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Segond Fractures Can Be Identified With Excellent
Accuracy Utilizing Deep Learning on Anteroposterior

Knee Radiographs

Jacob F. Oeding, M.S., Ayoosh Pareek, M.D., Kyle N. Kunze, M.D.,
Benedict U. Nwachukwu, M.D., M.B.A., Harry G. Greditzer IV, M.D.,

Christopher L. Camp, M.D., Bryan T. Kelly, M.D., Andrew D. Pearle, M.D.,
Anil S. Ranawat, M.D., Riley J. Williams III, M.D., and HSS ACL Reconstruction Registry
Purpose: To develop a deep learning model for the detection of Segond fractures on anteroposterior (AP) knee radio-
graphs and to compare model performance to that of trained human experts. Methods: AP knee radiographs were
retrieved from the Hospital for Special Surgery ACL Registry, which enrolled patients between 2009 and 2013. All images
corresponded to patients who underwent anterior cruciate ligament reconstruction by 1 of 23 surgeons included in the
registry data. Images were categorized into 1 of 2 classes based on radiographic evidence of a Segond fracture and
manually annotated. Seventy percent of the images were used to populate the training set, while 20% and 10% were
reserved for the validation and test sets, respectively. Images from the test set were used to compare model performance to
that of expert human observers, including an orthopaedic surgery sports medicine fellow and a fellowship-trained or-
thopaedic sports medicine surgeon with over 10 years of experience. Results: A total of 324 AP knee radiographs were
retrieved, of which 34 (10.4%) images demonstrated evidence of a Segond fracture. The overall mean average precision
(mAP) was 0.985, and this was maintained on the Segond fracture class (mAP ¼ 0.978, precision ¼ 0.844, recall ¼ 1). The
model demonstrated 100% accuracy with perfect sensitivity and specificity when applied to the independent testing set
and the ability to meet or exceed human sensitivity and specificity in all cases. Compared to an orthopaedic surgery sports
medicine fellow, the model required 0.3% of the total time needed to evaluate and classify images in the independent test
set. Conclusions: A deep learning model was developed and internally validated for Segond fracture detection on AP
radiographs and demonstrated perfect accuracy, sensitivity, and specificity on a small test set of radiographs with and
without Segond fractures. The model demonstrated superior performance compared with expert human observers.
Clinical Relevance: Deep learning can be used for automated Segond fracture identification on radiographs, leading to
improved diagnosis of easily missed concomitant injuries, including lateral meniscus tears. Automated identification of
Segond fractures can also enable large-scale studies on the incidence and clinical significance of these fractures, which may
lead to improved management and outcomes for patients with knee injuries.
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Arthroscopy, Sports Medicine, and Rehabilitati
egond fractures are relatively rare yet serious
Sosseous avulsion fractures of the anterolateral
proximal tibia that occur in association with anterior
cruciate ligament (ACL) tears.1,2 The presence of a
Segond fracture has been reported to indicate injury to
the ACL up to 75% to 100% of the time, with an
overall incidence of 7% to 10% in all ACL tears.3-5 Due
to the strong association with ACL tears, failure to
identify Segond fractures on radiographs of the knee
may result in functional limitations, concomitant
injury, and increased long-term rates of osteoarthritis
for patients in whom ligamentous instability is not
initially suspected and advanced imaging not obtained.6

Therefore, accurate identification of Segond fractures
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when present is imperative to mitigate the risk of
additional adverse and preventable consequences.
More recently, a strong link between Segond frac-

