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A B S T R A C T   

Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and 
that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the 
influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, 
and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for 
fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i. 
p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging 
hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pre-
treatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by 
abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with 
naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activ-
ities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP- 
mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, tri-
acylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of 
naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and 
anti-dyslipidaemia properties.   

1. Introduction 

Podsiedlik et al. [1] have documented that exposure to xenobiotics, 

including some drugs, is associated with erythrocyte abnormalities, such 
as perturbation of erythrocytes cytoskeleton, viscosity, morphology and 
sizes, ion permeability, reduced erythrocytes life span, schistocytes, and 
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haemolysis. Losses of haemoglobin compartmentalization also cause 
loss of arginase 1 from erythrocyte resulting in decreased systemic NO 
and impaired endothelial function [2]. Others include depletion in the 
antioxidant arsenal, intracellular ATP, and glycolytic enzymes leakage 
due to lysed erythrocytes. Lactate dehydrogenase (LDH, a marker of ATP 
generation and haemolysis) activity of erythrocytes and serum could 
offer information about the status of erythrocyte membrane integrity 
since erythrocytes depend solely on glucose metabolized through the 
glycolytic pathway as the only source of intracellular ATP generation 
[3]. Xenobiotics have been reported to elicit erythrocytes LDH and ATP 
depletion [4,5]. Deceased ATP, in turn, is known to be responsible for 
erythrocytes membrane fragmentation, deformation, vesiculation, 
vacuolization, and eryptosis [6,7]. 

All these perturbations in the constituents of erythrocytes and 
erythrocyte ghost enumerated above make erythrocytes serve as valu-
able in vitro and in vivo candidates for evaluating xenobiotics induced 
cytotoxicity. 

Cyclophosphamide (CYCP) is a synthetic alkylating cytostatic drug 
used as an antitumor and immunosuppression agent [8]. CYCP cytotoxic 
antitumor activities through DNA and protein alkylation are associated 
with its metabolic product, phosphoramide mustard, whereas another 
metabolic product, acrolein, elicits its noxious side effects [9]. Phos-
phoramide mustard, acrolein, and other free reactive species mediated 
by CYCP majorly target erythrocytes ghost and intracellular enzymes of 
the circulating erythrocytes [10] and promote their antioxidant ma-
chinery depletion, which in turn promotes oxidative stress, including 
alteration in erythrocyte morphology and erythrocyte ghost conforma-
tion, protein cross-linking, lipid peroxidation, haemolysis, and cell 
death. So, the therapeutic usages of CYCP have been limited owing to its 
cytotoxicity and myriads adverse side effects [11]. On the other hand, 
acrolein induces disruption of serum lipid homeostasis characterized by 
hypercholesterolemia and hypertriacylglycerolemia, promoting 
atherosclerosis [12]. However, to the best of our knowledge, no study 
has been carried out on the effect of CYCP on erythrocyte lipid. 

Dietary polyphenols, including naringin, has been reported for their 
antioxidants, anti-inflammatory, and blood lipid-lowering activities [13, 
14]. Naringin promotes antioxidant signalling pathways by various 
mechanisms. First, naringin quenches the toxic effect of free radicals by 
increasing the mRNA and protein levels of nuclear factor erythroid 
2-related factor 2 (Nrf2), a transcription factor that activates biosyn-
thesis of antioxidant machinery [15] and controls the transactivation of 
over 500 cytoprotective genes, including GSH synthesis and regenera-
tion, NADPH generation, phase-I, II and III xenobiotics detoxifying en-
zymes, etc. [70]. Second, naringin prevents apoptosis by inhibiting the 
intrinsic (initiated by mitochondria) and extrinsic pathways [16]. 
Thirdly, naringin equally prevents profibrogenic pathways and reduces 
fibrosis by (i) inhibiting the transforming growth factor-β (TGF-β) 
binding to its receptors (TβRI and TβRII) and activation, (ii) reducing 
tissue TGF-β levels, (iii) inhibiting mitogen-activated protein kinases 
(MAPKs) activation, (iv) inhibiting the phosphorylation, preventing the 
nuclear translocation, and downregulating the mRNA expression of 
cytoplasmic transcription factors Smads activated receptor (R-Smads) 
3/2 with the consequent inhibition of α-SMA and collagen expression, 
(v) inactivating hepatic stellate cells (HSCs), reducing extracellular 
matrix (ECM), (vi) downregulating matrix metalloprotease (MMP)-2 
and MMP-9, toll-like receptors (TLRs) 4 and 2 (vii) decreasing trans-
location and DNA binding of nuclear factor-κB (NF-κB) and activator 
protein 1 (AP-1) [16–19]. 

We postulated that naringin might be effective in protecting CYCP- 
induced erythrocytotoxicity. Hence, the current study was designed to 
validate the toxicity consequence of CYCP, examine the possible pro-
tective effect of naringin against CYCP-mediated erythrocytotoxicity, 
and explain naringin fundamental biochemical mechanisms of action 
against erythrocytes damage and intracellular oxidation utilizing in vitro 
and in vivo models. 

2. Materials and methods 

2.1. Chemicals and reagents 

Cyclophosphamide was obtained from Pfizer International (NY, 
USA). Lactate dehydrogenase (LDH), total protein, cholesterol, and tri-
acylglycerol kits were products of Randox Laboratories Limited 
(Admore, Crumlin, Co-Antrim, UK). Griess reagent kit was purchased 
from Cayman Chemical (Ann Arbor, Michigan, USA). Sodium nitro-
prusside (C5FeN6Na2O), hydrogen peroxide (H2O2), butylated hydrox-
ytoluene (BHT), vitamin C, 2- thiobarbituric acid (2, 6- 
dihydroxypyrimidine-2-thiol; TBA), dipotassium hydrogen phosphate 
(K2HPO4), potassium dihydrogen phosphate (KH2PO4), potassium 
chloride (KCl), reduced glutathione (GSH), oxidized glutathione (GSSG), 
1-chloro-2, 4-dinitrobenzene (CDNB), Ellman’s reagent DTNB [5,5ˈ- 
dithiobis(2-nitrobenzoic acid)], pyrogallol, reduced nicotinamide 
adenine dinucleotide phosphate (NADPH), and xylenol tetrasodium 
(C31H28N2Na4O13S), chloroform, isopropanol, triton X-100, ethanol, 
ammonium ferrothiocyanate, copper II nitrate (Cu(NO3)2.3H2O), trie-
thanolamine, oxalic acid bis(cyclohexylidenehydrazide), and ammo-
nium hydroxide (NH4OH) were procured from Aldrich Sigma Chemical 
Company (St. Louis, MO, USA). Iron (II) sulfate heptahydrate (FeS-
O4.7H2O) was imported from Merck KGaA, Darmstadt, Germany. Sul-
furic acid was supplied by Ajax Finechem, Australia. All other chemicals 
and reagents were of analytical grade and were procured from British 
Drug Houses (Poole, UK). 

