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Abstract

Despite increasing access to antiretrovirals, HIV incidence in rural KwaZulu-Natal remains among the highest ever reported
in Africa. While many epidemiological factors have been invoked to explain such high incidence, widespread human mobil-
ity and viral movement suggest that transmission between communities may be a major source of new infections. High
cross-community transmission rates call into question how effective increasing the coverage of antiretroviral therapy lo-
cally will be at preventing new infections, especially if many new cases arise from external introductions. To help address
this question, we use a phylodynamic model to reconstruct epidemic dynamics and estimate the relative contribution of lo-
cal transmission versus external introductions to overall incidence in KwaZulu-Natal from HIV-1 phylogenies. By compar-
ing our results with population-based surveillance data, we show that we can reliably estimate incidence from viral phylog-
enies once viral movement in and out of the local population is accounted for. Our analysis reveals that early epidemic
dynamics were largely driven by external introductions. More recently, we estimate that 35 per cent (95% confidence inter-
val: 20–60%) of new infections arise from external introductions. These results highlight the growing need to consider
larger-scale regional transmission dynamics when designing and testing prevention strategies.
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1. Introduction

While the HIV epidemic hit South Africa relatively late com-
pared with other southern African nations, the epidemic grew
explosively in the 1990s from an estimated 0.8 per cent preva-
lence in 1990 to over 20 per cent in 2000 (UNAIDS 2017).
Prevalence nationwide stabilized at around 20 per cent in 2000,
but an estimated 7.1 million people are still currently living
with HIV in South Africa, more than any other country in the
world. Prevalence is highest in the province of KwaZulu-Natal
(KZN), where 25–40 per cent of the population is HIV positive in
some communities (Zaidi et al. 2013; Kharsany et al. 2015;
Shisana et al. 2015). While the increasing lifespan of infected
individuals on antiretroviral treatment (ART) can partly explain
why prevalence has remained high, incidence also remains
alarmingly high at between 3 and 6 per cent per year in KZN
(Karim et al. 2011; Nel et al. 2012; Vandormael et al. 2018) and
may be even higher in certain high-risk groups such as young
women (de Oliveira et al. 2017).

Many factors have been implicated in the explosive growth of
the HIV epidemic in southern Africa and KZN in particular, but
patterns of human movement in the region have long received
special attention (Jochelson et al. 1991; Quinn 1994; Lurie et al.
1997). Migration rates have historically been high in the region,
fueled by labor-intensive industries such as mining (Hargrove
2008; Corno and De Walque 2012). Mobility has also increased sig-
nificantly since the end of Apartheid, and sexual networks are
known to be geographically well-connected across long distances
(Harrison et al. 2008). But the exact role human movement has
played in the dynamics of the epidemic has been debated (Coffee
et al. 2007; Deane et al. 2010). Given the rural and rather isolated
nature of many KZN communities, it is apparent that some spa-
tial mixing would have been necessary to seed the epidemic in
different geographic locations. Beyond seeding local epidemics,
increasing mobility and migrant labor may have also played a
larger role by placing individuals at an increased risk of infection
(Lurie et al. 2003; Welz et al. 2007; Camlin et al. 2010), possibly
due to migrants engaging in riskier sexual behavior outside of
their home communities (Coffee et al. 2007).

Resolving the contribution of human movement to the HIV
epidemic has been challenging due to the difficulty of quantify-
ing the extent to which transmission occurs between individu-
als within local communities versus new cases being imported
through external introductions. While the geographic source of
new infections cannot typically be resolved using traditional
surveillance data, viral phylogenies can help reveal the source
of new infections (Holmes 2004; Pybus and Rambaut 2009; Faria
et al. 2011). Broadly speaking, if new infections primarily arise
from transmission within local communities, viral samples col-
lected within the community should be more closely phyloge-
netically related to one another than to samples taken from
outside the community; whereas if many new infections are be-
ing externally introduced, then local samples will tend to clus-
ter with external samples throughout the tree. Phylogenetics
can therefore help reveal the movement of viral lineages within
and between different communities. For example, one recent
study revealed that a high proportion (�40%) of new infections
in a rural Ugandan community arose from external introduc-
tions (Grabowski et al. 2014). Recent phylogenetic studies have
also revealed widespread viral movement across larger spatial
scales and even across national borders (Gray et al. 2009;
Wilkinson et al. 2016).

Here, we explore the role of external introductions in the
Africa Health Research Institute’s study population in rural

KwaZulu-Natal, where HIV prevalence is �30 per cent. Using a
phylodynamic approach that couples phylogenetic methods
together with epidemiological modeling, we reconstructed epi-
demic dynamics consistent with estimates from population-
based surveillance data. By tracking the movement of viral
lineages between populations, we also directly quantified the
contribution of local transmission versus external introductions
to overall HIV incidence. We found that far from just seeding
the local epidemic, external introductions played a large role in
sustaining high HIV incidence, thus confirming the important
role human mobility and migration have played in the hyper-
epidemic setting of KZN.

2. Methods
2.1 Study population

We focused on the Africa Health Research Institute (AHRI) study
population in KwaZulu-Natal, South Africa. The AHRI demo-
graphic surveillance area (DSA) is located 200 km north of
Durban with a mostly rural or peri-urban population (Fig. 1).
Demographic data were compiled from the Africa Centre
Demographic Information System between 2000 and 2015
(Tanser et al. 2008). There were approximately 87,000 people un-
der surveillance in this population at any given time, with an
adult population of males aged 15–54 years and females aged
15–49 years of 55,000. Prevalence and incidence data were also
made available from ongoing surveillance.

2.2 Population-based HIV surveillance

A population-based HIV survey has been performed within the
DSA since 2004, and we compared our phylodynamic estimates
of prevalence and incidence against data from this survey.
Trained field-workers visit households every 12 months and
identify eligible participants aged 15–49 years. After obtaining
consent, the field workers then extract blood according to the
UNAIDS and WHO Guidelines for Using HIV Testing
Technologies in Surveillance. Of the eligible participants con-
tacted, approximately 80 per cent agree to be tested at least
once during the study period. Prevalence was determined from
the number of individuals who tested HIV-positive during these
yearly visits (Vandormael et al. 2018).

We calculated incidence rates using the surveillance data
from the subset of eligible participants who had two or more
HIV tests, of which the first was a valid HIV-negative result
(Vandormael et al. 2014). During the 2004–14 surveillance pe-
riod, we observed 2,557 seroconversion events for the 17,417
participants in the incidence cohort, irrespective of their resi-
dency status or time spent in the DSA. Due to periodic HIV
testing, however, we did not know the exact dates of serocon-
version events. We therefore used an Monte Carlo-based ap-
proach to impute a random seroconversion event between the
ith participant’s latest-negative and earliest-positive test dates
(Vandormael et al. 2018).

