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Abstract

We investigated modality differences in the N2 and P3 components of event-related poten-

tials (ERPs) between somatosensory and auditory Go/No-go paradigms in eighteen healthy

prepubescent children (mean age: 125.9±4.2 months). We also evaluated the relationship

between behavioral responses (reaction time, reaction time variability, and omission and

commission error rates) and amplitudes and latencies of N2 and P3 during somatosensory

and auditory Go/No-go paradigms. The peak latency of No-go-N2 was significantly shorter

than that of Go-N2 during somatosensory paradigms, but not during auditory paradigms.

The peak amplitude of P3 was significantly larger during somatosensory than auditory para-

digms, and the peak latency of P3 was significantly shorter during somatosensory than audi-

tory paradigms. Correlations between behavioral responses and the P3 component were

not found during somatosensory paradigms. On the other hand, in auditory paradigms, cor-

relations were detected between the reaction time and peak amplitude of No-go-P3, and

between the reaction time variability and peak latency of No-go-P3. A correlation was noted

between commission error and the peak latency of No-go-N2 during somatosensory para-

digms. Compared with previous adult studies using both somatosensory and auditory Go/

No-go paradigms, the relationships between behavioral responses and ERP components

would be weak in prepubescent children. Our data provide findings to advance understand-

ing of the neural development of motor execution and inhibition processing, that is depen-

dent on or independent of the stimulus modality.

Introduction

Event-related potentials (ERPs) obtained by time-locked averaging electroencephalography

(EEG) with high temporal resolution have been used to investigate the neural substrates of

motor execution and inhibition during Go/No-go paradigms for over 30 years. Two
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components, a negative deflection at approximately 140–300 ms (N2 component) after stimu-

lus onset and a positive deflection at approximately 300–600 ms (P3 component), elicited in

No-go trials were larger than the ERPs recorded in Go trials in adults [1–3]. These No-go-

related brain activities have mainly been investigated using visual and auditory stimuli, and

only a few studies reported activity in the somatosensory (tactile) modality [4–6]. In somato-

sensory Go/No-go paradigms, the amplitude of the No-go-N2 component was also greater

than that of the Go-N2 component, and the amplitude of No-go-P3 was larger than that of

Go-P3. The enhanced No-go-related components, No-go-N2 and No-go-P3, reflect common

neural activities specific to the inhibitory process, irrespective of the sensory modality.

Many studies also focused on the development of motor execution and inhibition process-

ing in children [7–13]. As the characteristics of behavioral data during Go/No-go paradigms,

the reaction time (RT) was longer in children than in adults, and error rates including omis-

sion (i.e., a slow response or no pushing with Go stimulus) and commission (i.e., error pushing

with No-go stimulus) were higher in children than in adults [7, 12]. In ERP waveforms, the

same sequence of components was generally elicited in both children and adults. The major

difference in children was observed in a large frontal N2 overlaying the early components [10,

11]. Jonkman [9] using visual Go/No-go paradigms reported that No-go-N2 effects were larg-

est and more widely distributed across fronto-parietal electrodes in children aged 6–7 years

old, and that they decreased linearly with age. The second difference was an absence of the

fronto-central No-go-P3. As mentioned above, in adults, the amplitude of No-go-P3 was gen-

erally larger than that of Go-P3, and No-go-P3 shows a more anterior distribution relative to

Go-P3, the so-called ‘anteriorization’ of No-go-P3 [14–16]. However, this phenomenon was

absent in children [10, 12]. These data suggest the immaturity of the fronto-parietal cortical-

cortical network, and the immaturity for inhibition processing may cause a higher error rate,

especially for commission errors [8].

In order to investigate modality differences of Go/No-go ERP waveforms in adults, previ-

ous studies compared the ERP waveforms in visual and auditory Go/No-go paradigms [14, 15,

17, 18]. For example, the amplitude of No-go-N2 was markedly smaller following auditory sti-

muli than after visual stimuli [14, 15, 19]. Falkenstein et al. [1] suggested that neural activity

for inhibitory processing involved modality-specific differences, which was confirmed in a

monkey study [20]. Recently, Yamashiro et al. [21] recorded ERPs during somatosensory and

auditory Go/No-go paradigms from collegiate baseball players and track and field athletes.

They showed significantly different ERP waveforms between the two groups during somato-

sensory Go/No-go paradigms, but not during auditory Go/No-go paradigms. They suggested

that modality-specific neuroplastic changes took place with long-term skills training. After a

thorough literature search, however, no study was found that examined the characteristics of

somatosensory Go/No-go ERP waveforms in children, since the majority of previous studies

used visual and auditory stimuli. Some previous studies using somatosensory-evoked poten-

tials (SEPs) showed clear differences in waveforms [22] and the recovery function [23] between

prepubescent children and adults, indicating an immature somatosensory system in children.

In addition, based on the results of Yamashiro et al. [21], developmental differences between

somatosensory and auditory cognitive processing might be observed among prepubescent

children. To consider the developmental process of the somatosensory system, it is not enough

to simply evaluate SEPs; it is also necessary to clarify the somatosensory processing in situa-

tions that require the prefrontal cortex function (i.e., cognitive task), which is a slow-develop-

ing brain region. Therefore, the main aim was to investigate modality differences between

somatosensory and auditory Go/No-go paradigms among prepubescent children.

