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A B S T R A C T

Most urine test strips are intended to enable the general population to rapidly and easily diagnose
potential renal disorders. It is semi-quantitative in nature, and although the procedure is
straightforward, certain factors will affect the judgmental outcomes. This study describes rapid
and accurate quantification of twelve urine test strip parameters: leukocytes, nitrite, urobili-
nogen, protein, pH, occult blood, specific gravity, ketone, bilirubin, glucose, microalbumin, and
creatinine using a micro-electromechanical system (MEMS)-based spectrophotometer, known as a
spectrochip. For each parameter, absorption spectra were measured three times independently at
eight different concentration levels of diluted standard solutions, and the average spectral in-
tensities were calculated to establish the calibration curve under the characteristic wavelength
(λc). Then, regression analysis on the calibration curve was performed with GraphPad Prism
software, which revealed that the coefficient of determination (R2) of the modeled calibration
curves was greater than 0.95. This result illustrates that the measurements exceed standard levels,
confirming the importance of a spectrochip for routine multi-parameter urine analysis. Thus, it is
possible to obtain the spectral signal strength for each parameter at its characteristic wavelength
in order to compare directly with the calibration curves in the future, even in situations when
sample concentration is unknown. Additionally, the use of large testing machines can be reduced
in terms of cost, time, and space by adopting a micro urine testing platform based on spectrochip,
which also improves operational convenience and effectively enables point-of-care (POC) testing
in urinalysis.

1. Introduction

Urine, a metabolic by-product excreted by vertebrates, plays a crucial role in maintaining electrolyte and water balance and
removing waste products. Healthy adults typically excrete 1500 - 2500 ml of urine daily with a pH of 6.5 to 7 [1]. Urinalysis is used to
evaluate the health of the kidneys and other organs within the urinary system. The normal urine color appearing clear to pale yellow
with no impurities [2]. Such test can detects abnormalities, including the presence of red blood cells signaling occult blood [3], or
increased creatinine levels from conditions like rhabdomyolysis, which causes urine to appear tea-colored [4], [5]. Routine urine tests
involve urine sediment microscopy, which, despite its accuracy, requires sophisticated equipment and trained medical personnel,
making it unsuitable for rapid testing [6]. Alternatively, urine test strips offer a quicker, albeit less comprehensive, diagnostic method
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by indicating chemical composition changes in urine, such as the presence of red or white blood cells, proteins, ketones, creatinine, and
sugar, which suggest deviations from normal levels [7]. Moreover, variations in individual color sensitivity can lead to errors when
using visual comparison methods with a color card for concentration analysis [8]. This underscores the importance of using a device,
like spectrophotometer, for a precise and prompt diagnostic results.

Analytical chemistry utilizes classical (i.e., chemical reactions) and instrumental analysis techniques to assess chemical properties;
the latter measures physical properties for a more sensitive, accurate, and rapid assessment of chemical composition, concentration,
molecular, and atomic structures [9], [10]. Common methods in instrumental analysis include: spectroscopy, chromatography,
electrochemical analysis, and colorimetry [11], [12], [13], [14], [15]. Each method was applied in a variety of scientific disciplines
widely and intensely, including toxicity [16], [17], [18], [19]; food analysis [20], [21], [22], [23]; pharmaceutical research [24],
[25], [26], [27], [28], [29]; water quality monitoring [30], [31], [32], [33], [34], [35]; astronomical observations [36], [37], [38].
Spectroscopy, which analyzes the interaction between electromagnetic radiation and matter (i.e., emission, absorption, or scattering),
employs spectrometers to dissect light into its spectral lines, allowing precise material identification despite its operational challenges
[9], [39].

Recent advancements in photo-electrochemical (PEC) sensing and chemiluminescence-derived PEC immunoassays have signifi-
cantly advanced instrumental analysis. Using light and cutting-edge materials, such as nanostructured anodic TiO2 and quantum dots
(QDs), PEC sensors achieve high sensitivity and specificity in detecting substances like glucose [40], [41], [42]. These innovations are
enhanced by integrating optical fibers and selective films such as Nafion, broadening their use from molecular to immunochemical
applications [43], [44], [45], [46]. Moreover, chemiluminescence in PEC immunoassays generates self-sustaining electrical signals for
target binding, facilitating power-independent diagnostics and enhancing the detection and quantification of scarce disease-related
proteins [47], [48], [49]. These systems benefit from interdisciplinary advancements that combine physics, biology, and chemistry,
creating cost-effective, user-friendly, and highly accurate diagnostic tools [47], [48]. The integration of optical multisensor systems
further improves the real-time, in-line analysis, ensuring the reliability and reproducibility of analytical data and meeting the precise
demands of life and environmental sciences [50], [51]. These innovations ensure the reliability and reproducibility of analytical data,
meeting the growing demands of life sciences and environmental sciences for higher precision [52], [47], [43], [49].

Now a day, along with the development of MEMS, diagnostic devices have become increasingly compact (i.e., small, but complete
[53]), which have dramatically enhanced POC testing, reducing reliance on centralized laboratories by enabling rapid, accurate di-
agnostics directly at the site of patient care [54], [55]. Systems, like integrated solar-powered PEC immunoassays for detecting cardiac
troponin I (cTnI) using advanced microfabrication techniques and portable photothermal immunosensing platforms for detecting
aflatoxin B1 (AFB1) in food, which demonstrates the ability of MEMS to deliver rapid, sensitive, efficient, and on-site diagnostics in
various settings, including resource-limited environments [56]. Further, combining MEMS with technologies, like surface acoustic
wave (SAW) biochips, has led to ultra-rapid HIV detection devices, facilitating immediate clinical decisions [57]. These technologies
not only expedite diagnostics in fields ranging from infectious disease to food safety, but also improve clinical and economic outcomes
by providing faster results than conventional methods [58], [59], [60]. Despite these advancements, challenges such as technical
limitations and personnel training remain, highlighting the need for ongoing development and quality assurance [61], [62]. Overall,
the integration of MEMS into POC testing significantly advances the capability for rapid and reliable diagnostics, ultimately enhancing
patient care and public health [63] [64], [65].

