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Abstract

The de-differentiation and proliferation of smooth muscle cells (SMCs) are widely accepted

as the major contributor to vascular remodeling. However, recent studies indicate that vas-

cular stem cells (VSCs) also play an important role, but their relative contribution remains to

be elucidated. In this study, we used genetic lineage tracing approach to further investigate

the contribution of SMCs and VSCs to neointimal thickening in response to endothelium

denudation injury or artery ligation. In vitro and in vivo analysis of MYH11-cre/Rosa-loxP-

RFP mouse artery showed that SMCs proliferated at a much slower rate than non-SMCs.

Upon denudation or ligation injury, two distinct types of neointima were identified: Type-I

neointimal cells mainly involved SMCs, while Type II mainly involved non-SMCs. Using

Sox10-cre/Rosa-loxP-LacZ mice, we found that Sox10+ cells were one of the cell sources in

neointima. In addition, lineage tracing using Tie2-cre/Rosa-LoxP-RFP showed that endo-

thelial cells also contributed to the neointimal formation, but rarely transdifferentiated into

mesenchymal lineages. These results provide a novel insight into the contribution of vascu-

lar cells to neointima formation, and have significant impact on the development of more

effective therapies that target specific vascular cell types.

Introduction

De-differentiation of smooth muscle cells (SMCs) and their major role in intimal thickening

after vascular injury have been accepted as a classic theory for decades [1]. In response to vas-

cular injury, media SMCs may de-differentiate, proliferate and migrate into neointima. How-

ever, many previous studies use smooth muscle α-actin (ACTA2) as a major marker to

identify SMCs [2], which is not accurate because myofibroblasts also express ACTA2. Calpo-

nin1 (CNN1) and smooth muscle myosin heavy chain (MYH11) are intermediate and late

stage SMC markers respectively, and linage tracing of MYH11+ cells offers a better evaluation

of SMC’s role in neointima formation [3,4]. However, previous studies using MYH11-cre
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mice for lineage tracing showed conflicting results [5–7], suggesting that SMCs may not be the

only major contributors in the neointima formation.

In the past decade, many studies suggest that vascular stem cells (VSCs) also play an impor-

tant role in vascular repair and remodeling. For example, we recently identified a Sox10+ mul-

tipotent VSCs in the media and adventitia of vascular wall and showed that Sox10+ cells

participated in neointimal formation [5]. Hu et al. [8] demonstrated that a group of progeni-

tor/stem cells (Sca-1+, c-kit+ and Lin-) in the adventitia of mouse aorta participated in the

development of atherosclerosis following graft transplantation. Sainz et al. identified a side

population with vascular stem/progenitor properties in the media layer [9]. In addition, a

recent study using VE-Cadherin-cre and Tie2-cre mice for lineage tracing revealed that endo-

thelial cells (ECs) contributed to neointimal formation by differentiating into ACTA2+-

MYH11+ cells [10].

In present study, we used MYH11-cre/Rosa-loxP-RFP, Sox10-cre/Rosa-loxP-LacZ and

Tie2-cre/Rosa-loxP-RFP transgenic mice for lineage tracing, and performed artery denudation

injury and ligation experiments to determine the contribution of SMCs, VSCs and ECs to

neointimal formation.

Materials and Methods

Generation of transgenic mice and genotyping

All the experiments were carried out according to the institutional guidelines and were

approved by the Institutional Animal Care and Use Committee of University of California at

Berkeley. MYH11-cre (#007742), Tie2-cre (#008863), Rosa-loxP-RFP (#007909) and Rosa-lox-

P-LacZ (#003474) mice were purchased from The Jackson Laboratory. Sox10-cre mice were a

gift from Dr. Andrew S. McCallion and generated as described previously (Stine et al. Genesis,

2009, 47, 765–770). All the male MYH11-cre, Tie2-cre, and Sox10-cre mice were crossed with

female Rosa-loxP-RFP or Rosa-loxP-lacZ mice to generate MYH11-cre/Rosa-loxP-RFP,

Tie2-cre/Rosa-loxP-RFP, and Sox10-cre/Rosa-loxP-lacZ mice. PCR genotyping was per-

formed according to the protocols provided by The Jackson Lab. The male transgenic mice of

two months were used for experiments.