tures and concomitant meniscal injury has been iden-
tified.7-9 With almost 3 in 4 patients with Segond
fractures found to have a concomitant lateral meniscus
injury,7 the presence of a Segond fracture should raise
suspicion for injury to the lateral meniscus, and the
surgeon should more carefully probe the lateral
meniscus at the time of arthroscopy. Particularly when
considering the role of the lateral meniscus in knee
stability and the prevention of accelerated cartilage
degeneration, as well as the fact that prior studies have
shown that lateral meniscus tears associated with ACL
injury can be particularly difficult to detect on magnetic
resonance imaging (MRI) (with sensitivity dropping
from 0.94 for patients with an intact ligament to 0.69
for patients with an ACL rupture),10-12 improved
identification of Segond fractures has substantial po-
tential to improve the rate at which lateral meniscus
tears are diagnosed and repaired in the setting of ACL
injury, leading to enhanced joint preservation and
improved long-term outcomes.
Deep learning is a subset of artificial intelligence that

can analyze features present in unprocessed data, such
as medical images, to make an informed prediction on
its content.13-16 It is thus poised to detect the presence
of salient findings used to inform diagnosis or guide
treatment.13,14,17 Given that Segond fractures may be
subtle or overlooked findings on anteroposterior (AP)
knee radiographs, especially in hospital or health care
settings with a paucity of resources or a dedicated
musculoskeletal radiologist,18 the development of a
deep learning model that can accurately and efficiently
detect these fractures may be of great clinical utility. By
highlighting these salient findings when present on a
knee radiograph, a deep learning model has the po-
tential to assist health care providers in making more
accurate and objective diagnoses, to triage and expedite
treatment, and to improve patient outcomes.19,20

The purposes of the current study were to develop a
deep learning model for detection of Segond fractures
on AP knee radiographs and to compare model per-
formance to that of trained human experts. The authors
hypothesized that performance of the deep learning
model would match human observer performance
while being substantially faster.

Methods

Imaging Data
Following institutional review board approval, pre-

operative AP radiographs of patients treated for ACL
tears at a large tertiary academic institution were
retrospectively reviewed to identify images with and
without evidence of a Segond fracture. Images were
drawn from the Hospital for Special Surgery ACL
Registry, which enrolled patients between 2009 and
2013. All images corresponded to patients who under-
went ACL reconstruction by 1 of 23 surgeons included
in the registry data. Segond fractures were identified
through both manual examination and inspection of
radiology reports by a board-certified musculoskeletal
radiologist (HGG) with over 15 years of experience.
Images were reviewed with particular attention placed
on the presence or absence of Segond fractures. Images
were deidentified and saved as Portable Network
Graphics files in compliance with the Health Insurance
Portability and Accountability Act.

Data Annotation
Following extraction and classification of the data set

based on presence or absence of a Segond fracture,
images were further annotated by manually drawing
bounding boxes around the area of interest. Bounding
boxes refer to rectangular frames or regions that
enclose a specific object or region of interest within an
image. They are commonly used in object detection
tasks, where the goal is to locate and identify objects
within images. In these tasks, deep learning models are
trained to not only classify objects but also predict the
coordinates of the bounding boxes that tightly enclose
these objects. In the present study, these “objects” are
the presence or absence of a Segond fracture. For the
purpose of identifying Segond fractures, the area of
interest was systematically defined as the area where a
Segond fracture may occur on an AP radiograph (Fig 1):

(1) Medial boundarydlateral margin of the proximal
tibia

(2) Lateral boundarydopacity change representing
the edge of the subcutaneous tissue

(3) Superior boundarydlateral articular margin of
the tibial plateau

(4) Inferior boundarydsuperior tip of the fibular
head

Each bounding box was assigned a label correspond-
ing to whether a Segond fracture was present within it
(Segond ¼ presence of Segond fracture, No Segond ¼
no Segond fracture detected).
Model, Initialization, and Training
Seventy percent of the images were used to populate

the training set, while 20% and 10% were reserved for
the validation and test sets, respectively.
A convolutional neural network (CNN) object detec-

tion model (YOLOv5)21 was trained to detect the area
of the radiograph most likely to contain a Segond
fracture, defined by the annotated bounding boxes as
described above. As a single-stage object detector, the
YOLOv5 model predicts both the location and contents
of bounding boxes in a single step, bypassing the region