2.2. Determination of hydrogen peroxide (H2O2) scavenging activity of 
naringin 

Hydrogen peroxide scavenging activity of naringin was determined 
as described by Ruch et al. [20]. Briefly, a control solution of hydrogen 
peroxide (40 mM) was prepared in phosphate buffer (50 mM, pH 7.4). 
The absorbance of H2O2 was determined by absorption at 230 nm using 
a Jenway 615UV/VIS Spectrophotometer (Staffordshire, UK). Naringin 
(500 μL, concentrations 0.1, 0.2, 0.3, 0.4 and 0.5 mg/mL) in distilled 
water was added to H2O2. After 10 min incubation, absorbance was 
determined at 230 nm against a blank solution containing phosphate 
buffer without H2O2. The percentage of H2O2 scavenging was calculated 
by the formula:  

% H2O2 scavenged = (A0 – A1/A0) x 100                                                  

Where A0 was the absorbance of the control and A1 was the absorbance 
of the test. 

2.3. Determination of nitric oxide radical (•NO) scavenging activity of 
naringin 

Nitric oxide radical generated from the decomposition of sodium 
nitroprusside (C5FeN6Na2O) in an aqueous solution (physiological pH 
7.2) is oxidized by oxygen to nitrite and nitrate. Nitrite level is a measure 
of nitric oxide produced; the nitrite reacts with a colour developing 
agent such as Griess reagent [sulphanilamide (1 mL, 2%) in H3PO3 (5%) 
and N-(1-naphthyl)ethylenediamine dihydrochloride (1 mL, 0.2 %)] to 
form a purple azoic compound, [•NO → NO2

− , + sulphanilamide → 
diazonium salt, + N-(1-naphthyl)ethylenediamine → Azo dye] which 
gives the concentration of •NO in the solution; hence, the ability of 
naringin to scavenge •NO was determined according to the method 
described by Green et al. [21]. Briefly, sodium nitroprusside (2 mL, 10 
mM) was dissolved in phosphate buffer saline (1.0 mL, pH 7.4) and 
mixed with naringin [2.0 mL, (0.1− 0.5 mg/mL)]. The resultant mixture 
was incubated at 25 ◦C for 60 min. A similar procedure was repeated 
without naringin as blank, which served as control. Incubated sample 
(5.0 mL) and Griess reagent (5.0 mL) were mixed and then incubated 
again at room temperature for 30 min, after which the absorbance of the 
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chromophore formed was measured at 540 nm. Percentage inhibition of 
the nitrite oxide generated was measured by relating the absorbance 
values of control (ascorbic acid) and naringin. The amount of nitric 
oxide radical inhibition was calculated by the formula:  

% inhibition of •NO = [A0 - A1]/A0 x 100                                                 

Where A0 was the absorbance before reaction and A1 was the absorbance 
after the reaction has taken place with Griess reagent. 

2.4. Animal model 

Experimental animals, female albino Wistar rats weighing 150 g – 
200 g, were inbred at the Animal House, Department of Biochemistry, 
Federal University of Agriculture, Abeokuta, Nigeria. They were housed 
in a plastic suspended cage placed in a well-ventilated, temperature- 
controlled (25 ◦C) rat house with standard 12-h light/12-h dark cycles. 
The rats were provided with standard pellet chow and given fresh water 
ad libitum. All animals were acclimatized for one week before the 
commencement of the experiments. All the animals received humane 
care according to the conditions outlined in the ‘Guide for the Care and 
Use of Laboratory Animals prepared by the National Academy of Science 
(NAS) and published by the National Institute of Health [22]. The 
institution approved an experimental number of the researcher is 
12/2373. 

2.5. Experimental protocol 

Twenty-five rats were divided into five groups (n = 5), using a simple 
randomization method. Five rats per group were used based on 3R 
(replacement, reduction and refinement) principles [23]. Before the 
experiments, naringin was mixed with the vehicle (sweetened 
condensed milk diluted in water in a 1:6 ratio). Aliquots of different 
concentrations (50, 100, and 200 mg/kg bw naringin) were adminis-
tered orally to the animals with a gavage needle daily for fourteen 
consecutive days at 8.00–9.00 hours. These various naringin dosages 
have been stated to prevent oxidative stress in rats [24]. Meanwhile, the 
normal control and CYCP alone rats received the vehicle, as detailed in 
Table 1. Afterwards, a single dose of CYCP (200 mg/kg) prepared in 
sterile injection water was administered intraperitoneally (i.p.) to all the 
groups (II–V) except normal control group I, which received only sterile 
injection water i.p. 

2.6. Preparation of serum and erythrocyte suspension 

At the end of the experiment, 24 h after the CYCP administration, 
within which the CYCP administered, would have been completely 
metabolized; the animals were sacrificed by cervical dislocation and 
dissected. Blood samples were collected via cardiac puncture into plain 
centrifuge tubes. The blood samples were centrifuged at 5000 rpm for 10 
min. The serum, which was the clear supernatant removed and was used 
for the estimation of serum enzymes. The buffy coat was equally 
removed by careful suction to obtain the erythrocytes. 

The erythrocytes were mixed and washed with phosphate-buffered 
saline (PBS) [NaCl (150 mM), NaH2PO4 (1.9 mM), and Na2HPO4 (8.1 
mM), pH 7.4], after which the mixture was centrifuged at 5000 rpm for 
10 min at 4 ◦C. The supernatant was again removed and discarded by 
careful suction, and a few erythrocytes were forfeited to remove any 
residual buffy layer. This washing procedure was repeated twice. This 
method removed practically all the leucocytes from the final erythrocyte 
preparation. The washed erythrocytes were laked by suspending it in 
isotonic Tris− HCl buffer pH 7.6 to an approximate haematocrit of 50 %, 
and the samples were kept at -5 ℃ until further biochemical assays. 

