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Abstract: Study design: Prospective study. Objective: Medical image fusion can provide informa-
tion from multiple modalities in a single image. The present study aimed to determine whether
three-dimensional (3D) lumbosacral vascular anatomy could be adequately portrayed using a non-
enhanced CT–MRI medical image fusion technique. Summary of Background Data: Lateral lumbar
interbody fusion has gained popularity for the surgical treatment of adult spinal deformity (ASD).
Oblique lumbar interbody fusion at L5–S1 (OLIF51) is receiving considerable attention as a method
of creating good L5–S1 lordosis. Access in OLIF51 requires evaluation of the vascular anatomy in
the lumbosacral region. Conventional imaging modalities need a contrast medium to describe the
vascular anatomy. Methods: Participants comprised 15 patients with ASD or degenerative lumbar
disease who underwent corrective surgery at our hospital between January 2020 and June 2021.
A 3D vascular image with bony structures was obtained by fusing results from MRI and CT. We
processed the merged image and measured the distance between left and right common iliac arteries
and veins at two levels: the lower end of the L5 vertebral body (Window A) and the upper end
of the S1 vertebral body (Window B). Results: The mean sizes of Window A and Window B were
29.7 ± 10.7 mm and 36.9 ± 10.3 mm, respectively. The mean distance from the bifurcation to the
lower end of the L5 vertebra was 23.7 ± 10.9 mm. Coronal deviation of the bifurcation was, from
center to left, 12.6 ± 12.3 mm, and the distance from the center of the L5 vertebral body to the bifurca-
tion was 0.79 ± 7.3 mm. Only one case showed a median sacral vein (6.7%). Clinically, we performed
OLIF51 in 12 of the 15 cases (80%). Conclusion: Evaluating 3D lumbosacral vascular anatomy using
a non-enhanced MRI and CT medical image fusion technique is very useful for OLIF51, particularly
for patients in whom the use of contrast medium is contraindicated.

Keywords: OLIF51; vascular anatomy; multi-modality image fusion; medical image

1. Introduction

Adult spinal deformity (ASD) is caused by spinal malalignment. This condition
affects a large number of patients, resulting in symptoms such as severe low back pain,
neurological dysfunction, reflex esophagitis, cosmetic disorders, and mental disorders [1,2].
Excellent results have been reported for ASD surgery [3,4]. Minimally invasive surgery
(MIS) has been advocated to reduce surgical complications of ASD [5]. Lateral lumbar
interbody fusion (LLIF) has gained popularity for the surgical treatment of ASD. Oblique
lumbar interbody fusion at L5–S1 (OLIF51) is a useful technique for recreating good
lumbosacral lordosis, and requires an approach from the corridor between common iliac
vessels in a lateral position [6]. However, a small vascular window at the L5–S1 level
is a contraindication for OLIF51 [7]. Imaging modalities, such as angiography, MRI,
and contrast-enhanced computed tomography (CT), are utilized to evaluate the vascular
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anatomy in this lumbosacral region for clinical use [8]. Rates of vascular injury have
been reported as 4.3% for OLIF51 and 3.3% for anterior lumbar interbody fusion at L5–S1
(ALIF51) [9,10].

Contrast-enhanced CT reconstruction vascular images can provide spine surgeons
with multidirectional images that facilitate an understanding of the relationship between
the relevant vascular structures and the L5–S1 disc. However, contrast media can cause al-
lergy reactions, renal damage, and hypotension and require prolonged radiation
exposure [11,12]. To address such problems, we report herein a novel technique to pro-
vide a three-dimensional (3D) vascular image containing bony information, created using
vascular images from magnetic resonance imaging (MRI) and bone images from 3D CT.

2. Materials and Methods
2.1. Patient Population

The present study was approved by our institutional review board. We obtained fully
informed consent from each patient prior to participation in this study. From January
2020 to June 2021, a total of 15 patients with ASD or degenerative lumbar disease who
underwent corrective surgery at our hospital were included in the present study (Table 1,
Figures 1 and 2). The inclusion criteria for this study were: age ≥40 years and planned
OLIF51(Sovereign spinal system®, Medtronic, Sofamor Danek, Minneapolis, MN, USA).
We excluded young male patients who needed L5–S1 fusion because of unacceptable
complications of retrograde ejaculation.

Table 1. Patient demographics.

N = 15

Gender (Man: Woman) 0:15
Age (mean ± S.D.) (year) 75.3±8.6

Height (mean ± S.D.) (cm) 154.2 ± 8.2
Body weight (mean ± S.D.) (kg) 59.3 ± 11.8

Body mass index (mean ± S.D.) (kg/m2) 24.9 ± 4.4
History of abdominal surgery Uterus surgery 2
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Figure 2. OLIF 51.

2.2. Image Technique

Vascular images were taken using Signa HDxt 1.5-T platform (General Electric, Boston,
MA, USA). The image sequence was fast imaging employing steady-state acquisition
(FIESTA) from steady-state free precession (SSFP), using the following settings: slice
width, 3.0 mm; slice interval, 0 mm; echo time, 2.1 ms; flip angle, 120◦; matrix, 192 × 288;
accumulations, 2; bandwidth, 83.33 Hz/pixel; field of view, 360 mm. The imaging range
was from the upper end of the L4 vertebra to the lower end of the S1 vertebra. The imaging
cross-section bisected the angle between the upper end of the L4 vertebra and the lower
end of the S1 vertebra. The number of slices was approximately 30, and the scan time was
about 2 min.