This study has successfully demonstrated the use of a MEMS-based micro-spectrometer, known as Spectrochip, for the precise
quantification of twelve critical urine test parameters: leukocytes, nitrite, urobilinogen, protein, pH, occult blood, specific gravity,
ketone, bilirubin, glucose, microalbumin, and creatinine. By integrating both ten-items and microalbuminuria test strips, as shown in
Fig. S1., with the Spectrochip, we developed a micro-urine analyzer that not only captures characteristic wavelengths (λc) from the
absorption spectra of these biomarkers but also establishes calibration curves to simplify the diagnosis of abnormalities. The ability of
this system to deliver rapid, accurate, and reproducible diagnostics directly at the point of care marks a significant advancement in the
field of clinical urinalysis. This research underscores the potential of MEMS technology in enhancing the efficiency and effectiveness of
medical diagnostics, paving the way for future innovations that could further revolutionize healthcare practices.

2. Biomarkers Clinical Implications

In urinalysis, several key biomarkers were investigated for their physiological roles and pathological significances, and implications
for health. In this study, we examine specific urine biomarkers crucial for diagnosing and monitoring various health conditions. The
studied biomarkers include leukocytes, nitrite, urobilinogen, protein, pH, occult blood, specific gravity, ketone, bilirubin, glucose,
microalbumin, and creatinine. This section will detail the physiological significance of each biomarker, their roles in health and
disease, and the methods used for their analysis. Leukocytes, or white blood cells (WBC), are part of the immune system, which can
suggest urinary tract infection (UTI) or kidney stones when present in urine, known as leukocyturia [66], [67]. Urine normally doesn’t
contain nitrite. It manifests when the urinary system is infected with bacteria that can convert dietary nitrates to nitrites. The presence
of nitrite in urine is a strong indicator of a bacterial UTI, making this test a valuable tool for quick infection screening [68], [69], [70].
Urobilinogen is produced in the intestines from the breakdown of bilirubin and is usually excreted in the feces. It is part of the body’s
process of breaking down and eliminating old red blood cells. Elevated levels of this compound in urine can indicate liver diseases such
as hepatitis or cirrhosis, or conditions causing increased red blood cell breakdown, such as hemolytic anemia [71]. Proteins in urine,
particularly albumin, can indicate kidney damage when found in significant amounts. This condition, known as proteinuria (physi-
ological and pathological), might be due to a variety of causes, including consuming excessive high-protein foods, engaging in intense
physical activities, kidney disease, high blood pressure, or diabetes. Measuring protein levels helps in assessing kidney function and
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guiding treatment decisions [72]. The pH of urine is determined by the kidney’s excretion of hydrogen ions. It reflects the kidney’s
ability to maintain the body’s acid-base balance. Abnormal urine pH levels might indicate kidney stones, UTI, or systemic conditions (i.
e., metabolic or respiratory acidosis or alkalosis) [73]. Occult blood in urine indicates the presence of red blood cells, known as
hematuria. It can be a sign of serious conditions such as UTI, kidney stones, tumors, or kidney disease. Detecting occult blood in urine is
critical for diagnosing these underlying diseases early, however vitamin-C and menstruation causing results false positives [74], [75].

Specific gravitymeasures urine density compared to water, which reflects solute concentration in the urine. Thus, it indicates the
kidney’s ability to concentrate or dilute urine based on the body’s hydration needs. Abnormal specific gravity readings can suggest
dehydration, overhydration, or kidney disorders that impair the kidneys’ concentrating ability [76], [77], [78]. Ketones are
byproducts of fat metabolism, typically appearing in urine when the body burns fat for providing energy to the tissues in the brain,
heart, muscle, and kidney in the conditions of glucose insufficiency and uncontrolled diabetes. This occurs during prolonged fasting,
carbohydrate restrictive diets, or uncontrolled diabetes, particularly diabetic ketoacidosis, a potentially life-threatening condition
[79], [80], [81]. Under normal conditions, bilirubin, which is originates from the breakdown of hemoglobin in red blood cells, is not
found in urine. However, its presence may indicate liver dysfunction, such as hepatitis, cirrhosis, or bile duct obstruction. Testing for
bilirubin in urine is crucial for the early detection and treatment of liver-related diseases [71]. Glucose should be reabsorbed in the
kidneys and not appear in urine. Its presence, known as glycosuria, is a common sign of diabetes mellitus or renal glycosuria, where
high blood sugar levels lead to glucose spilling into the urine. Testing for glucose can assist in diagnosing and monitoring of diabetes
and other diseases, such as hyperthyroidism and pancreatitis [82]. Microalbumin test detects small amounts of albumin protein in
urine. Small amounts may be normally excreted by the kidneys; however significant levels are abnormal. Microalbuminuria is an early
sign of kidney damage, especially in the context of diabetes, and it may lead to significant proteinuria. Regular testing is crucial for
diabetic patients to monitor kidney health earlier. Creatinine is a waste product from normal muscle metabolism, consistently pro-
duced by the body and excreted at stable rate by the kidneys. The normal range for creatinine in the human body is 0.7 to 1.2 mg/dl for
men and 0.6 to 1.1 mg/dl for women, however the values are higher in males and in individuals, such as athletes and meat eaters [83],
[84]. Measuring creatinine levels in urine are used to assess kidney function and essential for interpreting other urine test results, like
albumin-to-creatinine ratio (ACR) and glomerular filtration rate (GFR). ACR helps to evaluate glomerular pathology, adjusting for
urine concentration variations [72], [85], [86].