2.3 Sequence data and phylogenetic analysis

Partial HIV-1 polymerase (pol) sequences were collected as part
of population-based surveillance conducted in 2011 and 2014.
HIV-1 viral load tests were done on all dried blood spot samples
that tested positive by serology (SD Bioline ELISA). Only samples
from ART-naive participants with viral loads greater than
10,000 RNA copies/ml were genotyped. More information about
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the genotyping process is described by Manasa et al. (2016). In
total, 1,068 sequence samples from the DSA were included in
our analysis. In addition to these samples, we used a large data-
set containing 11,289 unique subtype C pol sequences described
previously by Wilkinson et al. (2016) as a regional background
dataset to help identify external introductions. This dataset
contained other sequences from South Africa (n = 7,739) as well
as sequences sampled between 1989 and 2014 from Angola
(n = 9), Botswana (n = 863), the DRC (n = 25), Malawi (n = 352),
Mozambique (n = 342), Swaziland (n = 47), Tanzania (n = 168),
Zambia (n = 1,476), and Zimbabwe (n = 268).

Maximum likelihood (ML) phylogenetic trees were recon-
structed using FastTree2 (Price et al., 2010). The ML trees were
then dated using Least Squares Dating (To et al. 2015), so that
branch lengths were given in units of real calendar time. For
dating, we assumed a molecular clock rate of 2.0 � 10�3, which
falls in the center of previously estimated clock rates for sub-
type C (Wilkinson et al. 2016).

In a preliminary analysis, ML trees were reconstructed from
an alignment containing all sequences in the background data-
set together with all samples from the AHRI. To identify poten-
tial external introductions into the local population, we
reconstructed the ancestral location of each internal node in

the ML trees using the Fitch parsimony algorithm (Sankoff
1975). External introductions were assumed to occur whenever
a child node reconstructed to be in the local population had a
parent node reconstructed to be in the external population. The
midpoint time between the parent and child node was then
used as a proxy for the probable time of introduction.

For the phylodynamic analysis, phylogenetic trees were
reconstructed from all AHRI sequences and an equal number of
sequences randomly sampled from the background dataset.
This was done to reduce the computational cost of fitting the
phylodynamic model. To take into account phylogenetic uncer-
tainty and variability across sub-sampled datasets, the phylody-
namic analysis was replicated on ten phylogenies each
reconstructed from a different set of sequences sub-sampled
from the full regional background dataset. Estimates provided
in the Results represent an average over these ten phylogenies
and sampling replicates (see MCMC details below).

2.4 Ethics statement

Ethics permission for the population-based HIV surveillance at
the Africa Health Research Institute was obtained from the
Biomedical Research Ethics Committee of the College of Health

Figure 1. Location of the AHRI study population and prevalence within the area. (A and B) The location of KwaZulu-Natal province and the study area within the prov-

ince. (C) The spatial variability of HIV prevalence within the study area based on population-based surveillance.
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Sciences, University of KwaZulu-Natal (Ethics Nos. BF233/09
and E134/06). All participants in the study provided written in-
formed consent for the analysis of their samples. Sequence
samples obtained from HIV positive individuals were obtained
from this already-existing study.

2.5 Data availability

A representative subset of the HIV pol sequences have been depos-
ited on GenBank with accession numbers MH920641–MH920852.
This subset represents 212 of the 1068 total sequences used in this
study. The full dataset has been deposited in a secure repository:
https://doi.org/10.23664/AC_HIVpol_full1068. Researchers with a
clearly demonstrated scientific need may request access to the full
dataset by contacting AHRI’s Chief Information Officer, Kobus
Herbst at Kobus.Herbst@ahri.org.

2.6 Phylodynamic model

Our phylodynamic model divides the host population into a lo-
cal and an external population. Within the local population,
transmission dynamics are modeled using an SIR-type epidemi-
ological model where the number of susceptible (S), infected (I)
or removed (R) individuals change over time according to the
differential equations:

dSl

dt
¼ lNl � be!l tð Þ Sl

Nl
Ie � bl!l tð Þ Sl

Nl
Il � lSl

dIl

dt
¼ be!l tð Þ Sl

Nl
Ie þ bl!l tð Þ Sl

Nl
Il � � þ lð ÞIl

dRl

dt
¼ �Il � lRl

(1)

The subscripts denote whether a host resides in the local (l) or
external (e) population. Two sources of transmission contribute
to new infections within the local population. The first source,
the be!l tð Þ Sl

Nl
Ie term in (1), represents external transmissions into

the local population from the external infected population and
corresponds to the a tð Þ terms in Fig. 3. The second source, the
bl!l tð Þ Sl

Nl
Il term in (1), represents transmission within the local

population and corresponds to the b tð Þ terms in Fig. 3. All trans-
mission rates b tð Þ are allowed to vary over time to accommodate
changes in risk behavior, treatment, or other non-modeled fac-
tors. The birth rate l and removal rate � are assumed to be con-
stant over time. Upon removal, infected individuals are assumed
to no longer be infectious or sexually active.

We assume that the external infected population size Ie
grows logistically over time according to an SIS model. The
number of susceptible (Se) and infected (Ie) hosts in the external
population change over time as follows:

dSe

dt
¼ �be!e

Se

Ne
Ie þ �Ie

dIe

dt
¼ be!e

Se

Ne
Ie � �Ie

(2)

We set the initial infected population size Iinit
e ¼ 1 in 1975.

While this model ignores the considerable spatiotemporal com-
plexity in HIV dynamics within southern Africa, it captures the
main trend in HIV dynamics over time—rapidly increasing
growth followed by stabilization in prevalence. We therefore
view Ie as the effective number of infected individuals living in
the region who could have transmitted to an individual living in
the local population.

We assume that the time-dependent transmission rates,
be!l tð Þ and bl!l tð Þ, are constant within a given time interval but
can change between intervals in a piecewise-constant manner.
To obtain a smoothed estimate of how these parameters change
over time, we placed a Gaussian Markov Random Field prior on
each parameter. Such GMRF models have been used previously
in phylodynamics to prevent large fluctuations in parameter
values between neighboring time intervals by penalizing
against overly large changes (Minin et al. 2008). The prior proba-
bility on a given sequence of time-dependent parameters c1:T is
computed as:

Pr c1:T jsð Þ / s
T�2

2 exp � s
2

XT�1

t¼2

ctþ1 � ctð Þ2

Dt

" #
; (3)

where s is the precision parameter that controls the expected
autocorrelation in parameter values between neighboring time
intervals. The precision parameter s was inferred separately for
each time-dependent parameter. The time interval Dt between
change points was fixed at two years between 1990 and 2006.
Time-dependent parameters were assumed to be constant after
2006 to prevent overfitting during time periods when the phy-
logeny was relatively uninformative about changes in epidemic
dynamics.

