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Abstract

Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable tech-

nique commonly used in molecular biology to analyze RNA expression. The selection of

suitable reference genes for data normalization is a precondition for credible measurements

of gene expression levels using RT-qPCR. Propylea japonica is one of the most common

pests of many crop systems throughout East Asia, and has often been used in the testing of

non-target impacts during environmental risk assessments of genetically engineered plants.

The present study assessed the suitability of nine frequently used reference genes for com-

parisons of P. japonica gene expression. Expression stability was compared across devel-

opmental stages, sex, a range of tissues, and following exposure to different temperatures.

Data were analyzed using RefFinder, which integrated the results obtained using NormFin-

der, geNorm, BestKeeper, and the ΔCt method. This led to the identification of unique sets

of reference genes for each experimental condition: ribosomal protein S18 (RPS18) and

elongation factor 1 α (EF1A) for developmental stage comparisons, RPS18 and EF1A for

sex comparisons, EF1A and ribosomal protein L4 for tissue comparisons, and RPS18 and

EF1A for analyses of temperature-mediated effects. These reference genes will help to

enhance the accuracy of RT-qPCR analyses of P. japonica gene expression. This work rep-

resents an initial move towards building a standardized system for RT-qPCR analysis of P.

japonica, providing a basis for the ecological risk assessment of RNAi-based insect control

products.

Introduction

Reverse transcriptase-quantitative PCR (RT-qPCR) is frequently employed as a powerful

method for the quantification of gene expression. However, various factors, including RNA

quantity and quality, cDNA quantity and quality, and PCR efficiency can significantly influ-

ence the quantification cycle (Cq) values obtained using this method [1,2]. RT-qPCR data are
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generally analyzed by normalizing target gene expression to that of one or more suitable refer-

ence genes. Although reference gene expression profiles should ideally be stable under the rele-

vant experimental conditions, previous studies have indicated that the expression of many

frequently used reference genes can be markedly affected by different treatments [3–11].

Therefore, preliminary evaluations should be conducted to identify stable reference genes for

RT-qPCR analysis in a given species under the proposed experimental conditions.

Reference gene selection for RT-qPCR normalization in insect gene expression studies over

the past 10 years was recently reviewed for studies that employed the most widely used SYBR

Green method [12]. A total of 39 experimental factors were investigated in these papers [12].

Many of these studies employed RNA interference (RNAi), which has been widely used to

investigate insect gene function under a range of experimental conditions. RNAi is a biological

process in which RNA molecules inhibit protein production by neutralizing targeted mRNA

molecules [13]. The mode of action of RNAi-based insecticides and/or RNAi genetically engi-

neered plants suggests that unintended off-target impacts may occur due to altered gene

expression in non-target organisms [13,14], and RT-qPCR offers an convenient instrument to

detect these gene expression changes. The lady beetle, Propylaea japonica (Thunberg) (Coleop-

tera: Coccinellidae) is one of the most widespread indigenous natural pests in many planting

systems in East Asia. As a representative species of predator lady beetles, P. japonica has been

widely used to assess the latent risks of Bacillus thuringiensis crops [15–20]. This species is also

likely to be selected as a surrogate species to evaluate the effects of RNAi-based insect control

products. Because these products may cause lethal or sub-lethal effects on P. japonica by alter-

ing gene expression, it is important to identify suitable reference genes for RT-qPCR analyses

of this species.

In this study, we aimed to identify stable reference genes for RT-qPCR analysis in P. japon-
ica. Nine frequently-used reference genes were investigated: β-actin (Actin), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), α-tubulin (TUBA), elongation factor 1 α (EF1A), ribo-
somal protein L4 (RPL4), ribosomal protein S18 (RPS18), arginine kinase (ArgK), heat shock
protein 90 (HSP90), and vacuolar-type H+-ATPase subunit A (V-ATPase A). All of these refer-

ence genes have been used frequently for RT-qPCR analyses in other insects (S1 Table). The

stability of each candidate was assessed for four experiments evaluating the effects of develop-

mental stage, sex, tissue, and temperature on gene expression.