Cell isolation and culture

Cell isolation methods were described previously [5]. Briefly, adult mouse aortas or arteries

were obtained from MYH11-cre/Rosa-loxP-RFP mice and washed 3 times with phosphate

buffer saline (PBS) supplemented with 1% penicillin/streptomycin (P/S). Connective tissues

and adventitia were carefully removed under a dissecting microscope (Zeiss, Germany). To

remove endothelium, vascular tissue was incubated in with 1.5 mg/ml type-II collagenase

(Sigma-Aldrich, St. Louis, MO) in Dulbecco’s modified Eagle’s medium (DMEM) for 20 min-

utes. The tunica media was cut into millimeter-size and placed onto the surface of 6-well plates

coated with 1% CellStart (Life Technologies, Grand Island, NY). Cells were cultured in a cus-

tomized VSC media containing DMEM with 2% chick embryo extract (MP Biomedical, Santa

Ana, CA), 1% FBS (Thermo Fisher Scientific, Waltham, MA), 1% N2 (Life Technologies,

Grand Island, NY), 2% B27 (Life Technologies, Grand Island, NY), 100 nM retinoic acid

(Sigma-Aldrich, St. Louis, MO), 50 nM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO),

1% P/S and 20 ng/ml bFGF (R&D Systems, Minneapolis, MN). Cell proliferation was mea-

sured using the Click-It 5-ethynyl-2’-deoxyuridine assay (EdU, Life Technologies, Grand

Island, NY). For counting the cells, 10 fields of view were taken by microscopy, and EdU+RFP-

and EdU+RFP+ cells were counted respectively.
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For culture of endothelial cells from Tie2-cre/Rosa-loxP-RFP mice, the carotid artery was

harvested and digested in 1.5 mg/ml collagenase for 20 min. The cell suspension was centri-

fuged at 1000 rpm for 5 min and cell pellet was resuspended in the medium of DMEM supple-

mented with 10% FBS and 10 ng/ml TGFβ1, and cultured for two weeks.

Mouse wire injury model and ligation model

The mice of two months old were used for experiments. The mouse carotid artery was sub-

jected to endothelial denudation as described previously [11]. Mice were anesthetized through

1.5% isoflurane inhalation and were supinely placed on a heating pad (Sunbeam 731–500).

Target arteries were carefully isolated by blunt separation. For carotid artery wire injury

model, a 5–0 nylon suture with a blunt tip was inserted into the external carotid artery and

then advanced to the common carotid artery to injure the endothelium. The process of endo-

thelial denudation was repeated three times. Eight MYH11-cre/Rosa-loxP-RFP mice were

used for each group in this experiment and common carotid artery was harvested for histologi-

cal analysis. For femoral artery wire injury model, same suture was inserted into the saphenous

artery, and then gently advanced to the iliac artery to induce endothelium denudation [12].

The suture was placed in the artery for 2 minutes and the retreated to induce reperfusion.

Three Sox10-cre/Rosa-loxP-LacZ mice were used in this experiment and the femoral artery

between saphenous artery and femoral bifurcation was used for histological analysis. Two

extra Sox10-cre/Rosa-loxP-RFP mice were used as control.

For carotid artery ligation model, the left common carotid artery was exposed through a

small midline incision of the neck. The common carotid artery was completely ligated just

proximal to the carotid bifurcation to disrupt blood flow [13,14], and the neointimal formation

at the upstream was examined. Six MYH11-cre/Rosa-loxP-RFP mice were used in this experi-

ment and the common carotid artery was used for analysis.

Immunofluorescence staining and histological analysis

Under deep anesthesia, animals were perfused with normal saline through left cardiac ventricle

immediately, followed by 4% paraformaldehyde at pressure of 100 cm H2O. Tissue was fixed

in 4% paraformaldehyde on ice for 1 hour and then embedded in OCT for cryosectioning. For

immunostaining, cells or tissue sections of blood vessels were fixed with 4% paraformaldehyde,

permeabilized with 0.5% Triton-100 (Sigma-Aldrich), and blocked with 1% bovine serum

albumin (Sigma-Aldrich). Samples were incubated with primary antibodies smooth muscle α-

actin (ACTA2, 1:200 dilution, Abcam), calponin-1 (CNN1, 1:200 dilution, Abcam), smooth

muscle myosin heavy chain (MYH11, 1:200 dilution, Biomedical Technologies), Sox10 (1:200

dilution, Santa Cruz), Ki67 (1:200 dilution, Abcam) for 2 hours at room temperature, washed

with PBS for 3 times, and incubated with appropriate Alexa488-,546-,633- labeled secondary

antibodies. Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI). Fluores-

cence images were collected via a confocal microscopy (Zeiss LSM710). For counting the cells

of immunohistological samples, we used the confocal z-stack images with single-cell resolu-

tion. For each staining, at least nine sections were used for cell counting.