GFR=186 ⋅ creatinine− 1.154 ⋅ Age− 0.203 (1)

Equation (1) is the most widely used GFR formula derived by the United States Modification of Diet in Renal Disease (MDRD) [87]
and adjusted for body surface area (in ml/min/1.73 m2), uses a 0.742 factor for females and 1.210 factor for black Africans to classify
five CKD stages, as depicted in Table-S1 [88], [89]. Typically, kidney disease appears with no symptoms in the early stages of renal
function decline [90], [91], [92]. Utilizing advanced micro-spectrometry techniques, we quantify these parameters to improve
diagnostic accuracy and deepen our understanding of related diseases such as diabetes, kidney disease, and urinary tract infections.

3. Materials and Method

3.1. Study Procedure

To ensure the accuracy and reliability of the study, various actions has been implemented, as depicted in Figure 1. Firstly, the
stability of the system needs to be verified to ensure consistent and reproducible measurement system. Next, the stability of the test
paper itself should be verified to confirm that it provides consistent responses over time. Following this, standard solutions of known
concentrations need to be prepared carefully to serve as reference points for calibration. These standard solutions are then subjected to
three repeated independent measurements to assess measurement precision and reliability. Subsequently, characteristic wavelengths
are identified from average absorption spectra of the standard solution, and a calibration curve is established using these selected
wavelengths. Finally, the coefficient of determination (R2) is calculated to evaluate the goodness of fit of the calibration curve and its
predictive power through regression analysis using GraphPad Prism. By rigorously following these procedures, a robust and accurate
calibration curve can be developed for precise measurement and analysis of a given standard solution.

Figure 1. Conceptual framework of the study.
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3.2. Materials

Urine Test Strips
For this study, Ten Parameter Urine Test Strips and Microalbumin Urine Test strips (Microalbumin and Creatinine) were used, as

shown in Fig. S1., which can detect ten standard urine parameters and creatinine with microalbumin, respectively. The results of the
measurements can provide insight into renal disorders in their early stages and other associated ailments.

Spectrochip
As shown in Figure 2(a), the spectrometer can be modularized into a spectral chip module using an image sensor and aMEMS-based

manufacturing process, known as the Micro-Grating Process. The modular design can be fitted onto CNC-machined parts to suit
different biomedical measurement requirements. Table 1 summarizes the specifications spectral chip module. Figure 2(b) shows the
overall spectrochip micro urine analysis device assembly.

Light Source
Stability, cost size, durability and wavelength range are the major criteria for selecting the preferable light source for the system.

White light LEDs have a limited wavelength range of 400 to 700 nm [93], but they have benefits including consistent emission, low
cost, compact size, and a lifespan of up to 100,000 hours. Hence, the Cree XLamp XT-E White light source was used for this setup.

3.3. Optical Platform Calibration

The distance between the center and the edge of each of the twelve test strips must be measured with a Vernier caliper prior to
beginning the measurements, which is crucial for identifying the exact region of interest (ROI). Then, by using the Mako U130B CMOS
camera-equipped optical calibration platform, we observe how the micro urine analysis device moves and see if the locations of the
detection spots (ROI) on each test strip vary or not, as illustrated in Figures 3. As a driver, the system uses a 28BYJ-48 stepper motor
and the specification is depicted in Table-S3. Although stepper motors do not accumulate errors between steps [94], it is still necessary
to consider the stopping accuracy of the open loop system. As a result, each item’s length must be corrected manually. Table 2 provides
the measured and corrected lengths of the ten test strips.

3.4. Measurement System Stability Verification

Dark and Standard White Spectrum
Dark and standard white spectrum are essential for ensuring the efficacy and reliability of spectroscopic measurement. The dark

spectrum, as shown in Figure 4(a), representing the response of the system in the absence of light, is critical for identifying any intrinsic
electronic noise or stray light interference. The standard white spectrum, as shown in Figure 4(b), serves as a baseline for calibrating
the measurement system. This baseline is crucial, as it shows the reflectance characteristics of the light source across various wave-
lengths when radiated on a standard white target. Ideally, standard white spectrum should exhibit uniform reflectance across the
visible range (i.e., 400 nm to 700 nm), indicating a well-balanced light source and properly calibrated sensor. However, the observed
spectrum shows significant peaks around 400 nm and just below 600 nm, with a notable decline beyond 700 nm, suggesting that the
light source unevenly emits energy across these wavelengths. This irregularity implies potential issues with calibration, light source
stability and sensor sensitivity, which in turn affect measurements requiring consistent sensitivity. To overcome issues like this,
calibration process might be necessary to ensure accurate spectral analysis and reliable results in laboratory settings. Regular check
and use of dark and standard white reflection spectra provides a comprehensive approach to system calibration, setting a precise
baseline and noise level against which all samples are measured. Moreover, adjustments are made to account for ambient light in-
tensity, which could affect the measurements. To ensure stability and consistency, a 60-second waiting period is implemented after
turning on the light source before anymeasurements are taken. This stabilization time allows the device to adjust to any environmental
light changes and ensure accurate and repeatable readings. This methodological rigor is crucial for reducing potential errors in

Figure 2. Micro Urine Analysis Device: (a) Spectrochip Module; (b) Assembled
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biomedical analysis and enhancing the reliability of diagnostic results derived from the spectrochip system.