Materials and methods

Insects

Propylea japonica adults were collected in the Mengshan Mountain region (Shandong Prov-

ince, China) during June 2010 [15]. Since then, the colony has been maintained in the labora-

tory at a temperature of 26 ± 1˚C and a relative humidity of 60–80%, with a 14: 10 h light: dark

cycle. They were supplied with Aphis craccivora Koch, which were reared on fava bean (Vicia
faba) in a greenhouse at 20–28˚C.

Experimental conditions

Each P. japonica developmental stage was sampled on the first day of each stage; this included

eggs, four larval instars, pupae, and female and male adults. The numbers of sampled individu-

als for each replicate in each stage was as follows: 15 eggs; five individuals for the 1st instar; five

individuals for the 2nd instar; three individuals for the 3rd instar; one individual for the 4th

instar; one pupa; and one female or male individual for adult female or male stages. Different

body tissues, including head, midgut, Malpighian tubule, and carcass (body except for the

above tissues) were dissected from the 4th instar larvae and female and male adults; about 15
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individuals were dissected per replicate. The tissues were stored in RNAlater (Thermo Fisher

Scientific Inc., Waltham, MA, USA) at 4˚C until total RNA isolation.

To investigate temperature-mediated effects, three replicate samples of five 1st instars were

maintained at 8, 25, or 35˚C for 3 h. The samples were then placed in 1.5-ml centrifuge tubes,

snap-frozen in liquid nitrogen, and stored at -80˚C until total RNA isolation.

Total RNA extraction and cDNA synthesis

Total RNA samples were extracted from eggs and Malpighian tubules using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA), as previously described [20]. Total RNAs were isolated from

the other samples using the HiPure Total RNA Micro Kit (Magen, Shanghai, China), in accor-

dance with the manufacturer’s instructions. Gel electrophoresis and the NanoDrop One spec-

trophotometer (Thermo Fisher Scientific) were used to determine the quantity of total RNA.

This was then dissolved in 10–70 μl ddH2O to obtain the following RNA concentrations

(mean ± standard error of the mean): 200.7 ± 29.4 ng/μl for eggs; 284.4 ± 16.4 ng/μl for first

instars; 637.8 ± 52.5 ng/μl for second instars; 563.0 ± 96.8 ng/μl for third instars; 864.3 ± 177.3

ng/μl for fourth instars; 804.9 ± 34.4 ng/μl for pupae; 831.4 ± 88.1 ng/μl for male adults;

866.6 ± 129.6 ng/μl for female adults; 279.8 ± 18.5 ng/μl for heads; 821.2 ± 140.4 ng/μl for car-

casses; 359.5 ± 104.1 ng/μl for midguts; 553.2 ± 149.1 ng/μl for Malpighian tubules; 290.67 ±
28.71 ng/μl for first instars at 8˚C; 240.57 ± 53.29 ng/μl for first instars at 25˚C; and 277.10 ±
53.19 ng/μl for first instars at 35˚C. The 260/280 nm optical density ratios were between 1.9

and 2.1 for all samples. The PrimeScript RT kit (containing gDNA Eraser, Perfect Real Time;

TaKaRa, Dalian, China) was used to prepare first-strand cDNA for gene expression analysis.

The cDNA was diluted tenfold prior to the following RT-qPCR investigations.

Gene cloning and primer design

A total of nine reference genes were assessed (S1 Table, Table 1). Degenerate primers for ArgK
had been designed previously [10]. Primers for the other eight genes were designed using the

sequences obtained from previous transcriptome datasets [14] (GenBank accession:

SRX554957).

PCR reactions were performed using a total volume of 20 μl, as described previously [21].

Amplicons of the expected lengths were purified using the TIANgel Midi Purification Kit

(TIANGEN, Beijing, China), and subcloned into the pClone007 Blunt vector before transfor-

mation into Escherichia coli DH5α competent cells (TSINGKE, Beijing, China) for sequencing

by TSINGKE company. Reference gene sequences were confirmed by comparison with the

NCBI database.

RT-qPCR analysis

The RT-qPCR reactions were conducted in accordance with our previous study [21]. The

melting curve and standard curve for each candidate gene was also generated as described

previously [21]. The RT-qPCR efficiencies (E) were calculated using the following equation:

E = (10[-1/slope] - 1) × 100.