Statistical analysis

Data were reported as means±SD. Comparisons among values for all groups were performed

by one-way analysis of variance (ANOVA).
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Results

Proliferation of SMCs and non-SMCs

We previously showed that non-SMCs (e.g., Sox10+ cells) in the artery wall could contribute to

neointima formation [5]. To compare the proliferation rate of SMCs and non-SMCs, we iso-

lated vascular cells from the aorta of MYH11-cre/Rosa-loxP-RFP mice by enzyme digestion

and cultured the cells for two weeks in vitro. We found that RFP- cells gradually outgrew RFP+

cells in the primary culture. Cell proliferation analysis showed that there were much more

dividing RFP- cells than dividing RFP+ cells (Fig 1A). Immunostaining showed that a large

number of RFP- cells were positive for Sox10 (Fig 1B). This result suggests that non-SMCs

such as Sox10+ cells may outgrow SMCs and play a more important role than previously

thought.

Heterogeneity of neointimal cells after carotid artery denudation injury

SMCs have been thought to be the major source of neointimal cells. To investigate relative

contribution of SMCs to neointimal formation, we used MYH11-cre/Rosa-loxP-RFP mice to

trace SMC fate after two weeks of denudation injury of carotid artery. In the contralateral con-

trol carotid arteries, we found all the mice had similar RFP expression in the medial layer with

the positive expression of MYH11 (S1 Fig). It was interesting that, in 3 of 8 mice, almost all the

neointimal cells of injured arteries were RFP+, while in the other 5 mice, the majority of neoin-

timal cells were RFP- (Fig 2A–2I). We defined these two types of neointima as Type I (with

abundant RFP+ cells) and Type II (with few RFP+ cells) respectively.

In Type-I neointima, more than 90% of the RFP+ cells were stained positive for SMC mark-

ers ACTA2, CNN1 and MYH11 (Fig 2A–2C and 2J), suggesting that these cells may be derived

from medial SMCs, or other non-SMCs that differentiated into SMCs upon injury. Few

Sox10+ cells were found in Type-I neointima (Fig 2D). In contrast, Type-II neointima had

more than 90% ACTA2+ cells but only about 25% CNN1+ cells and rarely MYH11+ cells (Fig

2E–2H and 2J). We found ~7% Sox10+ cells in the Type-II neointima (Fig 2H). These results

suggest that neointimal cells are a heterogeneous population. Sox10+ cells may be one of the

neointimal cell sources. The low number of Sox10+ cells in the immunostaining results may

also be explained by the transient expression of Sox10 in activated stem cells.

Fig 1. Proliferation of SMCs and non-SMCs. (a) The cells were isolated from MYH11-cre/Rosa-loxP-RFP mouse aorta for in vitro culture,

and the percentage of dividing cells in RFP- and RFP+ subpopulations was calculated. Data are presented as mean±SD. One-way ANOVA

was used for analysis of significant difference between groups. **p < 0.01. (b) The cells were immunostained by the antibody against

Sox10. Scale bar, 100 μm.

doi:10.1371/journal.pone.0168914.g001
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To examine Sox10+ cell fate during neointima formation, we used Sox10-cre/Rosa-lox-

P-LacZ or RFP mice for lineage tracing. As SMCs of carotid artery are derived from neural

crest [15] and will be labeled by LacZ or RFP during embryonic development of Sox10-cre/

Rosa-loxP-LacZ or RFP mice, we performed denudation injury on the femoral artery, which

was negative for RFP or LacZ before injury (S2 Fig). After two weeks of injury, we found that a

significant percentage of the neointimal cells were β-galactosidase+ (β-gal+), which expressed

ACTA2 and low CNN1 but not MYH11 (Fig 3). This result suggests that Sox10+ cells may play

Fig 2. Two types of neointima after carotid artery denudation injury. The cross sections of carotid arteries of MYH11-cre/Rosa-

loxP-RFP mice after 2 weeks of denudation injury were immunostained by the antibodies against ACTA2, CNN1, MYH11 and Sox10 (a-h).