Instrument Stability Analysis
Prior to the stability analysis of the spectrochip, dark and standard white spectra are employed for baseline correction, and to assess

the light source stability and sensor sensitivity, as shown in Figure 4. The dark spectrum plays a vital role in calibration by provides a
baseline noise level (i.e., zero-point) that must be subtracted from the sample and reference spectra to correct system noise or ambient
light interference, thus ensuring measurement accuracy. Additionally, the reference spectrum is essential for calibration, and ensuring
accurate and reliable spectral analysis. In this study, recordings of the reference, sample, and dark spectra were taken before per-
forming stability analysis to enhance the accuracy and consistency of the measurement system. In this spectroscopic analysis, a
reference spectrum is obtained from a known standard sample with well-defined spectral characteristics. It is used as a baseline (i.e.,
standard) to calibrate the spectroscopy system and to compare against the spectra obtained from unknown samples, which eliminates
system variations and enhances the spectral analysis accuracy [95], [96], [97].

On the other hand, the sample spectrum is the actual spectral data collected from the test sample. This spectrum displays how the

Table 1
Micro Spectral Chip parameter specifications.

Parameters Specification

Spectral Resolution 5 nm
Spectral Range 340 - 1000 nm
Spectral Accuracy ± 0.5 nm
Image Sensor CMOS Image Sensor
Dimensions 44 × 34× 8.7 mm
Driver 28BYJ-48 stepper motor

Figure 3. Observation of Test Strip Positions on the Optical Inspection Platform

Table 2
Position measurements of urine test strips in the optical inspection platform.

No. Test Items Measurement Length (mm) Calibration Length (mm) Error (mm)

Ten-parameter Urine Test Strips
1 Leukocytes 105.31 107.30 -1.99
2 Nitrite 97.18 99.25 -2.07
3 Urobilinogen 88.73 90.95 -2.22
4 Protein 82.20 83.40 -1.20
5 pH 73.52 75.57 -2.05
6 Occult Blood 66.09 68.10 -2.01
7 Specific Gravity 59.08 60.65 -1.57
8 Ketone 50.94 52.25 -1.31
9 Bilirubin 44.35 45.65 -1.30
10 Glucose 36.00 37.20 -1.20
11 Standard White 28.00 N/A N/A
Microalbumin Urine Test Strips
12 Microalbumin 102.99 104.00 -1.01
13 Creatinine 94.95 95.62 0.67
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sample interact with the light across various wavelengths. Analyzing the sample spectrum allows researchers to identify and quantify
the chemical or physical characteristics of the sample based on its unique spectral signature. Finally, dry urine test strip was placed on
the calibrated measurement platform and three repeated independent spectrum readings were captured. The three sets of measured
spectra and the dark spectrum of the ROI subtracted from each measurement were then superimposed to ensure consistency and
identify any spectral drift in the measurement system, as depicted in Figure 5. Moreover, sequential measurements on multiple test
strips with varying reaction times can significantly affect the consistency of detection results. Variations in reaction times can lead to
differences in the development of color changes or chemical reactions on the test strips, which may result in inconsistent readings. In
this study, to ensure uniformity and reliability in the measurement results, we standardized reaction times across all tests, maintained
consistent environmental conditions and strictly adhered to the prescribed testing and reading time specified for each test strip by
manufacturer, as presented in Fig. S1. and Table S2. In Figure 5, the measurement results clearly illustrated that the overlaid
reflectance spectra of the test strip parameters on the micro urine analyzer was within an acceptable error range.

Additionally, standard deviation (SD) and relative standard deviation (RSD) were employed to assess the variability of repeated
independent measurements. SD is a basic statistical analyzing tool that quantifies the amount of dispersion of a set of data values from
their mean. It provides an absolute measure of spread in the same units as the data, which is essential for identifying the extent of
variability at different wavelengths for various biomarkers, as depicted in Figure 6(a). At specific wavelength, SD is calculated as the
square root of the mean square deviation of repeated independent measurement from their mean value, see equation (2). The higher
the SD value, the greater inconsistency in the measurement readings at that wavelength. RSD, known as coefficient of variation (CV),
measures the variability relative to the mean of the dataset, which facilitates comparison across different scales and concentrations by
normalizing the variability, as shown in equation (3).

SD can be expressed as:

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − μ)2

√
√
√
√ (2)

where, σ is standard deviation, μ is mean of the dataset and N is total number of independent spectral measurement.
Whereas, relative standard deviation (RSD) can be expressed as:

RSD =

(
σ
μ

)

× 100% (3)

Figure 6(b), provides a normalized measure of variability relative to the mean intensity at each wavelength, allowing for com-
parison across biomarkers regardless of their concentration or intensity levels. By using SD, we can pinpoint where the greatest
variations occur, while RSD offers insights into the precision and reliability of the spectrochip and highlights its performance con-
sistency across different conditions and level of wavelength. As the result, most biomarkers show lower variability at higher wave-
lengths, suggesting that the spectrochip provides more stable and reliable readings in this range. Moreover, lower RSD values across
the spectrum indicate high precision and reliability of the spectrochip, making it suitable for clinical applications where consistent and
accurate measurements are crucial.

