
produce a novel sandwich-like structure comprising an inner porous layer with control-
lable macrovoids between two thin layers of sponge-like dense layers. The membrane
morphology was optimally designed for membrane distillation applications. The mem-
brane fabrication processes were scaled-up from 1.5 kg batch sizes to 20 kg and 50 kg, clearly
demonstrating the feasibility of translating the chemistry and process to a manufacturing
set up. The membrane properties such as porosity, mechanical strength, and morphology
were optimized by careful control of the spinning conditions. The scaled-up membranes
prepared using the optimized conditions were assembled into small 0.5-inch diameter
modules with 15 fibers (i.e., an effective membrane area of ~0.0035–0.0051 m2) as well as
2-inch diameter modules (i.e., an effective membrane area of 0.46 m2), which were tested
using MD testing units in VMD mode against a synthetic feed water simulating seawater
concentration (35 g/L NaCl). The small modules showed a very high flux of >40 L/m2·h
under the operating conditions, while the flux drops to ≤10 L/m2·h as the module size is
increased to 2-inch. Nevertheless, the 2-inch modules tested for over 100 h demonstrated
the long-term efficiency of the membranes with a flux maintained at ~8.8 L/m2·h while
the salt rejection remains close to 100%. These results validate the morphological design
employed for the novel PVDF membranes that imparts high mechanical integrity as well
as optimal pore structure for highly efficient vapor transport. While the observations are
highly encouraging and stand testimony to the suitability of these membranes in applica-
tions such as seawater desalination and high-strength industrial wastewater treatment for
recycle and reuse, challenges with retaining the flux still linger as the modules are further
scaled to a commercial industrial scale of 4-inch or 8-inch diameters. The future efforts of
our group are to be extensively focused on module scale-up and field validation using a
5000 L/day pilot unit against actual seawater or industrial wastewater. The results from
the pilot validation will be the subject of subsequent publication.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12040423/s1. Figure S1. DSC of different PVDF
powders used for hollow fiber membrane manufacture. (a) PVDF 1, USA origin; (b) PVDF 2, China
origin; Figure S2. DSC-TGA of different PVDF powders used for hollow fiber membrane manufacture.
(a) PVDF 1, USA origin; (b) PVDF 2, China origin; Figure S3. Pyrolysis–GCMS chromatograms of
PVDF at 600 ◦C. Orange—PVDF 1; green—PVDF 2; Table S1. Characteristics of manufactured hollow
fibers. FR: flowrate; CB: coagulation bath; ID: internal diameter; OD: outer diameter; Figure S4. Flux
and rejection of VMD tests in each batch. All tests were performed for time ≥ 1 h and using 0.5-inch
modules. Descending values based on flux (LMH). (a) Fibers made with PVDF 1 dope; (b) fibers
made with PVDF 2 dope.
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