Fig 1. Anteroposterior radiograph of left knee demonstrating
a Segond fracture with bounding box.
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proposal stage of 2-stage models and thereby resulting
in faster inference times.22 Briefly, the YOLOv5 archi-
tecture consists of a “backbone,” “neck,” and “head.”
For its “backbone,” YOLOv5 uses the cross-stage partial
network (CSPNet) to extract features from the image.23

Features are fused to create feature pyramids in the
“neck” (PANet in YOLOv5), which are then used to
generate model outputs in the “head.”24

YOLOv5 was trained for 100 epochs, with a batch size
of 16 and a starting learning rate of 0.01, which was
reduced gradually. Adam (Adaptive Moment Estima-
tion) was used as the optimizer, which is an optimiza-
tion algorithm used to update the parameters of a
neural network during the training process.25 During
training, the model that achieved the highest mean
average precision (mAP) was selected as the final
model. Briefly, mAP is a widely used metric for the
evaluation of object detection models that calculates the
average precision for recall values ranging from 0 to 1.
Specifically, this metric compares the ground-truth
bounding box to the detected bounding box, with
higher scores suggesting more accuracy (range between
0 and 1). We trained our YOLOv5 model on an NVIDIA
A100 Tensor Core GPU (Nvidia), utilizing the YOLOv5x
configuration in PyTorch (The Linux Foundation).21

Model Performance
The model performance was assessed overall and on

each individual class (Segond and No Segond). The
precision-recall curve was utilized as the primary metric
to determine model performance (standard in deep
learning classification tasks).26 Precision describes the
success of a model at predicting the positive class (cases
with Segond fractures) and is defined as the number of
true positives divided by the number of cases the model
predicted as positives (true positives plus false posi-
tives). A precision of 1 corresponds to a model with zero
false positives (cases without a Segond fracture that the
model predicted as cases with Segond fractures). Recall,
however, is calculated by dividing the number of true
positives by the number of cases the model should have
predicted as positive (true positives plus false nega-
tives). A perfect recall of 1 would therefore correspond
to a model with zero false negatives (cases with a
Segond fracture that the model did not identify).27 We
chose to utilize precision recall and the associated
precision-recall curve to assess model performance as
opposed to a receiver operator curve (ROC) as ROC
may be predisposed to misrepresent model perfor-
mance in theoretical cases of class imbalance and
inadvertently lead to incorrect interpretations of the
model results.28 Finally, confidence scores reflecting
how certain the model is that the predicted bounding
box does or does not contain a Segond fracture were
provided as part of the model output. Including confi-
dence scores or local explanation metrics to explain the
model’s interpretations to humans will be particularly
important for AI detection algorithms to have utility in
the clinical setting.29

Model Attention
To visualize model attention, a class activation map-

ping (CAM) technique was applied.30 Model attention
mimics cognitive attention in that deep learning models
learn to focus on some parts of the input data while
ignoring other, less-important parts for optimal pre-
diction. CAM techniques allow for visualization of what
parts of the image the model is “looking at” to make its
predictions. As CNNs consist of a substantial number of
parameters and layers, model transparency is limited as
the exact mechanisms through which the model learns
are hidden. This results in outputs that may not be
differentiable, limiting the use of commonly applied
gradient-weighted class activation mapping (Grad-
CAM) techniques.31 Thus, an approach to class activa-
tion mapping was utilized that computes and visualizes
the principal components of the learned features/rep-
resentations from the convolutional layers and does not
rely on the backpropagation of gradients (Eigen-
CAM).30 It is important to note that Eigen-CAM is an
overlay of a low-resolution activation map from the
second-to-last layer of the model (where the feature
map resolution is low) on the high-resolution input
image and thus does not necessarily provide a precise
depiction of what aspect of the image the model is



Table 1. Model Overall and Class Specific Performance

Class Precision Recall Mean Average Precision

Segond 0.844 1 0.978
No Segond 0.981 0.954 0.993
Overall 0.912 0.977 0.985
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focusing on when making its decisions. Thus, the area
in red on the heatmap is not necessarily the most
important area in the model’s final classification deci-
sion. However, CAM techniques still provide a good
approximation and some utility in ensuring the inter-
pretability of deep learning models.