Test-Strip Stability Analysis
Because urine test strips are intrinsically unstable in terms of humidity and temperature after being opened [98], [99], the stability

test of experimental test strips should be performed soon after the measuring instrument stability verification. BIO-RAD qUAntify Plus
Control Levels-1 and Levels-2 were employed for auxiliary testing in this investigation, as shown in Figure 9. Using a mechanical
micropipette, 20μl standard solution of each level is pipetted onto the test strip. For verifying the stability of urine test strips, the same

Figure 4. Reflectance spectrum: (a). Dark Spectrum, (b). Standard White Spectrum using Cree XLamp XT-E White light source.
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procedure as previous instrument stability verification was applied to four distinct urine parameters, namely leukocytes, nitrite,
protein, and ketone. For every measured parameter of the urine test strip on micro urine analyzer, the stacked spectra of the reflecting
light intensity at two distinct levels of selected biomarkers, including Leukocytes, Nitrite, Protein, and Ketone, fall within the allowable
error range, as displayed in Figures 7. In Figure 8, the variability of test strips is analyzed through the presentation of SD and RSD
across different wavelengths for selected biomarkers. Figure 8(a) and 8(c) illustrate the SD at two distinct levels (i.e., Lv.1 and Lv.2),
quantifying the spread data around the mean and thus assessing the precision of the test strips. Figure 8(b) and 8(d) depict the RSD,
which normalizes the SD relative to the mean, providing a percentage-based comparison of variability across tests. The stability of SD
and RSD within acceptable error ranges across both levels underscores the reliability of the test strips under diverse conditions, a
critical factor for their application in precise diagnostic settings.

For further stability analysis, the Magenta Test Strip is used to evaluate the performance and consistency of the micro-spectral chip,
which is mostly used to simulate the spectral properties of Nano-gold particles (AuNPs) in serum [100]. Detailed results and
comprehensive analysis are available in the supplementary information, where extensive data and discussions are provided. As shown
in Fig. S2., the Magenta Test Strip analysis using two LED light sources, labeled as A-light and B-light, ensures that the spectrochip can
provide reliable and repeatable results, crucial for accurate diagnostics and making it well-suited for practical applications where
diverse concentration levels must be accurately measured. Moreover, as mentioned in the previous section, ideal standard white
spectrum should exhibit uniform reflectance. This was confirmed by magenta test strip analysis, particularly Fig. S2(d), where 5%
magenta performance closely approximates white area, and ensures that the instrument was properly calibrated.

4. Result and Discussion

In this section, we explore how the absorption spectra of test samples vary with concentration. To facilitate the analysis, stable light
source is selected, and its wavelength is utilized to calculate the absorbance spectra at various concentrations, which forms the basis of
a Calibration Curve. This model enables the determination of unknown sample concentrations by placing them under a spectrometer
with controlled external conditions. The concentration of the unknown sample is then identified by mapping its absorption intensity at
the characteristic wavelength (λc) onto the calibration curve. This method underscores the critical role of precise calibration in
achieving reliable and reproducible diagnostic results.

4.1. Standard Solution Concentration

Multiplicative dilution, often known as serial dilution, is the technique of gradually dissolving a sample in a solution using the same
sample-to-solvent ratio each time, which can result in a geometric dilution of concentration. In this experiment, volumetric concen-
tration percentage formula to perform multiplicative dilution is used, as shown in equation (4). In the standard solution dilution, Bio
Rad qUAntify Plus Control Level-1 used as the solvent and Level-2 as the solute. To increase the accuracy of the calibration curve, 75%
is used as a variable indicator between 100% and 50%. Table 3 shows the solute-solvent ratios at different concentration levels of the
solution. Figure 9 demonstrates the dilution and spectroscopic analysis of the standard solution using various tools. These tools include
sterilized micro-tubes for handling the solution, a vortex mixer for uniform mixing, a micropipette for applying a 20 μl drop of the
solution onto the test strip, and a test strip slot for positioning under the optical observation platform.

Vol% =
Solute (μ)
Solution (μl) × 100% =

Solute (μl)
Solute (μl) + Solvent(μl) × 100% (4)

Figure 5. Reflectance spectra of urine test strip ten-parameter for instrument stability verification.

Figure 6. Instrument variability investigation: (a). SD and, (b). CV (RSD)
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Figure 7. Reflectance spectra of four distinct urine test parameters for test strip stability verification.

C.-H. Ko et al. Heliyon 10 (2024) e37722 

9 



Then, the measurement result of standard solutions at each concentration under the micro urine analyzer is documented. The test
paper is used to titrate standard solutions of each concentration, and the spectra of three repeated independent measurements are
taken, as shown in Fig. S5 - Fig. S16. Figure 10 illustrates the colorimetric response of urine test strips at different analyte concen-
trations, providing the capacity of the test strip to visually represent changes from 0% to 100% concentration. Figure 10(a) features a
ten-parameter strip, while Figure 10(b) displays a strip testing for Microalbumin with creatinine. The color gradient of each strip
changes according to the analyte concentration levels, demonstrating their semi-quantitative utility for initial diagnostic screening.
Moreover, this visual matrix is critical for rapid and efficient detection of various parameters in urine that are indicative of different
physiological and pathological conditions.

Figure 11 (a-l) illustrates the average absorbance spectra for standard solutions of various analytes at different concentration levels,
showcasing a systematic approach to determine their optical characteristics. For each analyte, ranging from Leukocytes to Creatinine,
the procedure involved conducting three independent measurements at each concentration level, averaging the absorbance spectra to
mitigate measurement variability, and identifying the characteristic absorption peak wavelengths. These peak wavelengths, as
depicted in Table 4, are crucial for establishing calibration curves used in quantitative analysis. The spectra display how absorbance
changes with concentration, providing a visual reference for the sensitivity and dynamic range of each test, which is essential for
accurate calibration and subsequent analytical applications in clinical diagnostics.

Characteristic Wavelength (λc)
As shown in Figure 11, the average absorption spectra highlights notable absorption peaks at specific wavelength, known as

characteristic wavelength (λc). Calibration curves are subsequently developed based on the signal intensity at these wavelengths.
Table 4 presents the characteristic wavelengths for each parameter tested with urine test strips.