We also evaluated the relationship between the behavioral response and amplitudes and

latencies of ERP components in somatosensory and auditory Go/No-go paradigms among
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prepubescent children. The behavioral data, such as RT and error rates, and ERP components

reflect different parameters in cognitive paradigms, but many previous studies reported close

relationships. The latency of P3 has been considered a measure of the stimulus classification

and evaluation speed [2, 24], and a correlation has been shown between RT and the peak

latency of P3 [24–26]. Moreover, previous studies in adults reported correlations between RT

and the amplitudes of No-go-N2 and No-go-P3 in visual and auditory Go/No-go paradigms

[27–29], and between RT and the amplitude of No-go-P3 in a somatosensory Go/No-go para-

digm [30, 31]. In addition, a higher commission error rate group would also be related to

lower amplitudes of visual Go-P3 and No-go-P3, compared with a lower group, even though

RTs do not differ between the two groups [32]. These data suggest that motor execution and

inhibition in Go/No-go paradigms involves are closely related. By applying these findings, we

hypothesized that the correlations between RT and the amplitudes of No-go-N2 and/or No-

go-P3, and/or between error rates and the amplitudes of Go-P3 and/or No-go-P3 were

observed in prepubescent children during both somatosensory and auditory Go/No-go para-

digms. We also designed a Go (target) and No-go (non-target) stimulus with the same proba-

bility to avoid the effects of stimulus probability and minimize differences in response conflict

between event types [4, 11–13, 33]. These data would advance understanding of the neural

development of motor execution and inhibition processing, which is dependent on or inde-

pendent of the stimulus modality.

Materials and methods

Participants

Eighteen normal prepubescent children (11 girls and 7 boys) with right handedness partici-

pated in this study. The mean age of the children in months was 125.9±4.2. No participants

had a history of neurological or psychiatric disorders. Informed consent was obtained from all

participants and their guardians. This study was approved by the Ethical Committee of Nara

Women’s University, Nara City, Japan.

Task and procedure

The participants performed somatosensory and auditory Go/No-go paradigms. The order of

conditions was randomized in each subject and counterbalanced across all participants. In the

somatosensory Go/No-go paradigm, the Go stimulus was delivered to the second digit of the

left hand, and the No-go stimulus to the fifth digit of the left hand with ring electrodes. The

electrical stimulus used was a current constant square wave pulse of 0.2 ms in duration, and

the stimulus intensity was 2 times the sensory threshold. In the auditory Go/No-go paradigm,

auditory stimuli were presented binaurally through headphones (65-dB sound pressure level,

500-ms duration, 10-ms rise time, 10-ms fall time). Go and No-go stimuli were pure tones of

1,500 and 1,000 Hz, respectively.

Participants had to respond to the stimulus by pushing a button with their right thumb as

quickly as possible only after presentation of the Go stimulus. The probability of Go and No-

go stimuli was the same in a random series, with the interval of presentation being fixed at 2

sec. RT was measured for the Go stimulus. Each session comprised 120 epochs of stimulation,

which included 60 epochs for the Go stimulus and 60 for the No-go stimulus. Participants kept

their eyes open and focused on a small fixation point positioned in front of them at a distance

of approximately 1 m throughout each task. As the error rate, omission and commission errors

were separately calculated. In a practice run, participants were instructed to perform the Go/

No-go paradigms for 20 stimuli before recording. In our previous study using the somatosen-

sory Go/No-go paradigms, we set two conditions [4]. In one condition, the Go stimulus was
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delivered to the second digit of the left hand, and the No-go stimulus to the fifth digit of the

left hand. In the other condition, the Go and No-go stimuli were reversed in the left hand, i.e.,

Go and No-go stimuli were delivered to the fifth and second digits, respectively. As the results,

no significant differences between conditions were observed in behavioral data including RT

and error rates, nor in the peak amplitudes or latencies of somatosensory ERP components.

Therefore, in the present study, we considered that the effects of physical differences between

Go and No-go stimuli (i.e., stimulations to second and fifth digits in the left hand; pure tones

of 1,500 and 1,000 Hz) on behavioral data and ERP components would be negligible.

EEG recording

EEG was recorded with Ag/AgCl disk electrodes placed on the scalp at Fz, Cz, Pz, C3, and C4,

according to the International 10–20 System. Each scalp electrode was referenced to linked ear-

lobes, which were calculated as an averaged reference. In order to reject eye movements or blinks

exceeding 100 μV, an electro-oculogram was recorded bipolarly with a pair of electrodes placed 2

cm lateral to the lateral canthus of the left eye and 2 cm above the upper edge of the left orbit and

analyzed on-line. We also checked all raw data off-line, and if clear artifacts not exceeding 100 μV