Human Observer Comparison
Images from the test were used to compare model

performance to 2 different levels of human observer
expertise: (1) an orthopaedic surgery sports medicine
fellow and (2) a fellowship-trained orthopaedic sports
medicine surgeon with over 10 years of experience. The
sensitivity and specificity of the model were compared
to those of the analyses performed by the human ob-
servers, in addition to the time taken to identify the
pathology/review the radiograph. To determine the
average time spent reviewing each image, the sports
medicine fellow was given the set of images from the
test set and timed from the start of reviewing the first
image to the end of reviewing the last image.
Results
In total, 324 AP knee radiographs were retrieved. Of

these, 34 (10.4%) images demonstrated evidence of a
Segond fracture, while 290 did not contain evidence of
a Segond fracture. In total, 227 (70%) of the manually
annotated images were randomly selected to create the
training set, while 64 images (20%) were reserved for
the validation set. The remaining 33 images (10%)
were reserved for an independent test set to evaluate
the model performance on data not previously used by
the model during training or validation. Of the 227
images in the training set, 23 (10.1%) corresponded to
patients with a Segond fracture. Of the 64 images in the
validation set, 7 (10.9%) corresponded to patients with
a Segond fracture. Of the 33 images in the test set, 4
(12.1%) corresponded to patients with a Segond frac-
ture. The deep learning model demonstrated excellent
performance in identifying the presence or absence of
Segond fractures during training and validation, even
on an imbalanced data set (i.e., substantially more im-
ages without Segond fractures than images with
Segond fractures) (Table 1). The overall mAP was
0.985, and this performance was maintained on the
Segond fracture class (mAP ¼ 0.978, precision ¼ 0.844,
recall ¼ 1). This corresponds to the precision-recall
curve denoted in Figure 2.
Model Performance on the Independent Test Set
The model demonstrated excellent performance on

the randomly selected set of 33 images held out from
the training and validation process, suggesting the
model can generalize predictions on new data. The
model correctly classified all images in the test,
demonstrating 100% accuracy on both classes, with
perfect sensitivity (1.0) and specificity (1.0). An
example of the test set with model predictions is dis-
played in Figure 3.

Model Versus Human Observer Performance
On the test set, the model conferred a sensitivity and

specificity of 1.0, while the fellowship-trained sports
medicine orthopaedic surgeon achieved a sensitivity of
1.0 and specificity of 0.83. The orthopaedic surgery
sports medicine fellow demonstrated a sensitivity of
0.75 and a specificity of 1.0. The model analyzed all test
set images with an average inference time of 21.0 ms
per image, while the sports medicine fellow required an
average of 8.1 seconds per image.

Model Visualization (Eigen-CAM)
The Eigen-CAM technique is demonstrated in

Figure 4 using a representative set of 3 images. This
analysis demonstrated that the model utilized the po-
sition of the distal femur and proximal tibia to locate the
potential fracture site and subsequently conclude
whether a Segond fracture was present in that area.

Discussion
The principal findings of the current study are as

follows: (1) a deep learning algorithm developed on an
institutional data set consisting of 324 AP knee radio-
graphs from patients who underwent ACL reconstruc-
tion for acute ACL tears demonstrated excellent
predictive ability for the automated detection of Segond
fractures, and (2) when compared to expert human
observers, the deep learning algorithm demonstrated
superior performance while requiring 0.3% of the time
to complete the task. Due to recent evidence suggesting
that Segond fractures may serve as a “biomarker-like”
indicator for lateral meniscus tears,7 computer vision
algorithms designed to detect Segond fractures may
improve the rate at which these tears are diagnosed and
repaired in the setting of ACL injury, particularly given
the current difficulty in detecting concomitant lateral
meniscal tears on MRI.
The performance of the deep learning model devel-

oped in the current study was perfect with an accuracy
of 100% in detecting Segond fractures on the inde-
pendent testing set of images. Overall and class-specific
performance of the model during training and valida-
tion was also excellent, with a mAP ranging between
0.98 and 0.99, precision between 0.84 and 0.98, and
recall from 0.95 to 1.0 (Table 1). High accuracy for