Dashed lines indicate the border of the neointima. Scale bar, 100 μm. (i) Percentage of RFP+ cells in Type-I and Type-II neointima were

calculated. (j) Percentage of ACTA2+, CNN1+, MYH11+ and Sox10+ cells in Type-I and Type-II neointima were calculated. Data were

presented as mean±SD. One-way ANOVA was used for analysis of significant difference between groups. *p < 0.01.

doi:10.1371/journal.pone.0168914.g002
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an important role during neointimal formation. In addition, β-gal+ cells were also found in the

medial and adventitial layer and connective tissues around the artery (Fig 3B).

Wire injury may cause inconsistency between individual animals. We noticed that there

was a variation of RFP+ cell numbers in the medial layers of the injured arteries of different

MYH11-cre/Rosa-loxP-RFP mice, which might be caused by over denudation. To reduce this

inconsistency, we also performed carotid artery ligation model.

Two types of neointima were also found after carotid artery ligation

Complete ligation of the blood vessel near the carotid bifurcation blocks the blood flow and

induces neointimal formation [14]. This model does not directly injure endothelial and medial

layers, which not only avoids the variation in denudation procedure but also allows the study

of ECs in neointimal formation.

After two weeks of carotid artery ligation in MYH11-cre/Rosa-loxP-RFP mice, we also

found two types of neointima similar to the denudation model: 3 of 6 mice had type-I neoin-

tima and the other 3 mice had type-II neointima. Most of Type-I neointimal cells were RFP+

cells, and expressed ACTA2, CNN1 and MYH11 (Fig 4A–4C), suggesting they were derived

from SMCs, or non-SMCs that were activated to differentiate into SMCs; most of Type-II

neointimal cells were RFP-, expressed ACTA2, but little CNN1 and MYH11 (Fig 4D–4F), sug-

gesting that they are derived from non-SMCs.

ECs contributed to neointima but did not transdifferentiated into ACTA2+

cells

To examine whether ECs contribute to neointimal formation, we used Tie2-cre/Rosa-

loxP-RFP mice to trace endothelial cell fate. We first performed in vitro culture experiment.

RFP+ vascular ECs were isolated and cultured in the medium supplemented with 10 ng/ml

TGFβ1. By immunostaining, we found few RFP+ ECs expressed ACTA2 under TGFβ1 stimu-

lation (Fig 5A). To investigate whether endothelial-mesenchymal transition existed during

Fig 3. Involvement of Sox10+ cells in neointima formation. The femoral arteries of Sox10-cre/Rosa-

loxP-LacZ mice were denudated and collected two weeks post-surgery for (a) whole-mount β-gal staining,

and the cross sections (b) were immunostained by the antibodies against ACTA2 (c), CNN1 (d) and MYH11

(e). Scale bar, 100 μm.

doi:10.1371/journal.pone.0168914.g003
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neointimal formation in vivo, we performed carotid artery ligation model on Tie2-cre/Rosa-

loxP-RFP mice. We found that ECs showed an invasive phenotype in neointima (Fig 5B–5E).

Significant number of ECs were found in the neointima, but most of them did not express

ACTA2 (Fig 5B and 5C). These RFP+ cells still expressed the EC marker CD31 (Fig 5D and

5E), suggesting that ECs still maintained EC phenotype and did not trans-differentiate into

ACTA2+ cells in vivo.

Discussion

There has been controversy about the origins of neointimal cells. Historically, fibroblasts or

fibroblast-like cells were thought to be the major cell types of arterial neointima [16]. However

a different opinion is that SMCs are the only cells that exist in arterial media and contribute to

neointimal formation [17]. Using a transgenic mouse model that expressed inducible creERT2

under the control of MYH11 promoter, Herring et al. found that medial SMCs are the major

Fig 4. Two types of neointima after carotid artery ligation. The cross sections of carotid arteries of MYH11-cre/Rosa-loxP-RFP mice

after 2 weeks of ligation were immunostained by the antibodies against ACTA2, CNN1 and MYH11 (a-f) Dashed lines indicate the border of

the neointima. Scale bar, 100 μm.

doi:10.1371/journal.pone.0168914.g004
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cells contributing to neointimal formation [6]. However, arterial media layer was reported to

be composed of heterogeneous populations of cells including SMCs that expressed MYH11

and ACTA2, and non-SMCs that didn’t express these markers [9,18]. Heterogeneity also exists

in the SMC population and only a subpopulation among them was reported to contribute to

neointima formation [7]. In recent years, adventitial stem cells have been reported to contrib-

ute to neointimal formation [8]. Our previous study found a stem cell population in arterial

medial layer that expressed markers of neural crest stem cells and mesenchymal stem cells, and

could be a source of neointima [5,19]. In this study, we used two different vascular injury mod-

els and investigated the contribution of SMCs, Sox10+ VSCs and ECs to neointimal thickening.