The structured coalescent framework of (Volz 2012) was
used to compute the likelihood of the reconstructed phyloge-
nies under our phylodynamic model, which has previously
been used to analyze HIV transmission dynamics (Volz et al.
2013; Rasmussen et al. 2014b). The likelihood of a given phylog-
eny under a general structured coalescent model is:

L Tð Þ ¼
YM�1

m¼1

kij tmð Þ exp �
ðs¼tmþ1

s¼tm

Xi2A sð Þ

i

Xj2A sð Þ

j>i

kij sð Þds

2
4

3
5: (4)

For a tree containing M samples, the total likelihood is the
product of the likelihood of each of the M – 1 coalescent
events and the waiting times between events. The likelihood
depends on the pairwise coalescent rate kij tð Þ at which two
lineages i and j coalesce at time t. The total coalescent rate is
then computed by summing over all pairs of lineages in the
set of lineages A sð Þ present in the phylogeny at time s, which
is allowed to change within coalescent intervals due to
sampling.

As shown in Volz (2012), under a structured epidemiological
model with more than one type of infected individual, the pair-
wise coalescent rate is:

kij tð Þ ¼
Xm

k

Xm
l

fkl

IkIl
pikpjl þ pilpjkð Þ; (5)

where pik is the probability that lineage i is in state k and pjl

is the probability that lineage j is in state l. Ik and Il are the
number of infected individuals in populations k and l,
respectively.

The lineage state probabilities can be computed using a sys-
tem of differential equations that describe how the probability
of lineage i being in state k evolves backwards in time based on
its sampling location:

dpik

dt
¼
X

l

fkl

Il
pil �

flk

Ik
pik

� �
� pik

Xj2A tð Þ

j 6¼i

Xm
l

fkl þ flk

IkIl
pjl: (6)
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Here we have modified the equations originally introduced in
Volz (2012) by adding the final term in (6), which takes
into account how the relative probability of lineage i being in
state k changes conditional on the observation that the lineage
has not coalesced with any other lineage j in the phylogeny. This
was shown by Müller et al. (2017) to improve parameter esti-
mates under asymmetric population dynamics and sampling.

Under our two population HIV model, fkl represents the
transmission rate between populations k and l. In matrix nota-
tion, we have the transmission rate matrix:

F tð Þ ¼
be!e

Se

Ne
Ie be!l tð Þ Sl

Nl
Ie

bl!eIl bl!l tð Þ Sl

Nl
Il

0
BBBB@

1
CCCCA: (7)

Transmission from the local to the external population
allows lineages in the local population to move back into the ex-
ternal population, but the rate bl!e is assumed to be constant
over time. Transmission in this direction does not affect the
number of infected individuals in the external population, as
this is assumed to be much larger than the number of cases
exported from the local populations.

We implemented this phylodynamic model in BEAST 2
(Bouckaert et al. 2014) as an add-on package named Marula
(Rasmussen 2017). Source code and input XML files that can be
used to replicate our analysis are freely available at https://github.
com/davidrasm/Marula. We first validated the implementation of
our model on mock phylogenies simulated under a stochastic,
individual-based version of our base epidemiological model.
During these simulations, the full transmission tree was recorded
and then subsequently subsampled to produce mock phylogenies.
Mock phylogenies were simulated under two parameter regimes
where either �25 or �2.5 per cent of all infections in the local pop-
ulation were due to external introductions, corresponding to the
positive and negative controls in Fig. 3D and E, respectively. We
verified that the true simulated prevalence, incidence and fraction
attributable to external introductions fell within the estimated 95
per cent credible intervals in at least 95 per cent of all years across
ten simulations under both parameter regimes.

The posterior distribution of all model parameters and epidemic
dynamics were inferred using BEAST’s built-in MCMC sampler. The
marginal likelihood of the phylogeny under different models was
then computed by taking the harmonic mean of the posterior prob-
abilities sampled by the MCMC algorithm. Due to the large size of
the phylogenies, replicate MCMC runs were performed on ten differ-
ent fixed ML phylogenies reconstructed from different sub-sampled
sequence datasets (see above) rather than jointly estimating the full
phylogeny while simultaneously fitting the phylodynamic model.
Samples from each MCMC replicate were then pooled to obtain pos-
terior estimates averaged over the different ML phylogenies. Each
MCMC replicate was run for at least one million iterations.

For inference, weakly informative priors were placed on all
estimated parameters (Table 1). In addition, a few demographic
parameters were assumed to be known from the AHRI DIS
(Table 2). The local population size Nl reflects the adult popula-
tion size of males 15–54 and females 15–49 years old. The popu-
lation was assumed to be at demographic equilibrium with a
constant birth/death rate of 2.8 per cent per capita each year.

2.7. Model variants

In addition to our base phylodynamic model, we consider four
other model variants in order to check the robustness of our

results to simplifying assumptions made in the base model. In
each of these models, the epidemic dynamics in the external
population were modeled using (2), but may include different
infected classes in the local population.

2.7.1 Hot spot model
The first model variant considers subpopulation structure
within the AHRI population due to the clustering of individuals
into hot and cold spots of prevalence (Fig. 1C). Spatial scan sta-
tistics were used to identify areas with an excess number of HIV
cases when compared against a null model assuming a random
spatial distribution of cases (Tanser et al. 2009). All other areas
were categorized as cold spots. On average, prevalence was >25
per cent in hot spots and <10 per cent in cold spots. The epi-
demic dynamics in the local population are described by the fol-
lowing system of differential equations:

dSh

dt
¼ lNh � be!h tð ÞIe þ bh!h tð ÞIh þ bc!h tð ÞIc

� � Sh

Nh
� lSh

dSc

dt
¼ lNc � be!c tð ÞIe þ bc!c tð ÞIc þ bh!c tð ÞIh

� � Sc

Nc
� lSc

dIh

dt
¼ be!h tð ÞIe þ bh!h tð ÞIh þ bc!h tð ÞIc
� � Sh

Nh
� � þ lð ÞIh

dIc

dt
¼ be!c tð ÞIe þ bc!c tð ÞIc þ bh!c tð ÞIh

� � Sc

Nc
� � þ lð ÞIc

dRh

dt
¼ �Ih � lRh

dRc

dt
¼ �Ic � lRc

(8)

Here, the subscripts h and c indicate whether an individual
resides in a hot or cold spot. Based on the geographic location of
households within the DSA, approximately 40 per cent of the
population lives in hot spots, corresponding to population sizes
of about Nh = 22,000 and Nc = 33,000.