Fig 2. Precision-recall curve demon-
strating mean average precision (mAP) of
0.985 for the overall image set with mAP
of Segond (S) ¼ 0.978 and mAP of No
Segond (N) ¼ 0.993.
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detecting musculoskeletal pathology has been demon-
strated in prior literature. For example, Zech et al.32

developed a deep learning model for pediatric wrist
fracture detection and reported that their model had an
area under the receiver operating characteristic curve of
0.92, corresponding to an accuracy of 88%. Likewise,
Liu et al.33 developed a convolutional neural network
deep learning model for intertrochanteric hip fractures
and determined that their model predicted the presence
or absence of these fractures with an accuracy of 88%
and specificity of 87%. Ashkani-Esfahani et al.34

trained a deep learning model to detect the presence
of ankle fractures on 1,050 patients and controls. The
authors reported that their model conferred a sensi-
tivity of 98.7% and a specificity of 98.6% in detecting
ankle fractures utilizing 3 radiographic views. There-
fore, the high accuracy and performance of the current
model are plausible, despite utilizing a small data set for
training. The findings of the current study demonstrate
that deep learning can be confidently applied to radio-
graphs for the detection of Segond fractures, which may
have important clinical and research implications.
Indeed, utilization of automated computer-vision al-
gorithms in resource-scarce health care settings or
geographic areas where advanced imaging or avail-
ability of subspecialty trained radiologists remains
limited has the potential to reduce the incidence of
missed or delayed diagnoses. Anderson et al.35 reported
that clinicians (including radiologists, orthopaedic sur-
geons, physician assistants, primary care physicians,
and emergency medicine physicians) aided by deep
learning systems had higher accuracy (AUROC 0.94)
compared to clinicians who were unaided (AUROC
0.90) for detecting fractures across 12 different
anatomic regions ranging from the femur to the clav-
icle. The authors also found that artificial intelligence
allowed clinicians with limited training in musculo-
skeletal imaging to reach performance close to expert
Fig 3. Images denoting bounding box
generation and confidence scores of the
model for presence of Segond fracture (S)
or absence of Segond fracture (N). In this
example, the model was 83% confident
that each image did (A) or did not (B)
contain a Segond fracture.



Fig 4. Eigen-class activation mapping (CAM) applied to 3 images from the test set. As an object detection algorithm, the model
appears to utilize the position of the distal femur and proximal tibia to locate the potential fracture site and conclude whether a
fracture is present in that area.
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physicians and radiologists, closing the accuracy gap
across clinician types and reducing morbidity for pa-
tients. Expanding on the current model for Segond
fracture detection, rapid and accurate identification of
pathology may subsequently allow for the expedited
triage of patients to specialty centers where appropriate
treatment or procurement of additional imaging can be
performed in patients with acute knee pain with this
radiographic finding.
Multiple studies have suggested a strong association