2.7. In vivo biochemical assays 

Appropriate aliquots of the 50 % erythrocyte suspensions (haemo-
lysate) were made and used for various biochemical assays. 

2.8. Determination of serum and erythrocytes lactate dehydrogenase 
(LDH) activity (a marker of erythrocyte integrity and cellular ATP) 

LDH catalyzes the conversion of pyruvate and NADH to lactate and 
NAD+. LDH activity in the serum and erythrocytes was assayed spec-
trophotometrically at 420 nm by monitoring the conversion of NAD+ to 
NADH according to the available kit manual manufacturer’s instructions 
[25]. LDH specific activity was expressed as Units/g haemoglobin. 

Determination of erythrocytes lipid peroxidation concentration 
Lipid peroxidation in the erythrocytes was assayed spectrophoto-

metrically at 532 nm by measuring malondialdehyde (MDA, an end 
product of cell membrane lipid peroxides/oxidative damage), as the 
formation of thiobarbituric acid reactive substances (TBARS) (TBA +
MDA → TBA-MDA adduct) by the method of Wright et al. [26]. TBARS 
contents were expresses as nmol MDA formed/mg haemoglobin using 
MDA molar extinction coefficient (Σ) of 1.56 × 105 M− 1 cm− 1. 

2.9. Determination of erythrocytes total hydroperoxide concentration 

Total (amino acid-, peptide-, protein-, and lipid-derived) hydroper-
oxide was determined by a method described by Hawkins et al. [27]. 
FOX (ferrous oxidation – xylenol orange) assay. This process employs 
the hydroperoxide-induced oxidation of a Fe(II)-xylenol orange to the Fe 
(III) form, the amount of the latter is then determined spectrophoto-
metrically at 560 nm. 

2.10. Determination of erythrocytes total nitric oxide radical (•NO) 

Nitric oxide radical is produced in biological tissues by nitric oxide 
synthase, which metabolizes arginine to citrulline with the formation of 
•NO via a five electron oxidative reaction. •NO is oxidized by oxygen to 
nitrite (NO2

− ) and nitrate (NO3
− ), which are stable final products of •NO 

metabolism and may be used as indirect cellular markers of •NO pres-
ence. The sum of cellular nitrite and nitrate levels is a measure of nitric 
oxide produced and hence the activity of nitric oxide synthase. Nitrate is 
reduced to nitrite. The nitrite reacts with a colour developing agent such 
as Griess reagent [2% sulphanilamide in 5% phosphoric acid and 0.2 % 
N-(1-naphthyl)ethylenediamine dihydrochloride] then generate a pur-
ple azoic compound, [•NO → NO2

− , + sulphanilamide → diazonium salt, 
+ N-(1-naphthyl)ethylenediamine → Azo dye] which gives the con-
centration of •NO in the erythrocytes as described by Green et al. [21]. 

2.11. Determination of antioxidants 

Antioxidants were determined in a suitably diluted erythrocyte 
lysate. 

Glutathione-S-transferase (GST) activity was determined spec-
trophotometrically at 340 nm by monitoring the rate of conjugation 
formation between GSH and 1-chloro-2, 4-dinitrobenzene (CDNB), (GSH 
+ CDNB → GS-CDNB conjugate + HCl), according to the method of 

Table 1 
Groups and treatments administered in the experiment.  

Groups Treatments 

Normal control (n = 5) Administered vehicle p.o. for 14 d then sterile injection 
water i.p. 

CYCP alone (n = 5) Administered vehicle p.o. for 14 d then CYCP (200 mg/kg, 
i.p.) 

Naringin 50 + CYCP (n 
= 5) 

Administered naringin (50 mg/kg bw, p.o.) for 14 d then 
CYCP (200 mg/kg, i.p.) 

Naringin 100 + CYCP 
(n = 5) 

Administered naringin (100 mg/kg bw, p.o.) for 14 d then 
CYCP (200 mg/kg, i.p.) 

Naringin 200 + CYCP 
(n = 5) 

Administered naringin (200 mg/kg bw, p.o.) for 14 d then 
CYCP (200 mg/kg, i.p.)  
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Habig et al. [28]. The specific activity of GST was expressed as Units/g 
haemoglobin or mmol GS-CDNB conjugate formed/min/g haemoglobin 
using GS-CDNB molar extinction coefficient (Σ) of 9.6 mM− 1 cm− 1. 

Reduced glutathione (GSH) concentration was determined spec-
trophotometrically at 412 nm by measuring the rate of formation of 
chromophoric product 2-nitro-5-thiobenzoate (TNB) as a result of 
reduction of Ellman’s reagent DTNB [5,5ˈ-dithiobis(2-nitrobenzoic 
acid)] by the free sulphydryl group of reduced glutathione (2GSH +
DTNB → TNB + GSSG); the intensity of the yellow-coloured complex 
formed is directly proportional to the amount of –SH groups, as 
described by the method of Jollow et al. [29]. GSH values were 
expressed as μgGSH/g haemoglobin using GSH molar extinction coeffi-
cient (Σ) of 9.6 0.017 mM− 1 cm− 1. 

Superoxide dismutase (SOD) activity was determined spectro-
photometrically at 420 nm by measuring the inhibition of autoxidation 
of pyrogallol, a superoxide-reacting indicator molecule (SRIM) that 
compete with SOD for the reaction with superoxide in alkaline medium 
(pyrogallol/SOD + O2

• − + 2H+ → H2O2 + O2), according to the method 
described by Marklund and Marklund [30]. The specific activity of SOD 
was expressed as Units/g haemoglobin or pyrogallol 50 % oxidation 
auto-inhibition/min/g haemoglobin using pyrogallol molar extinction 
coefficient (Σ) of 8.0 × 105 M− 1 cm− 1. 

Catalase activity was determined spectrophotometrically at 374 nm 
by measuring the rate of decomposition of hydrogen peroxide (2H2O2 → 
2H2O + O2), according to the method of Hadwan and Abed [31]. The 
specific activity of catalase was expressed as Units/g haemoglobin or 
mmol H2O2 degraded/min/g haemoglobin using the H2O2 molar 
extinction coefficient (Σ) of 43.6 M− 1 cm− 1. 