The same structured coalescent framework as used for the
base model can be used to fit this model to the viral phyloge-
nies, but we need to expand the transmission rate matrix F used
to track the movement of lineages between populations to in-
clude hot and cold spots:

F tð Þ ¼

be!e
Se

Ne
Ie be!h tð Þ Sh

Nh
Ie be!c tð Þ Sc

Nc
Ie

bh!eIh bh!h tð Þ Sh

Nh
Ih bh!c tð Þ Sc

Nc
Ih

bc!eIc bc!h tð Þ Sh

Nh
Ic bc!c tð Þ Sc

Nc
Ic

0
BBBBBBBB@

1
CCCCCCCCA
: (9)

The location of lineages at the tips of phylogenies was
assigned based on whether the sampled individual resided in a
hot or cold spot.

Parameters and prior distributions for the hotspot model
that differ from those used in the base model are given in
Table 3. We estimated the time-varying transmission rates
be!c tð Þ and bc!c tð Þ. The transmission rate from the external pop-
ulation into hot spots was parameterized in terms of a time-
invariant scalar je!h of the time-varying transmission rate from
the external population into cold spots: be!h tð Þ ¼ je!hbe!c tð Þ.
Likewise, the transmission rates within the local population
were parameterized in terms of time-invariant scalars of
the transmission rate within cold spots, for instance
bh!h tð Þ ¼ jh!hbc!c tð Þ.
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2.7.2 Time-varying removal model
The second model is very similar to the base model but allows for
individuals to remain in the infected class longer as the epidemic
progresses due to decreasing removal rates, which mimics
improvements in clinical care or treatment over time. We allowed
the duration of infection to gradually lengthen by shifting our
prior on the removal rate � to lower values over time (Table 4).

2.7.3 ART model
Our third model variant allows infected individuals in the local
population to initiate ART after 2004, when widespread ART
coverage began in South Africa. Under this model, the epidemic
dynamics in the local population are described by the following
system of differential equations:

dSl

dt
¼ lNl � be!l tð ÞIe þ bl!l tð ÞIl þ bt!l tð ÞIt

� � Sl

Nl
� lSl

dIl

dt
¼ be!l tð ÞIe þ bl!l tð ÞIl þ bt!l tð ÞIt
� � Sl

Nl
� � þ lþ ctð ÞIl

dIt

dt
¼ ctIl � �t þ lð ÞIt

dRl

dt
¼ �Il þ �tIt � lRl:

(10)

Here, It represents the number of infected individuals on ART
in the local population. The parameter ct controls the rate at
which infected individuals initiate ART and �t the rate at which
individuals on ART are removed from the infectious population,
which is allowed to differ from the base removal rate �.

The structured coalescent model corresponding to this epi-
demiological model has the transmission rate matrix:

F tð Þ ¼

be!e
Se

Ne
Ie be!l tð Þ Sl

Nl
Ie 0

bl!eIl bl!l tð Þ Sl

Nl
Il 0

bt!eIt bt!l tð Þ Sl

Nl
It 0

0
BBBBBBBB@

1
CCCCCCCCA
: (11)

The elements in F describe how lineages move between
infected individuals in different populations through transmis-
sion events but does not take into account the movement of a
lineage into the ART-infected compartment when a host

initiates treatment. We therefore need to modify (6) above for
tracking the lineage state probabilities to include the rates gkl at
which lineages transition between states k and l independent of
transmission events:

dpik

dt
¼
X

l

fkl

Il
pilþ

gkl

Il
pil�

flk

Ik
pik�

glk

Ik
pik

� �
�pik

Xj2A tð Þ

j 6¼i

Xm
l

fklþ flk

IkIl
pjl: (12)

Including these types of transitions is discussed in more de-
tail by Volz (2012).

For our model with ART, all gkl = 0 except glt which gives the
rate at which lineages transition into the treatment class:

G tð Þ ¼
0 0 0
0 0 ctIl
0 0 0

0
@

1
A: (13)

Parameters and prior distributions for the ART model are given
in Table 5. In this model, we still estimate the time-varying trans-
mission rates be!l tð Þ and bl!l tð Þ, but transmission from individuals
on ART is parameterized in terms of a time-invariant scalar jt of
the time-varying local transmission rate: bt!l tð Þ ¼ jtbl!l tð Þ.

2.7.4 AIDS-related deaths model
Our fourth model variant allows HIV-positive individuals to prog-
ress to an AIDS stage of infection with a higher death rate.
Therefore, unlike in our other models where infected individuals
are ‘removed’ from the infectious population but do not suffer in-
creased mortality, AIDS-related deaths can permanently remove
infected individuals from the entire population. This may be a
more realistic way of modeling the demographic impact of the
HIV epidemic, as there is strong evidence that AIDS-related
deaths dramatically reduced adult lifespan before ART become
widely available (Herbst et al. 2011; Bor et al. 2013). However, de-
mographic surveillance in the AHRI study area indicates that the
adult population size did not substantially change over this same
time period. We therefore let net immigration into the local popu-
lation demographically compensate for increased adult mortality
due to AIDS. In our model, AIDS-related deaths are therefore di-
rectly offset by immigration from the external population.

The epidemic dynamics under this model are described by
the following system of differential equations:

dSl

dt
¼ lNl þ la tð ÞIa

Se

Ne
� be!l tð ÞIe þ bl!l tð ÞIl þ ba!l tð ÞIa
� � Sl

Nl
� lSl

dIl

dt
¼ la tð ÞIa

Ie

Ne
þ be!l tð ÞIe þ bl!l tð ÞIl þ ba!l tð ÞIa
� � Sl

Nl
� lþ cað ÞIl

dIa

dt
¼ caIl � la tð ÞIa:

(14)

Table 1. Prior distributions on all estimated parameters.

Parameter Name Prior distribution Prior values

bl! l Local transmission rate Log-normal l ¼ �2.3026; r ¼ 1.0
be! e External transmission rate Log-normal l ¼ �0.5065; r ¼ 1.0
be! l External introduction rate Log-normal l ¼ �2.3026; r ¼ 1.0
bl! e Local export rate Log-normal l ¼ �2.3026; r ¼ 1.0
Ne External pop size Uniform min ¼ 55,000 max ¼ 250,000
� Removal rate Log-normal l ¼ �2.2769; r ¼ 0.1
s GMRF precision Gamma a ¼ 0.01; b ¼ 0.01

Table 2. Demographic parameters fixed at constant values.

Parameter Name Value

Nl Local pop size 55,000
l Birth/death rate 2.8% per year
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Here, Ia represents the number of infected individuals in the
AIDS stage. The parameter ca controls the rate at which infected
individuals progress to AIDS. The AIDS-related death rate la tð Þ
is allowed to differ from the death rate l in the general popula-
tion and vary over time. AIDS-related deaths are instanta-
neously offset by immigration from the external population.
What fraction of immigrants are susceptible or infected is deter-
mined by the susceptible and infected fractions in the external
population.