4.2. Calibration Curve Modelling

Regression analysis is a statistical technique used to explore the relationship between independent variables (i.e., predictors) and a
dependent variable (i.e., response), aiming to create a regression equation for predicting the dependent variable. In this study, we
utilized regression analysis to develop calibration curve models using GraphPad Prism, which is based on the average absorption

Figure 8. Test strip variability investigation: (a). SD (Lv. 1), (b). CV (RSD - Lv. 1), (c). SD (Lv. 2), and (d). CV (RSD - Lv. 2)
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spectra from various concentrations. This approach helps approximate concentrations of unknown samples by inputting characteristic
wavelength data into the models. Calibration curves, essential for quantifying unknown samples require at least three, or preferably
five or more known concentration solutions to establish a reliable model. These curves, which plot absorbance values against con-
centrations may not always be linear; they are categorized into linear models (e.g., straight lines, y = ax + b) and nonlinear models (e.
g., polynomials, logarithmic, sigmoid functions, exponential growth, and one phase association), depending on the data distribution.

Coefficient of Determination (R2)
In statistics, coefficient of determination (R2) indicates the extent to which the variation in the dependent variable can be explained

by the independent variables. It is used to evaluate the accuracy of the model [101]. R2 values vary from 0 to 1, with higher values
indicating a stronger ability of independent variables to explain the dependent variable. Therefore, the constructed recursive model
with high R2 value is more accurate and reliable. It is expressed as:

R2=1 −
SSres
SStotal

(5)

where, SSres is residual sum square and SStotal is total sum square.
However, because of the sample size, the R2 value can be incorrectly calculated. Overestimation is more likely to occur with smaller

sample sizes. The sum of squared residuals will only go down as the number of independent variables, ‘x’ becomes up, increasing R2. A
greater R2 denotes a better explanatory capacity, however it might become unstable if there are excessively many irrelevant

Figure 9. Spectroscopic titration procedure of diluted solution using urine test strips.

Table 3
Standard solution preparation at different solvent and solute concentration.

Concentration (%) Level-1 (μl) Level-2 (μl)

0% 1000 0
3.125% 968.75 31.25
6.25% 937.5 62.5
12.5% 875 125
25% 750 250
50% 500 500
75% 250 750
100% 0 1000

C.-H. Ko et al. Heliyon 10 (2024) e37722 

11 



independent variables, ‘x’. Consequently, using the method in equation (5), the adjusted coefficient of determination (Adjusted R2, or
R2) is obtained by accounting for the number of variables and samples, as expressed in equation (6) below.

R2=1 −
SSres
n− p− 1
SStotal
n− 1

(6)

where, n is the number of samples and p is the number of variables.

Calibration Curve Model (CCM)
In this study, we developed a calibration curve model for twelve urine parameters, each adopted to the unique biochemical and

physical properties of the analytes, which are critical for clinical diagnostics. These urine parameters are analyzed under controlled
laboratory conditions. This model integrates both concentration levels standard solutions and average spectral signal intensities across
varying characteristic wavelengths, detailed in Table S6 and Table S7 in the supportive information. For each parameter, absorption
spectra were measured three times independently at eight different concentration levels (see Fig. S5 to Fig. S16, where the mea-
surement results for each biomarker are depicted) and the average intensities were calculated to establish robust calibration curve, as
depicted in Figure 11. The regression equations were obtained using GraphPad Prism analysis, as shown in Table 5. The CCM graphs
are presented in Figure 12, which are a crucial element in the quantification of urine analytes. Each curve is meticulously plotted to
reflect the concentration-dependent changes in signal intensity, thereby facilitating the precise determination of analytes concen-
tration in unknown samples. The shape of the curve depends on the biochemical properties of the analyte and the characteristics of the
reaction with the test strip reagents.

These curves are then used to drive regression equations, which mathematically describe the curve and can be used to calculate the
concentration of the analytes in urine samples based on their measured intensities. Moreover, these equations are also critical for
transforming raw spectral data into meaningful clinical information, enabling healthcare providers to perform accurate and reliable
urinalysis. As depicted in Figure 12(a), Leukocytes were analyzed at 550 nm CW using a dual-model approach to accurately represent
both low and high concentration levels through an exponential growth pattern, characterized by nonlinear regression equations. This
bifurcated approach caters to the semi-quantitative nature of leukocyte detection in clinical settings, facilitating a more nuanced
interpretation of urinary leukocyte concentrations. Nitrite analysis at 520 nm demonstrated a linear relationship between concen-
tration and spectral signal intensity, as shown in Figure 12(b). It is ideal for detecting bacterial infections in the urinary system. The
straightforward linear regression model allows for precise nitrite quantification. Urobilinogen, measured at CW of 570 nm, exhibited
an exponential growth pattern in its response curve, as shown in Figure 12(c), indicative of the complex biochemical interactions of
Urobilinogen in urine. This nonlinear approach is crucial for assessing liver function and detecting hemolysis.

Protein was quantified at 620 nm CW, where the calibration curve showed an exponential increase with concentration, as shown in
Figure 12(d), which reflects the aggregation of protein-dye complexes on the test strips. This model is vital for the detection of pro-
teinuria, a common symptom of kidney disease. pH values were determined at 615 nm CW, which is essential for monitoring metabolic
and kidney disorders. Due to the calculation method of pH values being based on the concentration of hydrogen ions, this section
includes two calibration curves, one for hydrogen ion concentration and another for direct pH value measurement.