Glutathione peroxidase (GSPx) activity was determined spectro-
photometrically at 420 nm by measuring the residual GSH content 
during the decomposition of hydrogen peroxide using GSH as co-factor 
(H2O2 + 2GSH →2H2O + GSSG), according to the method of Mohandas 
et al. [32]. GSPx specific activity was expressed as Units/g haemoglobin 
or nmol of residual GSH /min/g haemoglobin using GSH molar extinc-
tion coefficient (Σ) of 9.6 0.017 mM− 1 cm− 1. 

Glutathione reductase (GSR) activity was determined spectro-
photometrically at 340 nm by monitoring the rate of oxidation of 
NADPH to NADP+ as a decrease in absorbance (GSSG + NADPH → 2GSH 
+ NADP+), according to the method of Carlberg and Mannervik [33]. 
GSR specific activity was expressed as Units/g haemoglobin or nmol 
NADPH oxidized/min/g haemoglobin using the NADPH molar extinc-
tion coefficient (Σ) of 6220 M− 1 cm− 1. 

2.12. Determination of erythrocyte lipid profile 

Since the Folch extraction [34] formed lipid extracts that were 
exceedingly pigmented, a better method for the extraction of lipids from 
erythrocytes using chloroform:isopropanol (7:11, v/v) described by 
Rose and Oklander [35] was engaged to remove the haemoglobin by 
precipitation. Briefly, chloroform/isopropanol (0.9 mL) (7:11, v/v) was 
added to 0.1 mL of erythrocytes; the mixture was thoroughly mixed 
using a vortex mixer every 5 min for 30 min at 25℃. The mixture was 
then centrifuged; the supernatant was taken, and 0.1 mL of 0.05 M KCl 
was added to it. This again was thoroughly mixed using a vortex mixer 
and allowed to stand at room temperature for 5 min. The mixture was 
then centrifuged again, and the chloroform (lower) layer was taken into 
clean Eppendorf tubes. 

For cholesterol assay, an aliquot of the chloroform-isopropanol 
extract was evaporated to dryness at 60 ◦C. Triton X-100 / chloroform 
mixture (1:1, v/v, 20 μL) was added to resolve the lipids, and again the 
solvent was evaporated. Then commercially available cholesterol kit 
reagent (1 mL) was added and vortexed. After incubation in the dark at 
room temperature for 30 min, cholesterol concentration was quantified 
spectrophotometrically at 500 nm [36]. 

For the triacylglycerol assay, an aliquot of the chloroform- 
isopropanol extract was evaporated to dryness at 60 ◦C. Next, the 

dried extracts were redissolved in ethanol (0.1 mL, 90 %). Then 
commercially available cholesterol kit reagent (1 mL) was added and 
vortexed. After incubation in the dark at room temperature for 30 min, 
triacylglycerol concentration was quantified spectrophotometrically at 
500 nm [37]. 

For phospholipids assay, an aliquot of the chloroform-isopropanol 
extract was evaporated to dryness at 60 ◦C. The dried extracts were 
redissolved in chloroform (2 mL) followed by the addition of ammonium 
ferrothiocyanate (2 mL), and the mixture vortexed for 1 min. They were 
left for 10 min for the phases to separate. The chloroform layer was 
carefully removed by suction and absorbance read at 488 nm. Phos-
pholipid concentrations were then quantified using a phospholipid 
standard as a reference described by Stewart [38]. 

For non-esterified acids (FFAs), the assay was carried out as 
described by Soloni and Sardina [39]. Briefly, an aliquot of the 
chloroform-isopropanol extract was evaporated to dryness at 60 ◦C. The 
dried extracts were redissolved in chloroform (2 mL) followed by the 
addition copper reagent [Cu(N03)2.3H20 (40 g/l), triethanolamine (120 
mL/L), (1:1, v/v, 0.3 mL)]. The mixture was vortexed for 10 min and 
centrifuged at 5000 rpm for 10 min. After centrifugation, the chloroform 
layer was removed, and to this was added 1 mL of cuprizone [0.4 g oxalic 
acid bis(cyclohexylidenehydrazide) in 1 L of isopropanol] and 0.1 mL of 
ammonia reagent (58 % NH4OH, v/v). The contents were thoroughly 
vortexed and incubated for 10 min, after which absorbance was read at 
620 nm. A standard curve of palmitic acid taken through the same 
procedure was used to extrapolate the concentrations of FFAs in the 
erythrocytes. 

2.13. Statistical analysis 

Data were expressed as the mean ± SEM of five replicates in each 
group. Analysis of Variance (ANOVA) was carried out to test for the level 
of homogeneity among the groups. Where heterogeneity occurred, the 
groups were separated using Duncan Multiple Range Test (DMRT). A p- 
value of less than 0.05 was considered statistically significant. All the 
statistics were carried out by SPSS (Statistical Package for Social Sci-
ences) software for Windows version 20 (SPSS Inc., Chicago, Illinois, 
USA). Graphs were plotted using GraphPad Prism 8 Software (GraphPad 
Software Inc., San Diego, USA). 

3. Results 

3.1. In vitro antioxidant assay 

Hydrogen peroxide scavenging strength of naringin and standard 
antioxidant [(butylated hydroxytoluene (BHT)] is shown in Fig. 1a. At 
0.1 mg/mL of naringin and BHT, H2O2 scavenging activities were 26.7 % 
and 14.3 %, respectively. At 0.2 mg/mL, naringin was also a better 
scavenger of H2O2 compared to BHT. H2O2 scavenging activities were 
1.3 times significantly (p < 0.05) higher in naringin than in the BHT 
treatment group. At 0.3 mg/mL concentration, there was no significant 
(p > 0.05) difference in H2O2 scavenging activities of the naringin and 
BHT treatment group. The highest % H2O2 inhibition by the naringin 
and the BHT treatment group was noted at 0.5 mg/mL. The concentra-
tions required for 50 % decrease (IC50) were 0.27 mg/mL and 0.37 mg/ 
mL for naringin and BHT treatment group respectively. 