The structured coalescent model corresponding to this epi-
demiological model has the transmission rate matrix:

F tð Þ ¼

be!e
Se

Ne
Ie be!l tð Þ Sl

Nl
Ie 0

bl!eIl bl!l tð Þ Sl

Nl
Il 0

ba!eIt ba!l tð Þ Sl

Nl
Ia 0

0
BBBBBBBB@

1
CCCCCCCCA
: (15)

To account for lineage movement between infected com-
partments that occurs independently of transmission, we can
again use (12) to track the lineage state probabilities, with the
state transitions rates:

G tð Þ ¼
0 la tð ÞIa

Ie

Ne
0

0 0 caIl

0 0 0

0
BBBB@

1
CCCCA: (16)

The transition rate la tð ÞIa
Ie
Ne

accounts for the movement of
lineages into the local population through immigration of

already infected individuals. The rate caIl accounts for lineage
movement due the progression of infected individuals to the
AIDS stage.

Parameters and prior distributions for the AIDS model are
given in Table 6. As in the ART model, the transmission rate
from individuals in the AIDS stage is parameterized in terms of
a time-invariant scalar ja of the time-varying local transmission
rate: ba!l tð Þ ¼ jabl!l tð Þ. Estimating the AIDS progression rate ca

as free parameter, we obtained extremely high rates of progres-
sion to AIDS resulting in unrealistic estimates of several other
parameters. We therefore fixed ca ¼ 0:25, giving an average time
from infection to AIDS of four years.

4. Results

To help situate the local epidemic in the AHRI study population
within the larger context of the southern African HIV epidemic,
an ML phylogeny was reconstructed from HIV-1 subtype C
sequences sampled from 1,068 infected individuals in the AHRI
population along with 11,289 sequences from a larger regional
background dataset (Wilkinson et al. 2016) sampled throughout
southern Africa (Fig. 2A). Branch lengths in the ML phylogeny
were then rescaled into units of calendar time using least
squares dating. Although there are some larger clades com-
posed predominantly of local viral samples which likely repre-
sent locally evolving sub-epidemics, the majority of samples
from the AHRI are interspersed throughout clades composed
predominantly of external samples (i.e. from the regional back-
ground dataset), suggesting that many independent introduc-
tion events have occurred into the local population from
elsewhere in South Africa or from other neighboring countries.

Table 5. Parameters and prior distributions for model with ART.

Parameter Name Prior distribution Prior values

jt ART transmission scalar Beta a ¼ 1.0; b ¼ 1.0
ct ART initiation rate Log-normal l ¼ �1.0996; r ¼ 0.5
�t ART removal rate Log-normal l ¼ �2.2769; r ¼ 0.5

Table 3. Parameters and prior distributions for model with hot spots of prevalence.

Parameter Name Prior distribution Prior values

bc! c Local transmission rate Log-normal l ¼ �2.3026; r ¼ 1.0
be! c External introduction rate Log-normal l ¼ �2.3026; r ¼ 1.0
je! h Transmission scalar Log-normal l ¼ 0.6931; r ¼ 1.0
jh! h Transmission scalar Log-normal l ¼ 0.0; r ¼ 1.0
jh! c Transmission scalar Log-normal l ¼ 0.0; r ¼ 1.0
jc! h Transmission scalar Log-normal l ¼ 0.0; r ¼ 1.0
Nh Hot spot pop size Fixed 22,000
Nc Cold spot pop size Fixed 33,000

Table 4. Prior distributions on time-varying removal rates and the implied mean duration of infection.

Parameter Time period Prior distribution Prior values Mean duration (years)

� <2002 Log-normal l ¼ �2.2769; r ¼ 0.1 9.75
� 2002–4 Log-normal l ¼ �2.6208; r ¼ 0.1 13.75
� 2004–6 Log-normal l ¼ �2.8762; r ¼ 0.1 17.75
� 2006–14 Log-normal l ¼ �3.0795; r ¼ 0.1 21.75
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The ancestral location of each lineage in the ML tree was
then reconstructed using maximum parsimony to reveal how
viral lineages have moved over time (Fig. 2A). This allowed us to
identify potential external introductions at branches in the phy-
logeny where the most parsimonious ancestral location transi-
tioned from the external to the local population. Note that we
define an external introduction as transmission from an indi-
vidual in the external population to an individual living in the
local population independently of whether the transmission
event occurred inside or outside the local population because
the phylogeny contains no information about the exact location
of transmission. In total, 248 external introductions were identi-
fied into the local population. When transitions in ancestral lo-
cation occurred between parent and child nodes, we used the
midpoint between the parent and child node as a proxy for the
timing of external introductions. Most of these presumed intro-
duction events occurred between 1990 and 2000 during the pe-
riod of rapid epidemic growth in South Africa, with relatively

fewer introductions after 2000 once the epidemic stabilized
(Fig. 2B). Most introductions occurred from elsewhere in South
Africa, although a few potential introductions occurred from
Botswana, Malawi, Mozambique, Zambia, and Zimbabwe.

Because phylogenies only contain lineages ancestral to sam-
pled viruses, the number of external introductions identified in
the foregoing analysis likely represents only a small fraction of
the total number. Moreover, due to the large size of the epi-
demic relative to the number of infected individuals sampled
(�8%), it is extremely unlikely that we would have sampled
both descendants of any recent transmission event between an
external donor and a local recipient. In fact, the most recent
common ancestor of most pairs of sampled viruses predates the
early stages of the South African epidemic (Fig. 2A). The timing
of reconstructed state changes may therefore not be a reliable
proxy for the timing of introduction events since introductions
may have occurred more recently (see Fig. 3C). It is highly likely
then that our preliminary analysis based on parsimony both
underestimates the true number of external introductions and
skews their temporal distribution towards the more distance
past.

4.1 Phylodynamic analysis

We therefore developed a phylodynamic model based on a sim-
ple but still realistic epidemiological model using a previously
described structured coalescent framework (Volz 2012; Müller
et al. 2017) in order to quantify the contribution of external intro-
ductions versus local transmission. The model tracks the num-
ber of infected individuals in the external population along with
local epidemic dynamics (Fig. 3A and B). The model also proba-
bilistically tracks how lineages in the tree move between popula-
tions based on their sampling location and the estimated
transmission rates between populations (Fig. 3C). Tracking the
movement of lineages in this way allows us to estimate whether
new infections were derived from a local or external source. We
validated our model using phylogenies simulated to reflect dif-
ferent epidemic scenarios. In the first scenario, external intro-
ductions play a large role in driving and sustaining the local
epidemic (positive control). In the second scenario, external
introductions only play a minor role in seeding the epidemic
(negative control). In both scenarios, we were able to accurately
estimate both the overall epidemic dynamics and the incidence
attributable to internal and external transmission (Fig. 3D and E).