As depicted in Figure 12(e), using an exponential decay function to accurately model the logarithmic nature of hydrogen ion
concentration. Whereas, as shown if Figure 12(f), a direct pH measurement exhibits a linear pattern. Therefore, a linear equation was

Figure 10. Pictures of urine test strips at different concentrations after the reaction: (a). Ten-parameter urine test strips, (b). Microalbumin with
creatinine urine test strips.
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utilized for analysis purpose. Occult Blood detection was modeled at 620 nm CW with exponential decay equations for both low and
high concentration ranges, reflecting the semi-quantitative nature of occult blood testing, as illustrated in Figure 12(g). This is critical
for detecting conditions ranging from infections to cancers in the urinary tract. Specific Gravity measurements at CW of 615 nm
utilized a nonlinear equation to capture the subtle changes in urine concentration, which is a key indicator of kidney health, see
Figure 12(h). Ketone levels, analyzed at CW of 530 nm, required separate calibration curves for low and high concentrations due to its
semi-quantitative detection, important for monitoring metabolic conditions such as diabetes, as illustrated in Figure 12(i). Bilirubin
was assessed at 540 nm CW with a linear model, reflecting its stable increase with concentration, which is directly related to liver
function, as shown in Figure 12(j). Glucose, measured at CW of 450 nm, followed an exponential calibration curve, see Figure 12(k),
which highlights the enzymatic reaction kinetics used in glucose testing, significant for diagnosing diabetes.

Microalbumin was uniquely analyzed at dual characteristic wavelengths, showing exponential growth patterns at both of 520 nm
and 615 nm, see Figure 11, which are critical for detecting early stages of kidney damage. As shown in Figure 12(l)& Figure 12(m), it is
observed that the distribution of the two calibration curve models is not identical. To validate the accuracy of the models, the ab-
sorption peak values at 520 nm and 615 nm were multiplied, and a new calibration curve was reconstructed. The spectral signal
intensity after multiplying the values at 520 nm and 615 nm characteristic wavelength is depicted in Table S7. As illustrated in
Figure 12(n), the model is more identical to Figure 12(m), which exhibits a gradual exponential growth pattern. Therefore, a nonlinear
equation was employed for the Microalbumin analysis. However, in Figure 12(n), it is evident that the 100% concentration level
absorption data deviates from the model range, indicating an outlier. Therefore, it is determined that the concentration level of 100%
absorption data is oversaturated for Microalbumin. During the modeling process, this data was excluded to improve the accuracy of the
model, and the model was reconstructed accordingly, as illustrated in Figure 12(o). Finally, Creatinine quantification at 550 nm CW

Figure 11. Average Absorbance spectra of standard solution at different concentration.

Table 4
Characteristic wavelengths of the twelve absorption peaks.

Items Characteristic Wavelength (nm)

Leukocytes 550
Nitrite 530
Urobilinogen 570
Protein 620
pH 615
Occult Blood 620
Specific Gravity 615
Ketone 530
Bilirubin 540
Glucose 450
Microalbumin 520 & 615
Creatinine 550

Table 5
Calibration Curve Model (CCM) and Coefficient of Determination (R2)

S.N. PARAMETER CCM R2 REMARK

1. Leukocytes (Min. Conc.) y = 0.05765+ 0.53815 ⋅
(
1 − e− 0.004118x

)
0.9788 (7)

2. Leukocytes (Max. Conc.) y = 0.03259+ 0.56741 ⋅
(
1 − e− 0.004109x

)
0.9760 (8)

3. Nitrite y = 0.8704x+ 0.1008 0.9892 (9)
4. Urobilinogen y = − 0.1177+ 0.5875 ⋅

(
1 − e− 1.802x

)
0.9923 (10)

5. Protein y = − 0.01081+ 0.56641
(
1 − e− 0.0259x

)
0.9685 (11)

6. pH (H+) y = 0.5572 ⋅ e− 0.3476x 0.9564 (12)
7. pH (Pure) y = 0.2550x − 1.492 0.9931 (13)
8. Occult Blood (Min. Conc.) y = 0.04136+ 0.77084 ⋅

(
1 − e− 0.5471x

)
0.9912 (14)

9. Occult Blood (Max. Conc.) y = − 0.04415+ 0.85635 ⋅
(
1 − e− 0.5611x

)
0.9912 (15)

10. Specific Gravity y = 0.4174+
0.4891

1+ 10− 217.5(1.012− x)
0.9730 (16)

11. Ketone (Min. Conc.) y = 0.1454 ⋅ e0.05432x 0.9548 (17)
12. Ketone (Max. Conc.) y = 0.09675 ⋅ e0.08148x 0.9548 (18)
13. Bilirubin y = 0.2425x+ 0.03828 0.9901 (19)
14. Glucose y = 0.1382+ 0.81277 ⋅

(
1 − e− 0.006123x

)
0.9739 (20)

15. Microalbumin (520nm) y = 0.09712 ⋅ e0.01712x 0.9499 (21)
16. Microalbumin (615nm) y = 0.03357+ 0.42583 ⋅

(
1 − e− 0.2793x

)
0.9756 (22)

17. Microalbumin (520nm*615nm) y = 0.1756+ 0.5141 ⋅
(
1 − e− 0.1416x

)
0.9071 (23)

18. Microalbumin (520nm*615nm, excluding 100% data) y = 0.1231+ 0.515 ⋅
(
1 − e− 0.2116x

)
0.9558 (24)

19. Creatinine y = 0.004174x+ 0.1623 0.9744 (25)
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Figure 12. Calibration curve model (CCM) of twelve urine parameters.
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Figure 12. (continued).
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was modeled using a linear regression, as illustrates in Figure 12(p), which provides a reliable measure of renal function crucial for the
clinical assessment of kidney health. Each urine parameter’s model was carefully developed to achieve optimal accuracy in our
diagnostic instruments, reflecting the complexities of urinary analysis and its clinical implications. These detailed calibration curves
and regression models serve as a robust foundation for reliable urinary diagnostics.

