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1. Introduction

Recently, Cirillo and Taleb (2020) studied mortality in major pandemics, from ancient times to present, and focused their
analysis on estimating heavy-tailed distributions using extreme values theory. Unlike current methods used for forecasting
and modelling disease outbreaks (e.g., those described in the overviews provided in Hethcote, 2000; and, Unkel et al., 2012),
extreme values theory is concerned with the tails of the distribution, not the mean or the bulk of the observations. As noted by
Cirillo and Taleb (2020), extremes value theory emphasizes that there is more information in the tails of the distribution than
in the outcomes that are more frequently observed. This focus means that extreme values theory is more suitable for planning
for scenarios with extreme mortality, such as pandemics where there are new strains of viruses to which there is no immunity
in the population. Using extremes value theory to plan for pandemics and for risk management has many parallels in
emergency planning more broadly (e.g., flooding, de Haan & Ferreira, 2006; earthquakes, Pisarenko & Sornette, 2003). While
extremes value theory is frequently used in planning and preparing for climatic disasters, it is still relatively new in the study
of disease outbreaks. For example, there have been some analyses of weekly influenza mortality in China and France (Chen
et al., 2015; Thomas et al., 2016), influenza mortality of those aged 65 and older in selected U.S. states (Lee & Wackernagel,
2007), Salmonella outbreaks (Guillou et al., 2014), Dengue Fever outbreaks (Lim et al., 2020), hospitalizations due to car-
diovascular disease (Chiu et al., 2018) as well as studying Corona virus super-spreaders (Wong & Collins, 2020).

* The data and R scripts used in this paper are available at https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/HG4QDA.
E-mail address: campolie@chass.utoronto.ca.
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Fig. 1. Influenza mortality rates per 100,000, United States, 1900—2018

In this paper, I study the tail risks of infectious disease mortality. My analysis focuses on influenza and I estimate the tail
risks using both pandemic and non-pandemic mortality, with U.S. data from 1900 to 2018. I use a maximum likelihood
estimator that focuses on the years with elevated mortality, i.e., those that exceed a threshold, which includes both pandemic
and epidemic outbreaks of influenza. I focus on the mortality rate, measured as the crude mortality rate per 100,000, and
estimate a Generalized Pareto distribution. My estimates indicate that the distributions I estimate for influenza mortality are
heavy-tailed. I also provide some assessment of the tail risks for elevated mortality for influenza, which is useful for modelling
and planning for future outbreaks with elevated mortality.

2. Material and methods

[ obtain the data I use from publications collected by the United States Center for Disease Control (CDC). My study period
includes 1900 to 2018. I use the crude mortality rates for the years from 1900 to 1998 (per 100,000 of the population) for the
United States reported in CDC (undated), except for 1958 and 1959 which were obtained from Grove and Hetzel (1968).
Mortality rate data for 1999 to 2018 were obtained from the CDC website data retrieval portal on leading causes of death.
Causes of death in these publications are listed by ICD code (various versions). The data for 1900 to 1932 are for the death
registration area. The death registration area did not initially include all U.S. states, but the number of states included did
increase over time.! Beginning in 1933 all states were part of the U.S. vital statistics system.

I consider two measures of influenza of mortality. First, | measure influenza mortality as the deaths due to influenza and
pneumonia, i.e., influenza (including pneumonia) mortality, as is the convention in most of the literature (e.g., among others,
Choi & Thacker, 1981; Noymer, 2008; Thompson et al., 2009). Many individuals who have influenza can also develop
pneumonia and in the more serious cases death results from the pneumonia, which will be listed as the cause of death on the
death certificate. Second, I follow Doshi (2008) who considered influenza mortality without including deaths from pneu-
monia and argued that it was a reliable measure of mortality.?

! Details on the death registration areas during this period can be found in Table 1.01 in Appendix Il and the accompanying discussion in Centre for
Disease Control (1997).