Determination of reference gene expression stability

The stabilities of the nine reference genes were assessed using the following four approaches:

geNorm [22], NormFinder [23], BestKeeper [24], and the ΔCt method [25]. Finally, the findings

of these four analytical tools were integrated by RefFinder (http://150.216.56.64/referencegene.

php), providing a stability ranking of the candidates. The optimal number of reference genes

Reference gene selection in Propylea japonica

PLOS ONE | https://doi.org/10.1371/journal.pone.0208027 November 27, 2018 3 / 12

http://150.216.56.64/referencegene.php
http://150.216.56.64/referencegene.php
https://doi.org/10.1371/journal.pone.0208027


for target gene normalization was determined by pairwise variation (Vn/Vn+1) using V-values

calculated by geNorm [22]. A Vn/Vn+1 cutoff value of� 0.15 signified that the additional n + 1

reference gene was unnecessary; this indicated the appropriate number of reference genes for

RT-qPCR data normalization;

Results

Candidate gene cloning and performance

All reference genes were expressed in P. japonica and each was visualized as a single amplicon

(S1 Fig). The specific amplification of all reference genes was confirmed by melting curve anal-

yses (Fig 1).

Table 1 shows the E of each PCR, the linear regression equation, and the correlation coeffi-

cient (R2) for each standard curve. The standard curve for each gene is also shown (S2 Fig).

The Cq values for these reference genes under the four experimental situations ranged from 19

to 26. EF1A and Actin had the highest expression levels, whereas TUBA and ArgK showed the

lowest levels of expression (Fig 2).

Reference gene expression stability for each experimental condition

Table 2 shows the overall order of gene expression stability determined using geNorm, Norm-
Finder, BestKeeper, and the ΔCt method, from the most consistent to the least consistent refer-

ence genes, under each experimental condition. The major results obtained using each

method are indicated below.

geNorm. Across different developmental stages, RPS18 and RPL4 were both ranked as the

most stable genes, while EF1A and HSP90 were ranked together as the most stable genes in the

sex comparison. For the tissue comparisons, EF1A and RPL4 were both ranked as the most

Table 1. Primers used for RT-qPCR.

Gene Primer sequences (5’-3’) Length(bp) Efficiency

(%)

R2 Linear regression

Actin F: TGTGCTATGTCGCTTTGG 129 95.4 0.9988 y = -3.4376x+18.887

R: CTGGGCAACGGAATCTTT

GAPDH F: GTATCGGTCGTCTTGTACTG 121 93.5 0.9983 y = -3.4879x+22.93

R: CCATGGGTGGAGTCATATTT

EF1A F: CTGGAAAGACCACAGAAGAAA 114 91.7 0.9999 y = -3.5381x+18.601

R: GAGGAGGGAATTCTTGGAAAG

TUBA F: TGGTTGATAATGAAGCCATCTA 117 99.8 0.9813 y = -3.3267x+23.937

R: GAGAAGCAGTGATTGAAGAAAC

RPL4 F: CGTCGTCTTAACCCACTTAC 118 91.9 0.9965 y = -3.532x+20.291

R: CTTCTTCTCTGGCCAACTG

RPS18 F: CGCTGGTGATTCCAGATAAA 111 102.1 0.9992 y = -3.2836x+23.82

R: GACGACCTACACCTTTGATG

HSP90 F: GTTACCAATCCCTCACCAATC 132 90.2 0.9994 y = -3.5803x+20.565

R: CTAAATCGGCCTTGGTCATAC

ArgK F: GACGTTCTTTGGAGGGATAC 102 91.8 0.9999 y = -3.5349x+21.624

R: CATCGTCGAGTCCAGATAAAG

V-ATPase A F: CATCTGCCACTCTTGGTATC 120 100.1 0.9987 y = -3.3187x+24.889

R: CCAAAGCTCTCGTGTACTTC

https://doi.org/10.1371/journal.pone.0208027.t001
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stable genes, while EF1A and RPS18 were ranked together as the most stable genes in the tem-

perature experiment.

NormFinder. Across different developmental stages, RPS18 was the most stable gene. In

females and males, EF1A and HSP90 were ranked together as the most stable genes. Among

different tissues, EF1A ranked as the most stable gene, while RPL4 showed the most stable

expression in the temperature experiment.