The ability of the naringin and the standard antioxidant (ascorbic 
acid) to scavenge nitric oxide radical (•NO) is shown in Fig. 1b. The •NO 
scavenging effect of naringin and ascorbic acid increased with 
increasing concentration (0.1 – 0.5 mg/mL) of the naringin and ascorbic 
acid. The naringin and ascorbic acid showed respective 21.3–81.5% and 
51.4–96.3% inhibitory effects at 0.1 – 0.5 mg/mL. The inhibitory con-
centrations at 50 % (IC50) of the naringin and ascorbic acid were 0.28 
mg/mL and 0.13 mg/mL respectively. 
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3.2. Naringin pretreatment conserved erythrocyte integrity 

The protective outcome of naringin on CYCP-mediated erythrocyte 
damage was measured by evaluating the activities of LDH in both the 
serum and erythrocytes (Fig. 2). CYCP administration initiated a 
remarkable (p < 0.05) rise in the activity of serum LDH (Fig. 2a) by 
220.8 % when compared with the corresponding negative control 
(normal) group. CYCP administration, however, invoked a significant (p 
< 0.05) reduction in the activity of erythrocyte LDH (Fig. 2b) by 66.4 % 
when juxtaposed with the corresponding negative control (normal) 
group. 

Nevertheless, naringin administered at doses of 50, 100, and 200 
mg/kg to the CYCP-intoxicated group significantly (p < 0.05) dimin-
ished the altered activity of LDH that were released into serum as a result 
of CYCP-mediated erythrocyte injury. Likewise, the various doses of 
naringin significantly (p < 0.05) enhanced the erythrocyte functional 
activities of LDH by increasing its erythrocyte activities when compared 
with CYCP alone administered groups. In the two compartments, the 
protective effect of naringin on CYCP-induced erythrocytotoxicity was 
concentration-dependent. 

3.3. Naringin pretreatment prevents the modifications of the antioxidants 
invoked by CYCP in rat erythrocytes 

The effects of 200 mg/kg CYCP (single dose); pretreatment with 50, 
100, and 200 mg/kg naringin for 14 consecutive days, on the levels of 
reduced glutathione; and the activities of glutathione-S-transferase, su-
peroxide dismutase, catalase, glutathione peroxidase, glutathione 
reductase were assessed in the erythrocytes (Fig. 3). CYCP pretreatment 
elicited a remarkable (p < 0.05) reduction in intracellular erythrocyte 
GSH levels (Fig. 3a) by 76.2 % when compared with the negative control 

(normal) group. Likewise, CYCP-induced significant (p < 0.05) de-
creases in the activities of glutathione-S-transferase (Fig. 3b), superox-
ide dismutase (Fig. 3c), catalase (Fig. 3d), glutathione peroxidase 
(Fig. 3e), and glutathione reductase (Fig. 3f) by 75.1 %, 64.8 %, 47.6 %, 
45.9 % and 59.8 %, respectively, when compared with the corre-
sponding negative control (normal) group. Oral administration of the 
rats with naringin annul remarkably (p < 0.05) the CYCP-induced de-
creases in erythrocytes antioxidants contents to varying degrees. The 
protective effects of naringin on CYCP-induced decreases in erythrocytes 
antioxidants followed a dose-dependent except in SOD when juxtaposed 
with the positive control (CYCP alone treated) group. 

3.4. Naringin pretreatment attenuated CYCP-induced oxidative stress 
markers 

The levels of oxidative stress markers, including TBARS, total hy-
droperoxide, and total nitric oxide, were quantified in the erythrocytes 
(Fig. 4). CYCP administration elicited an incredible (p < 0.05) increase 
in the production of TBARS (Fig. 4a), hydroperoxide (Fig. 4b), and nitric 
oxide (Fig. 4c) by 160.6 %, 587.8 %, and 271.8 %, respectively when 
compared with the corresponding negative control (normal) group. 
Nevertheless, oral pretreatment of the rats with various doses of nar-
ingin rescind significantly (p < 0.05) the CYCP-mediated elevation in 
oxidative stress parameters to a varying extent. The action of three doses 
of naringin was concentration-dependent. 

3.5. Naringin pretreatment abrogated CYCP-induced dyslipidaemias 

Figs. 5 and 6 illustrate the effects of CYCP and pretreatment with 
various doses of naringin on major erythrocytes lipids (cholesterol, tri-
acylglycerol, phospholipids, and non-esterified fatty acids) and 
cholesterol-phospholipids molar ratio. Administration of CYCP resulted 
in statistically significant (p < 0.05) elevation in the entire major lipids. 

Fig. 1. (a) Scavenging effects of naringin and standard synthetic antioxidant 
[butylated hydroxytoluene (BHT)] on hydrogen peroxide (H2O2). (b) Scav-
enging effects of naringin and standard antioxidant (ascorbic acid) on nitric 
oxide radical (•NO). Values are mean ± SEM of three replicates. 

Fig. 2. (a-b) The effects of naringin pretreatment on (a) CYCP-induced increase 
in the activity of serum lactate dehydrogenase; and (b) CYCP-mediated decrease 
in the activity of erythrocyte lactate dehydrogenase. Bars represent mean ±
SEM (n = 5). Bars with different letters are significantly different at P < 0.05. 
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CYCP pretreatment provoked a remarkable (p < 0.05) up-regulation of 
the concentrations of the erythrocyte cholesterol by 104.1 % (Fig. 5a), 
erythrocyte triacylglycerol by 103.9 % (Fig. 5b), erythrocyte phospho-
lipids by 59.8 % (Fig. 5c), erythrocyte non-esterified fatty acids by 137.3 
% (Fig. 5d), and erythrocyte cholesterol-phospholipids molar ratio by 
27.7 % (Fig. 6) when compared with their corresponding negative 
control (normal) group. 

However, oral pretreatment with naringin abrogated (p < 0.05) the 
CYCP-induced dyslipidaemias to varying extents. 

4. Discussion 

In this research, we employed two established in vitro assays to assess 
the free radical scavenging and antioxidant abilities of naringin. More-
over, we confirmed the capability of a single dose of CYCP (200 mg/kg, 
i.p.) administration to induce erythrocytotoxicity in a rat model; we 
similarly evaluated the effects of naringin on free radical scavenging, 
cellular integrity, cellular ATP, antioxidants, oxidative stress parame-
ters, and lipid profile in erythrocytes. Our outcomes specified that nar-
ingin might reduce CYCP-mediated erythrocytotoxicity by acting as 
specific free radical scavengers, improved cellular integrity, decreased 
intracellular ATP, improved the antioxidants, reduced oxidative stress 
parameters, and abrogated dyslipidemia, thus underlying naringin 
mechanism of action on CYCP-induced acute erythrocytotoxicity rats. 