2 Mortality rates for influenza (excluding pneumonia) were obtained from the following CDC publications: 1900—1940 are from Linder and Grove (1943),
1940—-1960 are from Grove and Hetzel (1968); data for 1960—1998 were taken from the unpublished tables available on https://www.cdc.gov/nchs/nvss/
mortality/hist290a.htm; 1999—2018, were obtained from CDC website data retrieval portal.
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Influenza pandemics occur when there is a novel strain of the Influenza A virus to which populations have no natural
immunity. During the period I consider there were four influenza pandemics: 1) the Spanish Flu in 1918—1919 (which was
likely a HINT1 influenza virus, Taubenberger & Morens, 2006; Jester et al., 2018); 2) the Asian Flu in 1957—1959 (H2N2); the
Hong Kong Flu in 1968—1969 (H3N2); and, 4) the HIN1 Flu in 2009. There was also an influenza pandemic in 1899—1900, but
I only have the mortality data for 1900. There were also three notable epidemic years during my study period (Kilbourne,
2006): 1947; 1976, which was an aborted and potential pandemic influenza strain; and, 1977, which was a pandemic
among the young (Russian Flu).

I plot the annual mortality rates for influenza (including pneumonia) in Fig. 1. As can be seen in the figure, influenza
(including pneumonia) mortality during the Spanish Flu pandemic was quite elevated as it reached 589.5 per 100,000.
However, there are quite a few years where the mortality rates exceed 100 per 100,000. Also notable is that the mortality from
the pandemics in 1957—1958 and 1968—1969 can be lower than that in non-pandemic years. This was also recognized in
Doshi (2008), who surmised that influenza pandemics are not as virulent as they were earlier in the 20th century, as the
mortality rates are lower. However, this sort of observation neglects the tail risks inherent in the 1918—1919 Spanish Flu
pandemic and the epidemics during the first few decades of the 20th century. I also present the mortality rates for influenza
(excluding pneumonia) in Fig. 1. These mortality rates are lower than those that include pneumonia, but show the same sorts
of spikes in mortality, e.g., the 1918—1919 pandemic and the large mortality during the epidemics in the 1930s. One difference
between the mortality rates plotted in Fig. 1 is that the mortality rates for influenza (including pneumonia) show a steady
decline during the first half of the 20th century before leveling off in the 1950s. In contrast, the mortality rates for influenza
excluding pneumonia do not have a downward trend during the first half of the 20th century, but do level off at a lower level
after the 1950s like the influenza mortality rates that include pneumonia in Fig. 1. Between 1900 and 2018 the median
mortality rates for influenza (including pneumonia) and influenza (excluding pneumonia) were 32.3 and 3.4 per 100,000,
respectively.

Let x4, ..., xy be independently and randomly distributed random variables from an unknown distribution function F(x).
As shown in Coles (2001), the distribution of values of x that exceed a threshold u is defined by

F(e+u)—F(u)

Fy(e)=Prob[x > u+e¢lx > u]= T-Fu)

(1)

If the threshold level u is sufficiently large than the distribution F,(¢) can be approximated by a Generalized Pareto dis-
tribution, which has cumulative distribution function

Gx)=1- {1 +§(xau>r, (2)

u

where u is a threshold, x> u, g, is a scale parameter, which depends on the threshold u, and is such that ¢, > 0 and £ is a shape
parameter. In addition, the Generalized Pareto distribution has an infinite mean if £ > 1 and infinite variance if § > % The shape
parameter, ¢, is also key for determining the behavior of the distribution. In particular, when & > 0 the distribution is heavy
tailed (i.e., a Pareto), a Beta distribution when & <0, and an exponential distribution as £ — 0. I obtain my estimates using
maximum likelihood.>. The estimates of the parameters of the Generalized Pareto distribution can also be used to compute
return levels, i.e., a level that is exceeded once every mth year, which provides some indication of the likelihood of elevated
levels of influenza mortality in the future. The return level, denoted x;, can be computed as

Oy

£

where {,, = Prob(x >u) and the other notation is as defined as above.

[(mZ,)f —1], 3)

Xm=U+

3. Results and discussion

Prior to estimating the Generalized Pareto distribution, I must select a value for the threshold. The choice of the threshold
involves a trade-off between bias and variance (Coles, 2001). Selecting too high a value for the threshold can create bias.
Conversely, selecting too low a value for the threshold results in more variance (less efficiency). To select the threshold, I first
inspected the mean residual life plot and plots of the scale and shape parameters from different choices of threshold levels
(Coles, 2001). These visual diagnostics suggest a threshold between the values of 120—140 for influenza (including pneu-
monia) mortality seem reasonable. Using threshold values from this range of plausible threshold values, I estimated the
Generalized Pareto distribution. I then compared the estimated empirical quantiles from these alternative threshold choices

3 An alternative maximum likelihood estimator is based on the maximum value of an outcome measure during a particular period, e.g., rainfall, storm
surge, which is referred to as the block maxima approach (Coles, 2001). This approach results in a Generalized Extreme Value family of distributions that
nests the Frechet, Gumbel and Weibull types of distribution. However, since I am considering the cumulative mortality from influenza in a particular year,
the block maxima approach is not the most appropriate way to model tail observations.
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ig. 2. Fit diagnostics, maximum likelihood estimates of influenza mortality (including pneumonia).