Using the phylodynamic model, we reconstructed epidemic
dynamics in the local population from phylogenies recon-
structed from the viral samples. As expected, both prevalence
and incidence rapidly grew during the 1990s in the local popula-
tion, and then grew more slowly after 2004 (Fig. 4A and B).
Posterior estimates of the external infected population size
through time and all inferred parameters are shown in
Supplementary Figs. S1–S4. After 2004, independent estimates
of prevalence and incidence based on population surveillance
data are available from the AHRI. Prevalence estimates based
on surveillance data were about 10 per cent higher than our
phylodynamic estimates, although both methods estimate a

Figure 2. The local HIV epidemic in the AHRI study population within the larger

phylogenetic context of the southern African subtype C epidemic. (A) ML phylo-

genetic tree reconstructed from HIV pol sequences from the AHRI (local) along

with the regional background dataset. Tips are colored by sampling location, in-

ternal branches are colored according to their ancestral location reconstructed

via maximum parsimony. (B) Time series showing the temporal distribution of

external introductions from each country into the local population, as identified

by maximum parsimony. The black line gives the total number of introductions

summed over all countries.

Table 6. Parameters and prior distributions for model with AIDS-related deaths.

Parameter Name Prior distribution Prior values

Kt ART transmission scalar Beta a ¼ 1.0; b ¼ 1.0
ct ART initiation rate Log-normal l ¼ �1.0996; r ¼ 0.5
�t ART removal rate Log-normal l ¼ �2.2769; r ¼ 0.5

8 | Virus Evolution, 2018, Vol. 4, No. 2

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vey037#supplementary-data


similar growth in prevalence since 2004 when widespread ac-
cess to ART began (Fig. 4A), consistent with earlier reports by
(Zaidi et al. 2013). Estimates of incidence since 2004 are in closer
agreement, with both methods returning a median estimate of
yearly incidence between 3 and 4 per cent with no detectable
decline since ART coverage began increasing in 2004 (Fig. 4B).

Given that we could reliably reconstruct overall epidemic dy-
namics from simulated and empirical viral phylogenies, we
used the phylodynamic model to quantify the relative contribu-
tion of external introductions versus local transmission to over-
all incidence. During the earliest stages of the local epidemic,
the incidence attributable to external introductions was very
high (Fig. 4B, red). While after 2004 the fraction attributable to
external introductions declined, as of 2014 an estimated 35 per
cent [95% confidence interval (CI): 20–60%] of all present day
infections were due to external introductions (Fig. 4C).

4.2 Model testing and robustness

While our phylodynamic reconstruction of epidemic dynamics
appears consistent with population-based surveillance, our

model makes several simplifying assumptions about HIV’s
transmission dynamics and demography in the AHRI popula-
tion. We therefore formulated four different variants of the base
model used above to relax what we view as the most question-
able of these assumptions. We then fit each variant to a single
ML phylogeny to gauge how robust our phylodynamic estimates
were to relaxing these assumptions. Informal comparisons of
the marginal likelihood of the phylogeny under each model
showed that all but one variant fit the phylogeny better than
the base model (Table 7). There were also interesting differences
in the epidemic dynamics reconstructed under each model as
we discuss below.

The first model variant included geographic hot and cold
spots of prevalence, relaxing the assumption in the base model
of no population substructure within the AHRI population.
Considering this form of subpopulation structure is a natural
choice because the AHRI population is clustered into areas of
high prevalence (>25%) along major roads and areas of low
prevalence (<10%) in more inaccessible rural areas (Tanser et al.
2009) (Fig. 1C). While adding subpopulation structure substan-
tially increased the marginal likelihood relative to the base

Figure 3. Schematic of the phylodynamic model and its validation on simulated data. Epidemic dynamics simulated under the model showing the number of infected

individuals in the external population Ie (A) and the local population (B). Transmission events from the external to the local population occur at rate aðtÞ and within the

local population at a rate proportional to bðtÞ. Both of these rates are time dependent and vary in a piecewise constant manner to accommodate changes in behavior,

treatment or other interventions. Although not shown here, viral lineages can also be exported from the local population through transmission to the external popula-

tion. (C) A simulated phylogeny generated under the same phylodynamic model. Each lineage is colored according to its probability of being in the local population

(blue). These probabilities were computed under the model based on each lineage’s sampling location and the estimated transmission rates between populations. (D

and E) Total incidence (gray) and incidence attributable to external introductions (red) inferred from simulated phylogenies. Solid lines represent the posterior median

estimate, shaded regions mark the 95 per cent credible intervals and open circles mark the true yearly incidence known from the simulations. In the positive control

(D), we correctly infer that external introductions played a large role in driving and sustaining the local epidemic; whereas in the negative control (E), we correctly infer

that external introductions only played a minor role in seeding the epidemic.
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model (Table 7), prevalence is still underestimated relative to
population-based surveillance and incidence is also estimated
to be slightly lower (Fig. 5D and E). Nevertheless, our estimates
of the fraction of incidence attributable to external introduc-
tions are very similar to those estimated under the base model
(Fig. 5F).

Because prevalence was underestimated in the base and hot
spot model, we considered a second model where individuals
could remain in the infected class longer due to removal rates
decreasing over time. Adding time-varying removal rates to the

base model did result in a more realistic increase in prevalence
towards present, but total prevalence was still underestimated
relative to population-based surveillance (Fig. 5G). Adding time-
varying removal rates did not increase the marginal likelihood
relative to the base model, but unlike the other model variants
this model did not add an additional population state to the
phylodynamic model.

Because allowing for a longer duration of infection appeared
to improve our estimates of prevalence, we considered a third
model where infected individuals could initiate ART after 2004.

Figure 4. Epidemic dynamics reconstructed from viral phylogenies using the phylodynamic model. (A) Prevalence estimates from the phylogeny (gray) and indepen-

dent surveillance data (blue). (B) Total incidence estimated from the phylogeny (gray) and surveillance data (blue). Incidence attributable to external introductions esti-

mated from the phylogeny is shown in red. (C) The fraction of incidence attributable to external introductions over time. All solid lines represent the posterior median

estimates while shaded regions mark the 95 per cent credible intervals. All estimates represent a posterior average over a set of phylogenies reconstructed from differ-

ent sub-sampled datasets and thus take into account both phylogenetic uncertainty and sampling variance.

Table 7. Comparison of phylodynamic model fit and epidemiological estimates as of 2014.