Qualitative and Quantitative Chemical Analysis
In analytical chemistry, qualitative analysis determines the presence of a substance with results typically labeled as "positive" or

"negative," while quantitative analysis provides precise numerical values to specify sample composition. For cases where the presence
of a substance is confirmed but full quantitative precision is unattainable due tomeasurement limitations, "Semi-Quantitative Analysis"
is used to estimate a rough concentration range. This method is less precise but suitable for quick assessments when only approximate
values are needed. In this study, to improve the accuracy of sample measurements in Level-1 and Level-2 standard solutions, the

Figure 12. (continued).

Table 6
Quantitative analysis values for selected five semi-quantitative biomarkers.

Item Level 1
Semi-quantitative value

Level 1
Quantitative value

Level 2
Semi-quantitative value

Level 2
Quantitative value

Protein Negative 9.96mg/dl 2+ 186.07 mg/dl
Bilirubin Negative 0.10 mg/dl 3+ 4.00 mg/dl
Glucose Negative 4 mg/dl 2+ 491 mg/dl
Microalbumin N/A 1.00 mg/l N/A 67.66 mg/l
Creatinine N/A 12.70 mg/dl N/A 139.40 mg/dl
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prepared samples were analyzed in a laboratory. The detailed results are presented in Table 6, derived from data provided by the
manufacturer (refer to Fig. S1 & Table S2) and analyzed using SIEMENS CLINITEK Novus Automated Urine Chemistry Analyzer (see
Fig. S3). Five selected semi-quantitative urine parameters, namely protein, bilirubin, glucose, microalbumin, and creatinine, were
analyzed to illustrate the precision in quantitative analysis performance of micro urine analyzer, and the measurement data are
presented in Table 6. The rough comparison of micro-urine analyzer with SIEMENS CLINITEK Novus Automated Urine Chemistry
Analyzer are presented in Table S4 of the supporting information.

4.3. Trade-offs: Benefits and Challenges of Proposed Protocol

The introduction of the spectrochip-based measurement system represents a significant step forward in urinalysis, offering a blend
of accuracy, portability, and efficiency that is not typically found in conventional protocols. This measurement system utilizes MEMS-
based technology to minimize footprint of large-scale diagnostic equipment, significantly enhancing point-of-care (POC) testing ca-
pabilities. Achieving an R2 over 0.95, the system provides reliable diagnostic outcomes, equating its performance with that of larger,
established instruments and mitigating concerns about the accuracy and reliability of smaller-scale diagnostics. Its compact design
facilitates use in diverse environments, including remote areas, and reduces operational costs significantly. The built-in environmental
shielding addresses the challenge of ambient light sensitivity (see Fig. S4), enabling consistent performance outside traditional lab
settings. Additionally, the use of a white LED light source reduces power consumption, increasing the lifespan of the instrument and
making it suitable for areas with limited power resources.

However, the proposed method requires initial calibration using samples with known concentrations to build accurate calibration
curves, a time-consuming process that necessitates access to standard solutions. Moreover, the open-loop system design necessitates
manual calibration and adjustments based on the results or changing conditions to maintain precise stopping accuracy in the optical
observation platform, highlighting an area for potential improvement. To address these challenges, future developments could include
integrating a closed-loop control for real-time feedback adjustments, minimizing human error and improving reliability. Additionally,
incorporating automated data analysis and machine learning algorithms could refine the accuracy and usability of the system by
automatically correcting deviations in real-time, based on accumulated data trends, thereby improving both the user experience and
the accuracy of the results. Ultimately, the spectrochip-based system demonstrates considerable potential to revolutionize urinalysis,
aligning with the need for technically adept, cost-effective, and adaptable healthcare solutions. Future research should aim to further
enhance its robustness and integrate advanced computational technologies to expand its clinical and field applications.

5. Conclusion

In this study, spectrochip-based urine analyzer was used to ensure POC testing for early detection and targeted care of potential
urinary system abnormalities. To reduce power consumption, size, and increase lifespan of the instrument a white LED was selected as
the light source. Experimental results on measurement system stability check illustrated that the measurements of the twelve urine test
parameters at various concentrations do not exhibit significant fluctuations, and its SD and RSD (CV) fell within acceptable ranges. For
each parameter of urine test strips, absorption spectra were measured three times independently at eight different concentrations (i.e.,
100%, 75%, 50%, 12.5%, 6.25%, 3.125%, and 0%) of a standard solution, and the average spectral intensities were calculated to
establish the calibration curve under the characteristic wavelength (λc) of the maximum absorption peaks. Next, utilizing GraphPad
Prism, regression analysis was performed on the modeled calibration curve to determine the coefficient of determination (R2) for each
parameter. As confirmed by the result, the values of R2 being over 0.95, the routine urine analysis using micro-spectrometer is both
accurate and reliable. In future comparisons with calibration curves, even when sample concentration is unknown, it is possible to
obtain the spectral signal at characteristic wavelength of each parameter. Additionally, the spectrochip-based measurement system
simplifies the complex and time-consuming design of large commercial instruments due to its compact size, portability, and accuracy.
It is easily affordable for the general public and is not restricted by the location of medical laboratories. It can also efficiently prevent
diseases and minimize healthcare costs. In general, the proposed micro-spectrometer measurement system offers a portable, cost-
effective, and efficient solution for point-of-care testing, despite some challenges related to initial calibration, manual correction
and environmental sensitivity. Future enhancements could integrate closed-loop control and automated data analysis with machine
learning algorithms to provide real-time feedback and automatic corrections, improving accuracy, reliability, and user experience.
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