Table 1

Maximum likelihood estimates of generalized Pareto distribution, influenza mortality (including pneumonia).
Parameter Parameter Estimate Confidence Interval
Scale parameter (ay ) 22.589 (7.596) [7.700,37.477]
Shape parameter (£) 0.481 (0.283) [-0.073,1.035]
Log-likelihood -105.80
Number of observations exceeding threshold 23
Number of observations 119

Notes: Dependent variable is influenza (including pneumonia) mortality rate per 100,000. Standard errors in parentheses. Threshold value is
mortality rate of 140 per 100,000. Estimates obtained using R package Extremes (Gilleland & Katz, 2016).

with the quantiles in the data and I the selected threshold value that produces empirical quantiles that best fit the quantiles in
the data. Based on this approach, I selected the value of 140 for influenza (including pneumonia) mortality. I include a plot of
the estimated quantiles against the empirical quantiles for this choice of threshold in Fig. 2.*

The estimates of the Generalized Pareto distribution with a threshold value of 140 are presented in Table 1. The shape
parameter, &, has a point estimate of 0.481 and a standard error of 0.283. Consequently, the 95 percent confidence interval for
¢ has a lower bound of —0.073 and an upper bound of 1.035. The negative values in the lower bound of the confidence interval
mean that a Beta distribution, i.e., £ <0, and exponential distribution, £ = 0, cannot be rejected. As discussed earlier £> 0
corresponds to a Pareto (i.e., heavy tailed) distribution. Since the upper bound of the confidence interval does exceed 1, a
heavy tailed distribution with infinite mean and infinite variance is encompassed. I also follow the suggestion in Coles (2001)
and compute a 95 percent confidence interval using the profile likelihood method, which can produce a confidence interval

4 T also used maximum likelihood (Hill estimator) to estimate a power law distribution for influenza (including pneumonia) mortality with the approach
in Clauset et al. (2007). Clauset et al. (2007) select the lower bound on the power law distribution by picking a value that maximizes the Kolmogorov-
Smirnov test for the estimated distribution. Using this approach produces a lower bound of 138.4 for the power law distribution. This suggests that my
choice of 140 as a threshold is a reasonable one.
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Fig. 3. Plot of confidence interval based on profile likelihood, shape parameter, £, influenza (including pneumonia) mortality. Notes: Thicker vertical dashed lines
denote lower and upper bounds of confidence interval. Thinner vertical dashed line represents point estimate of shape parameter.

that has less parameter uncertainty. I plot the 95 percent confidence interval based on the profile likelihood method in Fig. 3.
The profile likelihood confidence interval has a lower bound of 0.107 and upper bound of 1.318, and it is skewed to the right.
This suggests that influenza (including pneumonia) mortality does have a heavy-tailed distribution and the confidence in-
terval excludes the Beta or exponential distributions.

The estimates of the Generalized Pareto distribution for influenza mortality (excluding deaths from pneumonia) are
presented in Table 2. I selected a threshold value of 20 for the analysis of these data, with the same approach I described
earlier, as it produces the best fit of the model to the data (see Fig. 4).° The estimates of the shape parameter for the
Generalized Pareto distribution fit to influenza (excluding pneumonia) mortality is 0.619 with a confidence interval that
ranges between 0.012 and 1.226. The confidence interval excludes shape parameters of O or less, so there is strong evidence
that the distribution is heavy tailed. In addition, the upper end of the confidence interval exceeds 1, which suggests that a
distribution with an infinite mean and variance is encompassed. I also compute the 95 percent confidence interval using the
profile likelihood method and present it in Fig. 5. The confidence interval based on the profile likelihood method has a lower
bound of 0.19 and an upper bound of 1.51 as well as being skewed to the right. This confirms that the distribution of influenza
(excluding pneumonia) mortality is heavy-tailed and the confidence interval also includes a distribution with an infinite
mean.