We show that Sox10+ VSCs and SMCs are two distinct populations, and for the first time,

defined two types of neointima. Type-I neointimal cells expressed mature SMC markers and

may be derived from medial SMCs or other non-SMCs. However, Type-II neointima involves

mostly other cell types, which is consistent with the recent report [5] and suggests that SMCs

are not the major cell type in some neointima formation in vascular injury models. The under-

lying mechanisms that result in these two types of neointima are unknown. We postulate that

different extents of vascular injury in endothelium, elastic lamina and SMCs and the inflam-

matory responses may activate different cell types and that the presence and proximity of cell

types near the lesion sites may modulate the relative contribution of vascular cells to the neoin-

timal formation. This finding, if verified in human diseased vessels, will have profound impact

on the development of new therapies that target specific cell types. Given the complex genetic

background and the various causes of vascular diseases in human, it is likely that multiple cel-

lular sources contribute to neointimal formation.

Our data suggest that Sox10+ VSCs can be an important source of SMA+ cells in neointima.

Sox10 is specifically expressed in neural crest stem cells during embryonic development,

which maintains the multipotency of neural crest stem cells [20]. It is also reported as an

important marker for maintaining neural crest-like cells in an undifferentiated state [21].

However, Sox10+ VSCs in adult tissues may or may not be related to the neural crest cells dur-

ing the development. In normal artery, the number of Sox10+ VSCs is low and they are located

in the media and adventitia layer of arteries [5,19]. Upon vascular injury, Sox10+ VSCs can

proliferate and migrate [19], thus participating in vascular remodeling. The mechanisms of

VSC activation and multiplication in response to injury and inflammatory signals remain to

be investigated. It is possible that the involvement of VSCs in neointimal formation may be

regulated by the microenvironmental factors and the location and abundance of VSCs near

the lesion sites.

Ligation model does not directly injure endothelium and SMCs in the vessel, which may be

difficult for SMCs to migrate into the neointima when elastic lamina is not damage. However,

SMCs were still found in the neointima possibly due to the remodeling process upon ligation

[22,23]. We show that ECs also play an important role in the neointima formation in the liga-

tion model where endothelium is not denuded. Although there is evidence that ECs may

trans-differentiate into mesenchymal cells in neointima, we find this a low frequency event in
vivo and in vitro. It is likely that EndMT requires additional signals and may only happen

under specific conditions.

Fig 5. Role of ECs in neointima formation. (a) RFP+ cells isolated from Tie2-cre/Rosa-loxP-RFP mice carotid

artery were cultured in the medium supplemented with 10 ng/ml TGFβ1 for two weeks, and immunostained by

the antibody against ACTA2. (b-e) Cross sections of Tie2-cre/Rosa-loxP-RFP mouse carotid artery after two

weeks of ligation injury were immunostained by the antibodies against ACTA2 and CD31. Cell nuclei were

stained by DAPI. Scale bar, 100 μm.

doi:10.1371/journal.pone.0168914.g005
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In summary, we have demonstrated that SMCs, Sox10+ VSCs and ECs all significantly con-

tribute to the neointima formation, and their relative contribution may depend on many fac-

tors in the vascular niche. It is evident that SMCs are not the only major cell type in neointima

formation. These findings will help develop new strategies to finally cure vascular diseases.
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S1 Fig. Normal (control, without injury) carotid arteries of MYH11-cre/Rosa-loxP-RFP

mice were cryosectioned and immunostained by the antibody against MYH11. Similar RFP

expression was observed in all of the mice used in the experiment. Cell nuclei were stained by

DAPI. Scale bar, 100 μm.

(PDF)

S2 Fig. Normal (control, without injury) femoral arteries of Sox10-cre/Rosa-loxP-RFP

mice were cryosectioned and immunostained by the antibody against CD31. RFP only

labeled femoral nerve (arrow), but not the cells in the wall of femoral artery. Cell nuclei were

stained by DAPI. Scale bar, 100 μm.

(PDF)
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