We evaluated the H2O2 scavenging ability of naringin. Our findings 
indicated that naringin, a citrus bioflavonoid elicited radical stabiliza-
tion or metal chelating action as one of its mechanisms of action by 
scavenging hydrogen peroxide (H2O2). Our results also specified that 

naringin had an upper capacity to inhibit and/or mop up H2O2 than 
synthetic antioxidant BHT; thus, the observed lower concentration (0.27 
mg/mL vs 0.37 mg/mL) of half-maximum inhibitory concentration 
(IC50). Conversely, a reverse was observed when the naringin nitric 
oxide radical (•NO) scavenging ability was compared with ascorbic acid, 
IC50 of 0.28 mg/mL vs 0.13 mg/mL were obtained. The discrepancy in 
mopping up H2O2 and NO by naringin might be because of its antioxi-
dant and free radical chelating specificity [40]. H2O2 reacts with tran-
sition metals, including iron II and copper I, to generate unstable and 
highly reactive free radicals such as hydroxyl radical (HO•), which can 
induce the oxidation of macromolecules. Also, a remarkable elevation of 
•NO has been implicated in dyslipidaemias and hypotension [41]. 
Therefore, our in vitro results supported the notion that naringin could 
offer protection by acting as a dietary antioxidant and oxidants scav-
enger via donating protons or electrons, thereby preventing 
oxidant-mediated cytotoxicity [24]. 

Dietary antioxidants, including polyphenols, have been reported to 
be a double-edged sword since they have been reported to elicit both 
beneficial and harmful effects. Specifically, N-acetylcysteine (NAC), a 
precursor substrate of reduced glutathione and vitamin E, promotes 
increased GSH concentrations, stimulates tumor progression by 
reducing ROS and in turn down-regulates p53 expression (ROS-p53 axis) 
[71]. The observed positive in vitro polyphenols antioxidant results do 
not always complement the in vivo results during validation experiment 
since plant antioxidants undergo some physiological processes, such as 
metabolism, when administered in living organisms [71]. Nonetheless, 
the findings of in vitro studies are usually inappropriately extrapolated to 
organisms in the absence of a substantial number of in vivo investigations 

Fig. 3. (a-f) Effects of naringin pretreatment on CYCP-mediated decreases in antioxidants in rat erythrocytes. (a) the levels of reduced glutathione, (b) the activities 
of glutathione-S-transferase, (c) the activities of superoxide dismutase, (d) the activities of catalase, (e) the activities of glutathione peroxidase, and (f) the activities of 
glutathione reductase. Bars represent mean ± SEM (n = 5). Bars with different letters are significantly different at P < 0.05. 
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[72]. Naringin (50–500 mg/Kg bw) is frequently consumed in combi-
nation with common clinical drugs [73]. The highest dose used in this 
work is 200 mg/kg bw, which is remarkably below a safe therapeutic 
dose (no-observed-adverse-effect level; NOAEL) of 500 mg/kg bw 
recently reported by Cheng et al. [73]. 

To this end, we investigated some in vivo biomarkers. We observed a 
marked increase in serum lactate dehydrogenase (LDH) functional ac-
tivities in CYCP alone administered rats. A remarkable increase in serum 
lactate dehydrogenase (LDH) is associated with injury to the liver, lungs, 
kidney, cardiac muscle, and skeletal muscle [42]. So, we additionally 
assessed the LDH activity in the erythrocytes. Our results showed that 
erythrocytes LDH functions and activities in the CYCP alone group 
decreased significantly compared with the counterpart negative control 
(normal) group. The observed dynamics in both serum and erythrocytes 
compartments might be ascribed to erythrocyte deformity initiated by 
CYCP-induced erythrocyte ghost non-enzymatic oxidative degradation 
of PUFAs and protein cross-linking, oxidative stress, cytoplasmic cellular 
leakage, deterioration in the functional integrity of erythrocytes ghost, 
and eryptosis [4,5,43]. This observation agrees with the earlier study 
that CYCP intoxication remarkably elevated serum LDH [44]. However, 
naringin administration to rats inhibited CYCP-induced decrease in LDH 

activity, an enzyme responsible for erythrocyte plasma membrane ar-
chitecture and integrity. 

Our findings from this study also showed decreased erythrocytes 
antioxidants parameters such as GSH, GST, SOD, CAT, GSPx, and GSR 
activities in CYCP alone administered animals. Diminution of these an-
tioxidants could be a result of their increased functional activities to 
either inhibit or scavenge CYCP reactive metabolites and/or CYCP- 
mediated free radicals [8,45]. 

In aerobic respiration, up to 100 % of used oxygen moves to the 
mitochondria, where it is reduced to water by accepting four electrons, 
one at a time, with concomitant production of energy (ATP). However, 
roughly 1–2 % of the transferred electrons may escape the respiratory 
chain, which permits the generation of partially reduced oxygen in-
termediates such as ROS (superoxide anion radicals, hydrogen peroxide, 
hydroxyl radicals) [74]. These by-products of basal cellular metabolism 
are deleterious agents, especially at high concentrations. 

Erythrocytes are sheltered from oxidative damage by myriads of non- 
enzymatic and enzymatic antioxidants [46]. SOD scavenges superoxide 
and catalyzes its conversion to H2O2 and O2. SOD contains zinc and 
copper, which are respectively responsible for SOD stability and main-
tenance of its activity. Hemolysis-induced haemoglobin release is haz-
ardous since the released haemoglobin could react with H2O2 to form 
methaemoglobin and/or be degraded with hydroxyl radical formation. 
Both methaemoglobin and hydroxyl radical are potent promoters of 
lipid peroxidation, oxidative stress, Toll-like receptor 4 activation, and 
NFkB inducer [47]. The majority (98 %) of blood catalase is located in 
the erythrocytes and is responsible for the removal of both extracellular 
and intracellular H2O2. CAT catalyzes the breakdown of H2O2 to water. 
SOD and CAT depletion results in the accumulation of O2

•– and H2O2, 
respectively [48,75,76]. 