Model Marginal log likelihood Prevalence (%) Incidence (%) Fraction external

Base �18,278 21 2.37 0.35
Hot spots �18,229 21.3 2.6 0.31
txRemoval �18,282 27.6 3.61 0.21
ART �18,255 35.1 4.82 0.2
AIDS �18,239 47 5.1 0.05 (þ0.31 migrants)

Values reported are median posterior estimates.
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Under this model, ART was allowed to not only increase the du-
ration of infection but also reduce transmissibility for individu-
als on ART. Interestingly, prevalence estimates become more
consistent with population-based surveillance under this model
while total incidence was overestimated towards present (Fig. 5J
and K). Estimates of the fraction attributable to external intro-
ductions were only slightly lower than under the base model
(Fig. 5L, Table 7).

Finally, the fourth model included progression to a late stage
of infection or AIDS with an increased death rate, consistent
with observations that life expectancy dropped significantly
during the early stages of the KZN epidemic before ART become
widely available (Bor et al. 2013). However, an increased AIDS-
related death rate would cause the adult population size to de-
cline over time, inconsistent with demographic surveillance
data from the AHRI study area. We therefore allowed AIDS-
related deaths to be offset by immigration from the external
population to keep the adult population size constant. Because
there is no evidence that in-migration was significantly higher
than out-migration this is a rather extreme assumption, but it
allowed us to test our results against the assumption that there
was no direct migration of already infected individuals into the
local population. Under this model, phylodynamic estimates of
prevalence were substantially higher than under other models,
largely due to already infected individuals migrating into the lo-
cal population (Fig. 5M). We also estimated a relatively lower
fraction of incidence due to transmission from the external pop-
ulation (Fig. 5N, Table 7). However, this is not necessarily incon-
sistent with our other estimates. Fewer external introductions

due to transmission from the external population were simply
offset by immigration of already infected individuals into the lo-
cal population (Fig. 5O), which can be viewed as another source
of external introductions.

5. Discussion

Our phylodynamic results on external introductions fit within a
growing body of evidence that transmission networks are
highly interconnected across communities even at relatively
large geographic distances due to human movement patterns.
Historians and social scientists have long noted that both mass
migration and increased mobility may have played an impor-
tant role in the rapid spread of HIV through southern Africa
(Iliffe 2006). In South Africa, in particular, historical patterns of
circular labor migration among neighboring countries and in-
creased mobility following the end of the Apartheid system
may have contributed to the rapid growth of the epidemic
(Jochelson et al. 1991; Lurie et al. 1997; Hargrove 2008). More re-
cently, phylogenetic studies of HIV in Africa have provided sup-
port for frequent viral movement at spatial scales ranging from
local communities (Grabowski et al. 2014) to across national bor-
ders (Wilkinson et al. 2016). This frequent movement has been
linked to highly mobile individuals such as economic migrants,
soldiers, sex workers, and truck drivers (Gray et al. 2009;
Wilkinson et al. 2016).

Our phylogenetic and phylodynamic analysis of the HIV epi-
demic in the Africa Health Research Institute study population
revealed that external introductions via human movement

Figure 5. Epidemic dynamics reconstructed under different variants of the phylodynamic model. (A–C) Estimates from fitting the base model to the same ML phylogeny

as the other model variants. (D–F) Model with geographic hot and cold spots of prevalence. Estimated prevalence in hot spots as a percentage of the total population

size is shown in orange. (G–I) Model with time-varying removal rates. (J–L) Model that included antiretroviral treatment after 2004. Prevalence of infected individuals

on ART is shown in gold. (M–O) Model with AIDS-related deaths and migration from external population. Prevalence of AIDS is shown in purple. (O) The fraction of new

cases attributable to immigration of already infected individuals is also shown in purple. As before, the fraction of new cases attributable to transmission from the ex-

ternal population is shown in gray. Prevalence and incidence estimates from population-based surveillance (blue) are replicated here for easy comparison with Fig. 4.
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played and continue to play a vital role in driving the epidemic
in rural KZN. A preliminary phylogenetic analysis based on
maximum parsimony suggested that a large wave of introduc-
tions occurred in the 1990s during the early stages of the South
African epidemic. A subsequent analysis using a more realistic
phylodynamic model confirmed that the earliest stages of the
epidemic were indeed largely driven by external introductions,
although these early introductions may have been less wave-
like.

Our phylodynamic analysis also suggested that, far from just
seeding the local epidemic, external introductions continue to
play an important role in sustaining the high incidence of HIV
in local KZN populations. This has direct relevance for ART as
prevention (TasP) trials and programs. If most transmission
occurs locally, TasP programs should be able to efficiently and
cost-effectively reduce incidence (Granich et al. 2009) and could
selectively target communities with higher incidence (Tanser
et al. 2009). However, if most new infections are acquired exter-
nally, then increasing local ART coverage may not substantially
reduce incidence. Our phylodynamic estimates for one KZN
population indicate that the situation likely lies between these
two extremes. Our median estimate is that presently 35 per
cent (95% CI: 20–60%) of new infections in the AHRI population
are attributable to external introductions, suggesting a substan-
tial number of new infections could be prevented if the source
of these infections could also be targeted. Nevertheless, these
results imply that the majority of new infections may be attrib-
utable to local transmission, and increasing local ART coverage
may still prevent many future infections. However, a recent
TasP trial in a population immediately adjacent to the AHRI
study area showed no incidence reduction despite universal ac-
cess to ART (Iwuji et al. 2017). Identifying the source of new
infections and whether they arose locally from untreated infec-
tions or from external introductions will be key to understand-
ing why this trial failed to decrease incidence.

While phylogenies can reveal the movement of viruses be-
tween populations, they cannot necessarily reveal where trans-
mission events occurred or how viral lineages first entered a
population without additional information about human move-
ment. An external introduction event may result from a visitor
transmitting to an individual residing in the local population or
while an individual currently residing in the local population
was living away or traveling. In our phylodynamic model, we
cannot distinguish between these two scenarios because they
result in identical phylogenetic patterns. The AHRI does how-
ever collect data on the residence and migration status of indi-
viduals in the study area. Younger men and women frequently
leave and return to the area, and those who leave spend a sub-
stantial amount of their time (30.8%) outside the area (Dobra
et al. 2017). About 55 per cent of these migration events occur
within a 300-km radius of the study area and generally fall
within the province of KZN, including Richards Bay and Durban
(Dobra et al. 2017). Furthermore, these data show that preva-
lence is higher among residents with histories of recent migra-
tion (McGrath et al. 2015). Individuals who spend more time
away and travel longer distances outside their community also
have a significantly higher risk of acquiring HIV infection
(Dobra et al. 2017). Both of these observations support the idea
that local residents may be infected while living or traveling
outside of the study area and then return to the area, highlight-
ing the potential importance of circulatory migration patterns.
The extent to which external introductions are occurring out-
side local communities could be further teased apart by com-
bining viral phylogenetics with detailed sociological data on the

migration history of sampled individuals to infer the location
and migration status of individuals at the time of infection.