I use the estimates of the Generalized Pareto distributions in Tables 1 and 2 to compute return levels, which are presented
in Figs. 6 and 7. Note that the horizontal axis (i.e., the return period) in Figs. 6 and 7 uses a logarithmic scale. Consistent with a
heavy tailed distribution, the return level plots trace out a concave pattern. The return levels provide some indication of the
frequency of elevated mortality levels in the future. For example, for influenza (including pneumonia) mortality the return
levels for the next 50 years range from 122.77 to 232.87 per 100,000. These return levels are 3.8—7.2 times greater than the
median mortality for influenza (including pneumonia) during my study period. The return levels for influenza (excluding
pneumonia) mortality indicate that mortality rates that range from 12.19 to 73.97 per 100,000, which are 3.8—21.8 times the
median mortality rate for influenza (excluding pneumonia) during my study period. The probability of the mortality rates at
the upper end of the return level (i.e., 232.87 and 73.97 per 100,000) for both measures I consider is about 0.10, which is
relatively high when considering the mortality rates from influenza in the 2nd half of the 20th century. The estimates from
the Generalized Pareto distribution place a much higher likelihood on elevated mortality events, like those that occur in
pandemic or severe epidemic years. This difference results because the extremes value theory does not focus on the

5 lalso estimated a power law distribution for influenza (excluding pneumonia) with the Clauset et al. (2007) estimator, which selected a lower bound of
15.7 for the power law distribution.
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Table 2

Estimates of generalized Pareto distribution, influenza mortality (excluding pneumonia).
Parameter Parameter Estimate Confidence Interval
Scale parameter (g ) 10.876 (3.811) [3.467,18.345]
Shape parameter (§) 0.619 (0.309) [0.012,1.226]
Log-likelihood -92.123
Number of observations exceeding threshold 23
Number of observations 119

Notes: Dependent variable is influenza (excluding pneumonia) mortality rate per 100,000. Standard errors in parentheses. Threshold value is
mortality rate of 20 per 100,000. Estimates obtained using R package Extremes (Gilleland & Katz, 2016).
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Fig. 4. Fit diagnostics, maximum likelihood estimates of influenza mortality (excluding pneumonia).

numerous years of low mortality for most of the last the last century, but rather the years of elevated mortality that exceed a
threshold.

4. Conclusions

I used influenza mortality data to estimate the tail risks of mortality with U.S. data from 1900 to 1918. The estimates for
both measures of influenza mortality I consider indicate that the data are consistent with a heavy-tailed distribution,
although the evidence for a heavy-tailed distribution is much stronger when influenza mortality is measured excluding
pneumonia. One limitation of my study is that the number of observations is not large, which can increase the variability in
the estimates.

My estimates also imply that during a 50-year period influenza (including pneumonia) mortality rates would range from
3.8 to 7.2 times the median influenza (including pneumonia) mortality rate for the 1900 to 2018 period. For influenza
(excluding pneumonia) mortality my estimates indicate a mortality rate which is 3.8—21.8 times the median mortality for the
1900—2018 period. My estimates based on extreme values theory indicate that these elevated mortality levels are much more
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likely than mortality rates from the 2nd half of the 20th century would indicate. This finding is somewhat striking as some
have noted that planning and preparations for severe influenza pandemics is inadequate (Horimoto & Kawaoka, 2005; Jester
etal., 2018). One implication of my findings is that extreme values theory can better assess the probability of future pandemics
or epidemics with elevated mortality rates. For example, I find a mortality rate for influenza (including pneumonia) of 232.87
per 100,000 has a probability of about 0.10. In contrast, pandemic preparation protocols used by most countries have risk
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Fig. 6. Return level plot, influenza (including pneumonia) mortality. Notes: Dashed line is 95 percent confidence interval. Return period uses a log scale.
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Fig. 7. Return level plot, influenza (excluding pneumonia) mortality. Notes: Dashed line is 95 percent confidence interval. Return period uses a log scale.

assessment tools that are more subjective in nature. For example, the CDC assesses ten risk elements for an influenza
pandemic as low, moderate and high and uses a scoring system to determine whether the risk of a pandemic is low, moderate
or high. However, the limitation of this approach is that it does not consider the tail risks of elevated mortality, like extremes
value theory, and could underestimate the probability of an outbreak with high mortality. Greater awareness of the tail risks
of elevated mortality might make public health agencies and governments reconsider their pandemic planning and help
them better plan and prepare for pandemics (e.g., preparing suitable stockpiles of personal protective equipment or planning
for surges in cases that require hospitalization).
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