GSH has been reported as one of the conventional markers of 
oxidative stress [77]. Schafer and Buettner [49] and Polyxeni et al. [76] 
hypothesized that reduced glutathione, GSH, is the principal and most 
crucial non-protein thiol that protects erythrocytes ghost and its intra-
cellular component from free radical-induced oxidation. GSH does not 
cross the erythrocytes ghost passively, and its de novo synthesis is the 
sole source of GSH in erythrocytes. GSH is synthesized from three sub-
strates, of which two (cysteine and glycine) are conveyed into the cells; 
however, the third substrate, glutamate, is synthesized from aspartate 
and alanine by aspartate aminotransferase and alanine aminotrans-
ferase. GSH de novo synthesis is ATP-dependent, while its reduction from 
GSSG to GSH involves NADPH. Hence ATP depletion in erythrocytes 
would impair GSH de novo synthesis [50]. Likewise, GSH depletion 
causes a decrease in GST, GSPx, GSR, and G6PDH activities [51]. The 
decreases in the activities of GST, GSPx, GSR observed in this study 
could result from CYCP-induced decreases in ATP, GSH or as a result of 
CYCP itself and/or its metabolites. Concerted activities of all the above 
mentioned endogenous antioxidant defences prevent free 
radical-mediated necrosis, DNA and RNA fragmentation, proteins 
modification, and lipids peroxidation of erythrocytes ghost [52]. GSH 
protects erythrocytes cytoskeleton and intracellular macromolecules 
against oxidation and cell injury by reacting and scavenging ROS, con-
trolling SOD transcription and reactivating GST and GSPx [53,82]. So, 
depletion of GSH, GST, GSPx, and GSR could increase oxidative and/or 
nitrosative stress and cause alteration in various compartments, 
including the erythrocytes composition. 

Nonetheless, naringin pretreatment exerted protection by reversing 
CYCP-induced decreases in GSH, SOD, CAT, GSPx, and GSR could be by 
preventing the in vivo generated CYCP reactive metabolites and free 
radicals, removing active metal ions and suppressing the oxidation of 
non-transition metals, supplying hydrogen atoms or electrons to stabi-
lize the in vivo generated CYCP reactive metabolites to cause their sta-
bility, and detoxifying (scavenging and/or mopping up) toxic CYCP 
reactive metabolites and ROS. The presence of metal ions, including iron 
(II) ion (Fe2+) has been implicated in Fenton and Haber–Weiss reactions. 
In the Fenton reaction, Fe2+ reacts with H2O2 to produce hydroxide 

Fig. 4. (a-c) Effects of naringin pretreatment on CYCP-mediated increases in 
oxidative stress markers in rat erythrocytes. (a) the levels of thiobarbituric acid 
reactive substances, and (b) the levels of total hydroperoxide, and (c) the levels 
of total nitric oxide. Bars represent mean ± SEM (n = 5). Bars with different 
letters are significantly different at P < 0.05. 
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anion (OH− ) and hydroxyl radical (HO•) radical. While in Haber–Weiss 
reaction, OH− and HO •are generated from the reaction of H2O2 and 
superoxide ion (O2

•–) catalyzed by Fe2+. HO •is a hazardous radical and 
could cause decreased CAT and GSPx activities [70,74,77]. Hence, 
compounds capable of lightening their formation and/or reactivity are 
required as valuable candidates against numerous redox-pertinent 
pathological conditions. Kanno et al. [83] demonstrated that naringin 
attenuated H2O2-induced cytotoxicity and apoptosis in mouse leukemia 
P388 cells via its antioxidant and anti-apoptotic properties. Our result is 
similar to the one reported by Priftis et al. [78], where they reported that 
consumption of caffeine polyphenols for two weeks strengthened redox 
status in the erythrocyte lysates and various visceral by upregulating the 
γ-GCLc, CAT, and SOD mRNA/gene expression, and correspondingly 
increasing GSH, CAT, and SOD protein levels, as well as GST and GSPx 
levels. GSH elevation can be due to increased recycling rate expedited by 
GSPx and GSR, and/or increased biosynthetic rate mediated by γ-glu-
tamylcysteine ligase catalytic subunit (γ-GCLc) and glutathione syn-
thetase [78,79]. GSH quenches H2O2 via a GSPx-catalyzed reaction, 
thereby inhibiting OH •production [80], whereas GST conjugates elec-
trophilic compounds to GSH, facilitating their elimination and excretion 
from the body [81]. The combination of these enzymes may reduce the 

formation of HO•. 
We observed that the CYCP-intoxication provoked a noticeable 

elevation in the levels of erythrocytes MDA and total (amino acids, 
peptides, proteins, and lipids) hydroperoxide (TROOH), thus established 
CYCP-induced erythrocytes lipid peroxidation. Casanova et al. [54] have 
documented that CYCP-intoxication initiates erythrocytes lipid peroxi-
dation. Nevertheless, pretreatment of naringin remarkably decreased 
CYCP-induced increases in the erythrocytes levels of MDA and TROOH 
and protected against the accumulation of noxious lipid peroxidation 
products MDA and TROOH. Furthermore, naringin offered protection 
against CYCP-induced peroxidative and TROOH toxicities by supplying 
protons or electrons to stabilize the in vivo generated ROS, break radical 
chain reaction within the cell membrane and hence quenches lipid 
peroxidation, protect the PUFA side chain of membrane lipids from 
undergoing autocatalytic lipid peroxidation initiation and propagation, 
preserve cell membrane integrity, and prevent the inactivation and 
depletion of the plasma membrane [24,53,55,79]. 

This current investigation shows that the rats treated with CYCP 
showed a remarkable increase in the levels of erythrocytes •NO; this 
agrees with previous reports that CYCP-mediated significant increase in 
erythrocytes •NO and NOS levels [43]. 

Apart from RBCs involved in the transportation of O2, CO2, it equally 
carries a functional endothelial nitric oxide synthase (eNOS), which 
controls vascular or circulating NO and NO metabolites pool, nitrite 
homeostasis, blood pressure, and cardioprotection in an ischemia/ 
reperfusion injury. RBCs take up and inactivate endothelium-derived 
NO by reacting and converting oxyhemoglobin (O2HbFe2+) to methe-
moglobin (metHb, HbFe3+) and nitrate (NO3

− ), thereby decreasing NO 
available for vasodilatation [56]. Under hypoxia, RBCs induced 
NO-dependent vasodilation by partaking in the synthesis, storage, and 
transportation of NO metabolic products [57,58]. In addition, the RBCs 
eNOS has erythrocrine (exocrine) function such as regulation of car-
diovascular system (hemostasis, blood pressure control, etc.), erythro-
cytes deformability [59]. Low levels of erythrocyte NO increase RBC 
deformability, membrane fluidity, and RBC filterability. 