between Segond fractures and concomitant meniscal
injury.7-9 In particular, Segond fractures have been
demonstrated to indicate a significantly increased risk of
lateral meniscus injury in patients with acute ACL
ruptures, with an incidence of 72% among patients
with Segond fractures, putting patients with Segond
fractures at a nearly 3 times greater risk for lateral
meniscus tears than patients without Segond fractures
in the setting of acute ACL tears.7 Furthermore, prior
studies have shown that lateral meniscus tears can be
particularly difficult to detect on MRI, especially tears
associated with ACL injury, with sensitivity dropping
from 0.94 for patients with an intact ligament to 0.69
for patients with an ACL rupture.10-12 This sensitivity is
even lower for patients with posterior and peripheral
tears.10,11 Given the important role of the lateral
meniscus in knee stability and articular cartilage pro-
tection, it is important to identify and repair these le-
sions when they occur. Thus, the model developed in
the present study has the potential for substantial
improvement in the diagnosis and repair of lateral
meniscus tears through enhanced preoperative plan-
ning prior to ACL reconstruction. Due to their low
incidence, Segond fractures may not be routinely
screened for by surgeons evaluating preoperative im-
aging, but through a deep learning model specifically
trained to detect such fractures, surgeons can be alerted
when a Segond fracture has occurred in the setting of
an ACL rupture. This should raise suspicion of a lateral
meniscal tear, and the surgeon should more carefully
probe the lateral meniscus at the time of arthroscopy.
Furthermore, an increased suspicion for lateral
meniscus tears, even if not visible on MRI, allows the
surgeon to plan for the necessary operative time and
surgical equipment to repair the meniscus as well as
ensure informed consent and discussion with the pa-
tient prior to the ACL reconstruction. Thus, even if a
missed Segond fracture on radiograph does not neces-
sarily lead to an ACL tear going undiagnosed, by facil-
itating improved identification and repair of meniscal
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tears, the deep learning model developed in the current
study has the potential to reduce cartilage degeneration
over time and improve outcomes after ACL recon-
struction by improving the rate at which lateral
meniscal tears are diagnosed and repaired.
Automated fracture detection was substantially

quicker with the application of a deep learning model
compared with an expert human observer. Several
prior studies have also corroborated this observation.
Yao et al.36 developed a deep learning model for rib
fracture detection on computed tomography (CT) im-
aging, which not only outperformed 2 radiologists with
regard to fracture detection accuracy but also required
only 20 seconds as opposed to the greater than 150
seconds for each human observer to evaluate the CT.
Interestingly, when collaborating with the model, 1
radiologist was able to decrease the time to evaluate CT
scans from an average of 153 seconds per scan to 59
seconds per scan while increasing the accuracy at the
same time.36 In a musculoskeletal study evaluating
pelvic fracture severity on CT scans, Dreizin et al.37

analyzed 373 CT scans using deep learning. They
noted the model to be as accurate as an expert radiol-
ogist in determining rotational instability and more
accurate in determining translational instability with a
mean inference time of<0.1 second per test image. This
was a finding similar to one of the current study and
also supports the plausibility of its high performance on
a small data set. The clinical implications of more rapid
and objective pathology detection that translate into
reductions in time required for manual imaging review
include the possibilities of allocating this additional time
to shared decision-making, explanation of treatment,
and related discussions with patients. Additionally, this
may allow providers to use their saved time in more
productive ways, such as responding to patient phone
calls, completing administrative tasks, or having more
patient-centered care.

Limitations
The current study is not without limitations. First, the

deep learning model was developed and trained on
radiographic data from a single institution with a rela-
tively small test set. Further research is required to
determine the external validity of this model and
whether it can achieve high performance on larger,
multi-institutional, or international data sets with
varying quality of radiographs. With all images in the
present study derived from a single institution, it is
possible that overfitting occurred. For example, the
model may depend on the quality of imaging data being
analyzed, and performance may differ at facilities with
lower-quality radiographs. Second, all patients in this
study had confirmed ACL tears. As part of the external
validation process, this algorithm should be tested on
images of patients who do not have ACL tears but may
demonstrate Segond fractures (which would be a rare
event).

Conclusions
A deep learning model was developed and internally

validated for Segond fracture detection on AP radiographs
and demonstrated perfect accuracy, sensitivity, and spec-
ificity on a small test set of radiographs with and without
Segond fractures. The model demonstrated superior per-
formance compared with expert human observers.
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