Although phylodynamics is increasingly used to study epi-
demic dynamics, the validity of estimates derived entirely from
viral phylogenies can of course be questioned and have their
own limitations as just discussed. We however feel confident
that our main results about external introductions are reliable
for several reasons. First, we validated our model on simulated
phylogenies and found that we could accurately reconstruct to-
tal incidence and the fraction of incidence attributable to exter-
nal introductions in scenarios where introductions both did and
did not play a large role in driving epidemic dynamics. Second,
we were able to reconstruct dynamics consistent with preva-
lence and incidence trends estimated from independent sur-
veillance data. Third, while there is no ‘gold standard’ to which
we can compare our phylodynamic estimates of external intro-
ductions, our estimated fraction of external introductions is
consistent with known mobility patterns in the AHRI popula-
tion where 38 per cent of males and 32 per cent of females are
recent migrants or frequently leave the area (Camlin et al. 2010;
Muhwava et al. 2013). Finally, our estimates of external intro-
ductions appear robust to the exact formulation of the epidemi-
ological model assumed. Different variants of our model
including prevalence hot spots, time-varying removal rates,
ART or AIDS-related deaths all returned similar estimates of ex-
ternal introductions.

In addition to showing that external introductions play an
important role in sustaining high HIV incidence in this hyper-
epidemic setting, we were also able to accurately estimate
population-level incidence. We believe that this is also an im-
portant result of our study, as there is currently great interest in
using phylodynamics to quantify epidemic dynamics, especially
changes in incidence, without the need for expensive longitudi-
nal cohort studies (Dennis et al. 2014; Cohen 2015). A recent
simulation study has demonstrated that it may be possible to
estimate incidence dynamics from phylogenies in the context
of African HIV epidemics (Ratmann et al. 2017), but the accuracy
of estimates varied considerably depending on the choice of
phylodynamic model, with the most complex structured coales-
cent model vastly outperforming other models. In contrast, we
accurately estimated incidence and, to a lesser extent, preva-
lence from empirical phylogenies using relatively simple
models.

In this respect, we view the simplicity of our model as one of
its strengths, even though far more detailed epidemiological
models have been developed in recent years for the purposes of
predicting and evaluating the impact of HIV prevention efforts
(see Eaton et al. 2012 for a review). Our desire for simplicity was
motivated by the fact that pathogen phylogenies are only a
proxy for the unobserved transmission tree, and only contain
information about a subset of transmission events from which
we can draw inferences about epidemic dynamics. By itself
then, a pathogen phylogeny contains no information about the
underlying drivers of transmission. We therefore opted to make
minimal mechanistic assumptions about how changes in risk
behavior, prevention efforts, and clinical care all interact to
shape HIV’s complex transmission dynamics. Adding parame-
ters or state variables to our model in order to capture these
processes may reduce certain biases, but will inevitably increase
the variance of our phylodynamic estimates since the phylog-
eny contains no information about them.

Nevertheless, it remains largely unexplored what epidemio-
logical factors need to be included in phylodynamic models in
order for estimates to be accurate and robust to slight model
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misspecifications. This is especially true when we try to relate
population-level variables of interest like prevalence or inci-
dence back to the branching structure of a phylogeny since
many processes simultaneously shape the phylogeny and may
confound analysis if not properly accounted for. Previous work
has shown that major subdivisions within a host population
can distort inferences because lineages in different subpopula-
tions are no longer exchangeable as standard coalescent theory
assumes (Heller et al. 2013; Rasmussen et al. 2014a). We there-
fore accounted for subdivision between local and external popu-
lations using a structured coalescent model (Volz 2012). But it is
less clear what other forms of host heterogeneity need to be
considered for HIV. For example, contact heterogeneity in sex-
ual networks can also shape pathogen phylogenies, increasing
the coalescent rate during the early stages of an epidemic as the
pathogen spreads though highly connected parts of the network
(O’Dea and Wilke 2011; Leventhal et al. 2012; Rasmussen et al.
2017). It is therefore possible that if we had accounted for con-
tact heterogeneity, we may have estimated a higher incidence
during the early stages of the epidemic in the AHRI population,
bringing our estimates of prevalence closer to those observed
when population-based surveillance began in 2004.

For a chronic infection like HIV, it may also be important to
correctly model the progression of individuals though different
stages of infection or clinical care. Phylodynamic models for
HIV that allow for disease progression have been shown to ac-
curately reconstruct epidemic dynamics from real and simu-
lated data (Volz et al. 2013; Ratmann et al. 2017). In our case,
adding an infection class for people on ART corrected our
underestimates of prevalence by allowing individuals on ART to
remain infected longer. But while it is conceptually straightfor-
ward to model multiple stages of infection, transmission and
progression rates for each of these stages can also vary over
time, leading to very parameter-rich models. As a first-order ap-
proximation, we therefore tried to circumvent this complexity
by only modeling temporal variability in transmission rates in-
dependent of disease progression. However, this strategy
proved insufficient to capture realistic changes in prevalence
and it was necessary to include either time-varying removal
rates or an ART-infected class to account for increasing dura-
tions of infection after the rollout of ART in 2004. Encouragingly
though, our estimates of incidence were surprisingly accurate
even under the base model, suggesting that highly detailed
models may not be necessary to estimate incidence accurately.
We suggest that this may be due to the fact that, while simple,
our base model already includes two of the most relevant fea-
tures of HIV’s transmission dynamics in rural Africa: time-
varying transmission rates and local versus external contact
structure.

In conclusion, we believe our results demonstrate the power
of using phylodynamics to study HIV transmission dynamics in
large, generalized African epidemics. Using a relatively simple
phylodynamic model, we were able to quantify the relative con-
tribution of external introductions to address a longstanding
question about the role human mobility plays in local HIV epi-
demics, while showing for the first time that it is possible to ac-
curately estimate HIV incidence from empirical data in the
context of generalized African epidemics. Given the promising
performance of our phylodynamic model, we have made it
freely available as an add-on to the widely used phylogenetic
software package BEAST 2 (Bouckaert et al. 2014; Rasmussen
2017). Finally, we note that as HIV sequence datasets expand to
encompass larger spatial regions, it should be possible to use

similar phylodynamic approaches to quantify transmission
rates between multiple different communities and thereby pin-
point the geographic source of new infections—providing de-
tailed knowledge that can be used directly to prevent new
infections.
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