BestKeeper. Across different developmental stages, RPS18 was the most stable gene, while

ArgK showed the most stable expression in females and males. For the tissue comparisons,

Fig 1. Melting curves of the nine reference genes examined for Propylea japonica. β-actin (Actin), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), elongation factor 1 α (EF1A), α-tubulin (TUBA), ribosomal protein L4 (RPL4),

ribosomal protein S18 (RPS18), heat shock protein 90 (HSP90), arginine kinase (ArgK), and vacuolar-type H+-ATPase
subunit A (V-ATPase A).

https://doi.org/10.1371/journal.pone.0208027.g001

Fig 2. Expression profiles of the nine Propylea japonica reference genes. The Cq values for each gene are shown for the four experimental conditions. β-actin (Actin),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1 α (EF1A), α-tubulin (TUBA), ribosomal protein L4 (RPL4), ribosomal protein S18 (RPS18), heat
shock protein 90 (HSP90), arginine kinase (ArgK), and vacuolar-type H+-ATPase subunit A (V-ATPase A).

https://doi.org/10.1371/journal.pone.0208027.g002
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RPL4 was the most stable gene, whereas RPS18 showed the most stable expression at different

temperatures.

The ΔCt method. The average standard deviation of each gene set was negative correlated

with its stability. The most stable gene under each of the four experimental conditions was

EF1A.

Table 2. Stability of the expression of nine candidate reference genes in Propylea japonica under different experimental conditions calculated by the four different

analytical tools geNorm, NormFinder, BestKeeper, and the ΔCt method, respectively.

Conditions CRGs� geNorm Normfider BestKeeper ΔCt
Stability Rank Stability Rank Stability Rank Stability Rank

Developmental EF1A 0.494 2 0.861 4 0.636 3 1.861 1

Stage RPS18 0.366 1 0.641 1 0.582 1 1.871 2

Actin 2.656 8 4.371 9 2.977 8 4.708 9

RPL4 0.366 1 0.907 5 0.730 4 1.936 3

ArgK 2.069 7 3.953 8 3.322 9 4.388 8

HSP90 0.890 5 1.267 6 0.912 6 2.121 6

GAPDH 0.808 4 0.834 3 0.790 5 2.038 5

V-ATPase A 0.713 3 0.719 2 0.599 2 2.005 4

TUBA 1.280 6 2.346 7 1.571 7 2.975 7

Sex EF1A 0.179 1 0.090 1 0.588 5 0.881 1

RPS18 0.260 2 0.123 2 0.487 3 0.887 2

Actin 0.972 7 2.188 7 1.288 8 2.304 8

RPL4 0.350 4 0.185 4 0.705 6 0.971 5

ArgK 0.590 6 0.714 5 0.161 1 1.209 6

HSP90 0.179 1 0.090 1 0.505 4 0.903 3

GAPDH 0.308 3 0.170 3 0.452 2 0.920 4

V-ATPase A 0.468 5 0.870 6 0.983 7 1.232 7

TUBA 1.312 8 2.397 8 1.841 9 2.504 9

Tissue EF1A 0.299 1 0.149 1 0.357 2 1.082 1

RPS18 0.339 2 0.161 2 0.409 3 1.088 2

Actin 1.206 7 1.493 7 1.077 7 1.850 7

RPL4 0.299 1 0.239 3 0.273 1 1.148 3

ArgK 1.557 8 2.637 9 2.199 9 2.786 9

HSP90 0.457 3 0.350 4 0.683 5 1.168 4

GAPDH 0.828 5 1.125 6 1.015 6 1.532 6

V-ATPase A 1.022 6 1.616 8 1.293 8 1.880 8

TUBA 0.670 4 1.024 5 0.580 4 1.477 5

Temperature EF1A 0.082 1 0.031 2 0.149 2 0.326 1

RPS18 0.082 1 0.124 4 0.137 1 0.343 3

Actin 0.152 2 0.051 3 0.201 4 0.342 2

RPL4 0.179 3 0.028 1 0.247 5 0.350 4

ArgK 0.228 4 0.305 5 0.200 3 0.431 5

HSP90 0.275 5 0.308 6 0.298 6 0.453 6

GAPDH 0.316 6 0.412 7 0.323 7 0.506 7

V-ATPase A 0.381 7 0.550 8 0.460 8 0.617 8

TUBA 0.452 8 0.649 9 0.464 9 0.700 9

� Candidate reference gene

https://doi.org/10.1371/journal.pone.0208027.t002
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The overall RefFinder ranking of reference gene expression stability

The comprehensive reference gene rankings for expression stability under each experimental

condition are shown in Fig 3.