The bone 3D image was created using an Aquilion lightning platform (Canon, Tokyo,
Japan). The imaging conditions were: tube voltage, 120 kV; scan speed, 0.50 s; slice width,
0.5 × 80 mm; and helical pitch, 65.0. From these data, the 3D spine image was reconstructed
using AIDR 3D enhanced eStrong software (Canon).

2.3. CT–MRI Fusion Image

The fusion image combining 3D vascular image with bony structure was obtained
using Synapse Vincent version 3.3 software (Fujifilm, Tokyo, Japan). The first step was
justification of the CT image (soft tissue mode) and MR image (FIESTA) in a 2D image
using high signals from CSF and the vasculature. The second step was obtaining the 3D
bony image from CT, setting the transparency rate of the ilium bilaterally at 0.2 to make the
image of the sacrum clear under the L5 vertebral level. With MRI, images of the inferior
vena cava (IVC), median sacral vessels, and common iliac vessels were made manually.
The final step was merging of the bony image from CT and the vascular image from
MRI (Figure 3).
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Figure 3. MRI and CT medical image fusion.

2.4. Evaluation of Merged Images

To reduce subjective errors in calculations, each image was justified, and measure-
ments were made by two individuals. We measured the distance between left and right
common iliac arteries and veins at the lower end of the L5 vertebral body (Window A;
Figure 4 1©) and at the upper end of the S1 vertebral body (Window B; Figure 4 2©). In
addition, vertical distances from the bifurcations of the arteries and veins to the lower
end of the L5 vertebral body were measured (Figure 4 3© 4©). Coronal deviation from the
center of the L5 vertebral body to the vascular bifurcation was also measured. Two senior
surgeons evaluated OLIF51 feasibility according to our grading system by Window A:
Grade 1 (easy to perform), >20 mm; Grade 2 (possible but difficult), 15–20 mm; and Grade 3
(impossible), <15 mm.
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Kappa coefficients were determined to measure inter- and intra-observer reliability.

3. Results
3.1. Radiological Evaluations

The mean sizes of Window A and Window B were 29.7 ± 10.7 mm and 36.9 ± 10.3 mm,
respectively. The distances from the bifurcation of the common iliac vein and artery to the
lower end of the L5 vertebral body were 23.7 ± 10.9 mm and 33.6 ± 10.1 mm, respectively.
Coronal deviations of the common iliac vein and artery were 12.6 ± 12.3 mm (right side)
and −0.79 ± 7.3 mm (left side), respectively (Table 2). Only one case showed a median
sacral vein (8%).

Table 2. Radiological evaluation.

Radiological Evaluation N = 15

Inter common iliac vessel distance at L5 caudal endplate (mm) 29.7 ± 10.7
Inter common iliac vessel distance at S1 cranial endplate (mm) 36.9 ± 10.3

Distance from bifurcation of common iliac vein to L5 caudal endplate (mm) 23.7 ± 10.9
Distance from bifurcation of common iliac artery to L5 caudal endplate (mm) 33.6 ± 10.1

L5 vertebral body height (mm) 24.8 ± 3.5
Coronal deviation of bifurcation of common iliac vein (mm) (+;right, −;left) 12.6 ± 12.3
Coronal deviation of bifurcation of common iliac artery (mm) (+;right, −;left) −0.79 ± 7.3

3.2. Clinical Evaluation

OLIF51 feasibility was judged as Grade 1 in nine cases, Grade 2 in three cases, and
Grade 3 in three cases. Kappa values for inter-and intra-observer reliability were 0.77 and
0.88, respectively. We changed the planned OLIF51 to transforaminal lumbar interbody
fusion at L5–S1 (TLIF51) in all three Grade 3 cases, which were considered “impossible”
due to an excessively narrow window in two cases, and because of the presence of a vas-
cular anomaly in one case (Figure 5). Postoperative spinopelvic alignment was improved
to normal values in all patients. Mean Oswestry disability index (ODI) improved from
76 ± 15% to 38 ± 12%, postoperatively. One patient showed a complication of relatively
massive bleeding (560 mL) from the median vein. No other complications, such as neuro-
logical deficit, visceral injury, or endplate fracture were encountered.
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4. Discussion

Lumbar interbody fusion has been used for the treatment of spinal disorders since the
1930s [13]. A constant endeavor of spine surgeons around the world has been to provide
better patient outcomes, leading to continued advances in these procedures over the past
century. Interbody fusion is now possible through minimally invasive techniques, offering
distinct advantages such as reductions in soft tissue injury, postoperative pain, hospital
stay and recovery time [14]. Recently, anterior approaches have gained favor due to the
adequate access to the disc space and the large surface area for interbody fusion [15].
Restorations of lumbar lordosis and foraminal height are also favorable compared to
posterior techniques [16]. OLIF came into vogue as a means of mitigating the approach-
related difficulties encountered with LLIF and ALIF [14,17]. While the efficacies of this
approach at the L2–5 lumbar levels are well established [18], OLIF51 seems more difficult
due to the presence of major abdominal vessels overlying the disc space [19]. Controversy
remains in the literature regarding the feasibility of OLIF51. If this controversy could be
resolved, we may have an approach that is minimally invasive and allows anterior access
to all lumbar levels in a single position with minimal complications and better outcomes.