However, elevated erythrocytes NO level exerts detrimental conse-
quences such as hypotension, endothelial dysfunction, oxidative stress 
on the cellular environment, mitochondrial dysfunction, airway hyper-
responsiveness, etc. [60,61]. Besides, a remarkable increase in NO levels 

Fig. 5. (a-d) Effects of naringin pretreatment on CYCP-induced increases in rat erythrocytes major lipids. (a) the concentration of cholesterol, (b) the concentration of 
triacylglycerol, (c) the concentration of phospholipids, and (d) the concentration of non-esterified fatty acids. Bars represent mean ± SEM (n = 5). Bars with different 
letters are significantly different at P < 0.05. 

Fig. 6. Effects of naringin pretreatment on CYCP-induced increase in rat 
erythrocytes cholesterol:phospholipids molar ratio. Bars represent mean ± SEM 
(n = 5). Bars with different letters are significantly different at P < 0.05. 
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could vigorously combine with superoxide anion, another free radical, 
to form a stable and robust oxidant called peroxynitrite radical 
(OONO− ). RNS such as NO and/or OONO− interact with cellular bio-
molecules such as lipids, proteins, and nucleic acids following the 
depletion of the antioxidant defence system and elicit tissue perturba-
tion and injury via induction of nitrosative (RNS) stress [62]. In this 
study, we observed remarkable suppression in erythrocyte NO levels of 
CYCP exposed rats after the pretreatment of naringin; this suggests the 
notion that naringin could reverse CYCP-induced toxicities due to its 
intrinsic antioxidant properties [24,63]. Nonetheless, in this research, 
we observed that naringin attenuated elevated NO and thus decreased 
erythrocyte deformability. 

One of the key findings of the current investigation was that CYCP 
elicited significant disruption of lipid homeostasis characterized by up- 
regulation in the mean concentrations of erythrocyte cholesterol, tri-
acylglycerol, phospholipids, non-esterified fatty, and cholesterol- 
phospholipids molar ratio. This observation is characteristic changes 
that have been reported during xenobiotics, including CYCP adminis-
tration [64–67]. 

The observed CYCP-induced hypertriacylglycerolemia in this study 
could result from either increased VLDL production or decreased VLDL 
clearance [68]. Increased cholesterol is equally associated with 
increased cholesterol anabolism and/or decreased cholesterol catabo-
lism [65]. The current research demonstrated a CYCP-induced signifi-
cant increase in phospholipids. Hyperphospholipidaemia is 
characterized by the availability of non-esterified fatty and increased 
cholesterol [67]. The results from this investigation show that the two 
above-stated mechanisms might be responsible for the observed 
hyperphospholipidaemia. Increased erythrocyte cholesterol, phospho-
lipids, non-esterified fatty, and cholesterol-phospholipids molar ratio 
have been implicated in erythrocyte ghost membrane fluidity and vis-
cosity. Pronounce elevation of erythrocyte and erythrocyte ghost 
cholesterol-phospholipids molar ratio is correlated with decreased 
erythrocytes fluidity and deformability and ultimately impair the sys-
temic movement of the erythrocyte [69]. However, this study, detected 
that naringin down-regulates the CYCP-induced up-regulation in the 
mean concentrations of erythrocyte cholesterol, triacylglycerol, phos-
pholipids, free fatty acids, and cholesterol-phospholipids molar ratio. 

This study has demonstrated that naringin pretreatment remarkably 
protected erythrocytes plasma membrane architecture and integrity by 
reversing cyclophosphamide invoked decreases in the activity of 
erythrocyte LDH, erythrocytes glutathione levels, activities of antioxi-
dant enzymes including glutathione-S-transferase, catalase, glutathione 
peroxidase, and glutathione reductase; and equally repudiate 
cyclophosphamide-induced increases in erythrocytes levels of malon-
dialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, 
phospholipids, and non-esterified fatty acids). 

5. Conclusion 

Taken together, our results support the notion that different doses of 
naringin pretreatment for as few as 14 days could prevent CYCP-induced 
erythrocytotoxicity by acting as specific ROS and RNS scavengers, pre-
serve erythrocytes morphology and size, prevent haemolysis, oxidative 
stress, endothelial dysfunction, ATP depletion, and dyslipidaemia in a 
rat model through its antioxidant, free-radical scavenging, and anti- 
dyslipidaemia properties. 
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[48] L. Góth, M. Vitai, The effects of hydrogen peroxide promoted by homocysteine and 
inherited catalase deficiency on human hypocatalasemic patients, Free Radic. Biol. 
Med. 35 (8) (2003) 882–888, https://doi.org/10.1016/s0891-5849(03)00435-0. 

[49] F.Q. Schafer, G.R. Buettner, Redox environment of the cell as viewed through the 
redox state of the glutathione disulfide/glutathione couple, Free Radic. Biol. Med. 
30 (11) (2001) 1191–1212, https://doi.org/10.1016/S0891-5849(01)00480-4. 

[50] A. Bogdanova, H.U. Lutz, Mechanisms tagging senescent red blood cells for 
clearance in healthy humans, Front. Physiol. 4 (2013) 387, https://doi.org/ 
10.3389/fphys.2013.00387. 

[51] L.A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and 
health, Int. J. Biomed. Sci. 4 (2) (2008) 89–96. 

[52] O.M. Ighodaro, O.A. Akinloye, First line defence antioxidants-superoxide 
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their 
fundamental role in the entire antioxidant defence grid, Alexandria J. Med. 54 (4) 
(2018) 287–293, https://doi.org/10.1016/j.ajme.2017.09.001. 

[53] A. Bansal, M.C. Simon, Glutathione metabolism in cancer progression and 
treatment resistance, J. Cell Biol. 217 (7) (2018) 2291–2298, https://doi.org/ 
10.1083/jcb.201804161. 

[54] N.A. Casanova, M.F. Simoniello, M.M. López Nigro, M.A. Carballo, Modulator 
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