Optimal number of reference genes for target gene normalization based on

geNorm
Although V-values for the analyses of developmental stage were never < 0.15, V2/3 was lower

than V3/4 (Fig 4A). In addition, the expression of Actin and ArgK was obviously lower at the

egg stage than at other stages. When the egg stage data were removed, and data from the

remaining stages were analyzed, we found that V2/3 was< 0.15. Therefore, the two most stable

candidates, RPS18 and EF1A, were recommended for data normalization across different

developmental stages (Fig 4B). For the sex, tissue, and temperature comparisons, the first V-

Fig 3. Stability of the nine Propylea japonica reference genes according to RefFinder. A lower Geomean value indicates a more stable expression. β-actin (Actin),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1 α (EF1A), α-tubulin (TUBA), ribosomal protein L4 (RPL4), ribosomal protein S18 (RPS18), heat
shock protein 90 (HSP90), arginine kinase (ArgK), and vacuolar-type H+-ATPase subunit A (V-ATPase A).

https://doi.org/10.1371/journal.pone.0208027.g003
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values< 0.15 emerged at V2/3, indicating that two reference genes were adequate for normali-

zation under these experimental conditions. Thus, the nominated reference genes were EF1A
and HSP90 for sex, EF1A and RPL4 for tissue comparisons, and EF1A and RPS18 for analyses

of temperature-mediated effects on gene expression.

Fig 4. Pairwise variation (V) values determined using geNorm. (A) Across the four indicated comparisons, and (B)

for the comparison across developmental stage only.

https://doi.org/10.1371/journal.pone.0208027.g004
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Discussion

Taken together with previous studies, the present findings clearly showed that reference gene

expression stability is condition-specific and, accordingly, no one gene can be used to normal-

ize all RT-qPCR data. This strongly indicates the need to conduct customized reference gene

selection for RT-qPCR analyses under the relevant experimental conditions, even for the same

species. For example, six papers relating to reference gene selection for the whitefly, Bemisia
tabaci, have been published over the past five years [5, 26–30].

The key recommendations for reference gene selection in the MIQE guidelines state that at

least two reference genes should be employed in order to avoid biased normalization [31]. The

optimal number of reference genes is typically determined by geNorm; based on these results,

two reference genes were adequate for the experimental conditions employed in the present

study. These results were partly in accordance with those reported previously for other lady

beetle species [9–11, 32].

Previous investigations have demonstrated that there is no single reference gene that is

applicable under all experimental conditions [1, 2, 5–11]. For example, Actin is a major struc-

tural protein that is often used as an internal control without prior validation. However, the

present study found that Actin was one of the least stable reference genes under the test condi-

tions; this is consistent with previous studies of four other Coccinellidae species [9–11, 32].

Therefore, we suggest that researchers should initially select reference genes that have been

verified within the same family or genus as their target species.

As far as we know, the present study is the first to identify stable RT-qPCR reference genes

in P. japonica. Sets of two reference genes were nominated for each experimental condition:

EF1A and RPS18 for comparisons between different developmental stages; EF1A and HSP90
for comparisons of female and male adults; EF1A and RPL4 for comparisons of different tis-

sues; and EF1A and RPS18 for investigation of temperature-mediated effects. This study repre-

sents an initial move towards building a standardized system for RT-qPCR analyses in P.

japonica. This will inform ecological risk assessments of RNAi-based insect control products

on P. japonica, and facilitate in-depth functional genomic studies of P. japonica.
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S1 Fig. Agarose gel electrophoresis of the nine candidate reference genes. PCR reaction

templates: 1) β-actin (Actin); 2) glyceraldehyde-3-phosphate dehydrogenase (GAPDH); 3) elon-
gation factor 1 α (EF1A); 4) α-tubulin (TUBA); 5) ribosomal protein L4 (RPL4); 6) ribosomal
protein S18 (RPS18); 7) heat shock protein 90 (HSP90); 8) arginine kinase (ArgK); 9) vacuolar-
type H+-ATPase subunit A (V-ATPase A). M, DL100 DNA marker.
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S2 Fig. Standard curves of the nine candidate reference genes.
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