The development of any technique needs adequate anatomical research to avoid
unexpected outcomes during the early period of adoption. A study of 21 cadavers con-
cluded that the oblique retroperitoneal corridor was present at all levels from L2 to S1 [20].
However, another study by Liu et al. concluded that OLIF51 was unsuitable in 18.3% of
males and 10% of females [21]. They also recommended a thorough evaluation of imaging
modalities to assess overlying vessels at this level and thus clarify the feasibility of OLIF
preoperatively. The present study utilized fusion images of CT and MRI (Figures 3 and 5),
to the best of our knowledge representing the first description of this method. Cadav-
eric [20], CT angiographic [21], and MRI-based studies [19] have been reported previously.
CT provides excellent visualization of the bony anatomy, while MRI is suitable for display-
ing soft tissue contrast and neurovascular structures [22]. No single imaging technique
currently provides both these details. CT–MRI fusion is fairly new and enables creation
of high-quality images to provide large amounts of information and visualize intricate
anatomical details with great accuracy. In fact, the precision of such fusion images has
been applied in the highly demanding surgical treatment of various skull base patholo-
gies [23]. In our study, to reduce subjective errors in calculations, each image was justified
and measurements were made by two individuals; then, mean values were considered.
Fusion images also provided the surgeon with insights into the 3D anatomy of the surgical
area preoperatively, thus allowing an approach with precision not provided from routine
MRI and CT. Similarly, as stated by Li et al. [24], 2D assessment of the vasculature pro-
vides a limited assessment of the 3D nature of vessels, preventing judgement of whether
these structures represent technically challenging obstructions. In their assessment of the
operative window for OLIF51 surgery, Liu et al. [18] utilized CT angiography with 3D
reconstruction images. We believe that our imaging technique avoids the dye-related side
effects that may arise during angiography procedures [25]. CT–MRI fusion techniques have
opened new treatment options and have recently been utilized to allow the treatment of
spinal pathologies in combination with navigation techniques [22], and this option seems
applicable to OLIF surgery in the future.

In our study, operative windows at two levels (the lower end plate of L5 and upper end
plate of S1) were calculated in consideration of the fact that the OLIF cage is rectangular and
the measurement at the lower border of L5 is more important. Mean distances between iliac
vessels were 29.7 ± 10.7 mm and 36.9 ± 10.3 mm, respectively, considerably different from
values reported in previous anatomical studies of 14.8 ± 6.9 mm [20], 10 ± 8.3 mm [19], and
15.9 ± 9.3 mm [21], but similar to those documented by Choi et al. (27 ± 9.4 mm) [8] and
Song et al. (29.46 mm) [26]. We believe that the distance between iliac vessels is surgically
more practical than the distance between the mid-sagittal plane and left iliac vessels [8].
Senior surgeons decided to grade feasibility using Window A Grade 1—> 20 mm (easy to
perform), Grade 2—15–20 mm (possible but difficult), and Grade 3—<15 mm (impossible).
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This was a modification of the recommendations by Choi et al. [8], which suggested that
the corridor is inadequate in patients with values <15 mm with absence of perivascular
fat, rather than the earlier recommendations of <1 cm based on the dimensions of the
LLIF cage.

Using the measurements obtained, two of our 15 cases were classified as Grade 3 based
on the narrow vascular window, so OLIF surgery was deferred. Another patient showing a
vascular anomaly underwent TLIF51 instead. Three of the 15 patients (20%) thus had an
inadequate corridor for OLIF51 in our study. Only one complication related to bleeding
from median sacral vessels was encountered in our study. Molinares et al. [19] found that
the corridor was inadequate in 31% cases based on MRI of 133 individuals. Similarly, Liu
et al. [21] in their CT angiography study reported OLIF51 was not possible in 28.3% of
cases. We believe that differences in grading criteria and measurements as mentioned above
might have contributed to such discrepancies, but our technique providing better imaging
might also have enabled OLIF in up to an additional 10% of patients, thus broadening the
indications for this technique. Additionally, patients in our study were actually operated
upon, confirming the practical feasibility of this method.

Certain limitations of this study should be kept in mind. First, the sample size was
small. Second, the results of this study combined with clinical intraoperative measurements
would increase the strength of the study, since vascular positions might change in the lateral
position. Since no such accurate measuring technique is currently available, we were unable
to obtain such measurements. We believe integration of navigation systems might open
such avenues in the future.

5. Conclusions

Clarification of the lumbosacral vascular anatomy using 3D non-enhanced MRI and
CT medical image fusion techniques appears very useful for evaluating the feasibility of
OLIF51, particularly for patients in whom use of contrast media is contraindicated.
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