(ex., unexplained noise) were recorded, the trials were eliminated from averaging. Impedance

was maintained at less than 5 kohm. All EEG signals were collected on a signal processor (Neuro-

pack MEB-2300 system, Nihon-Kohden, Tokyo, Japan). The analysis epoch for ERPs was 800 ms,

including a prestimulus baseline period of 100 ms. The bandpass filter was set at 0.1–50 Hz and

the sampling rate was 1,000 Hz. In the somatosensory paradigms, the peak amplitudes and laten-

cies of somatosensory N1 (N1s) and P3 components were measured at 110–230 and 260–600 ms,

respectively. In the auditory paradigms, the peak amplitudes and latencies of auditory N1 (N1a)

and P3 components were measured at 70–170 and 240–600 ms, respectively. In both Go/No-go

paradigms, the peak amplitude and latency of the N2 component at Fz was measured at 200–330

ms. N1s and N1a components are recorded before N2, reflecting each sensory processing [4, 34–

36]. Amplitudes were measured at baseline-to-peak. Slow responses exceeding 800 ms and incor-

rect responses were eliminated from averaging. In each paradigm, at least 30 trials or more were

averaged. In total, 40.1±10.2 trials for somatosensory paradigms and 37.7±8.0 for auditory para-

digms were averaged. As behavioral data, RT, the standard deviation (SD) of RT (i.e., reaction

time variability), and omission (i.e., slow response or no pushing with Go stimulus) and commis-

sion errors (i.e., error pushing with No-go stimulus) were evaluated for each condition.

Statistical analysis

As for behavioral data, RT, SD of RT, and omission and commission errors were compared

between somatosensory and auditory paradigms using one-way repeated measures analysis of

variance (ANOVA) with Modality (somatosensory vs. auditory) as a within-subject factor.

Slow responses exceeding 800 ms were counted as omission errors.

The amplitudes and latencies of N1s and N1a components at C4 and Fz, respectively, were

separately analyzed by one-way repeated measures ANOVA using the within-subject factor of

Trial (Go vs. No-go), because N1s and N1a components were the largest at C4 and Fz among

electrodes, respectively. The amplitudes and latencies of N2 components at Fz were separately

submitted to repeated two-way measures ANOVA using the within-subject factors of Trial.

Judging from grand-averaged ERP waveforms (Fig 1), the amplitude of N2 would be affected

by overlapping of adjacent N1. Therefore, N2 components did not directly compare with

Modality. The amplitudes and latencies of P3 components were separately submitted to

repeated three-way measures ANOVA using the within-subject factors of Modality, Trial, and

Electrode (middle; Fz, Cz, and Pz). In all repeated measures factors with more than two levels,
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we tested whether Mauchly’s sphericity assumption was violated. If the result of Mauchly’s test

was significant and the assumption of sphericity was violated, Greenhouse-Geisser adjustment

was used to correct the sphericity by altering the degrees of freedom using a correction coeffi-

cient epsilon. When significant effects were identified, Bonferroni post-hoc multiple-compari-

son was adjusted to identify specific differences.

We also analyzed the bivariate correlative relationship between behavioral responses and

amplitudes and latencies of N2 and P3 at Fz, Cz, and Pz. This analysis was performed after

checking data with a normal distribution using the Kolmogorov-Smirnov test. If a normal dis-

tribution was confirmed, Pearson’s correlation was calculated. If non-parametric data were

found, Spearman’s correlation was analyzed. Considering Type I errors on correlation analysis

with many data, we considered only significant data with an r value greater than ±0.500 [30].

Significance was set at p< 0.05.

Results

Behavioral data

Table 1 shows behavioral data on RT, SD of RT, and omission and commission errors. No sig-

nificant effects were observed between somatosensory and auditory paradigms in any of

behavioral measurements (RT: F (1, 17) = 0.735, p = 0.403, η2 = 0.041; SD of RT: F (1, 17) =

0.287, p = 0.604, η2 = 0.016; omission error: F (1, 17) = 1.471, p = 0.242, η2 = 0.080; commis-

sion error: F (1, 17) = 0.482, p = 0.497, η2 = 0.028).

Fig 1. Grand-averaged somatosensory and auditory ERP waveforms across all participants. In the waveforms, the

top is shown as negative, and the bottom is shown as positive.

https://doi.org/10.1371/journal.pone.0259653.g001
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ERP components

Fig 1 shows grand-averaged waveforms of ERPs during somatosensory and auditory Go/No-

go paradigms. The ERP components, N1s and N1a, were elicited during each paradigm. The

mean values for amplitudes and latencies of N1s and N1a are listed in Table 2. In addition, N2

components were detected at Fz during Go and No-go stimuli during somatosensory and

auditory paradigms. These components were confirmed in 14 of 18 children during the Go

stimulus and 17 of 18 children during the No-go stimulus during somatosensory paradigms,

and in all children for Go and No-go stimuli during auditory paradigms.

ANOVAs for the peak amplitude of N1s showed a significant main effect of Trial (F (1, 15)

= 6.366, p = 0.023, η2 = 0.298), suggesting larger amplitude of No-go-N1s than that of Go-N1s.

ANOVAs for the peak latency of N1s showed no significant main effect of Trial (F (1, 15) =

0.061, p = 0.809, η2 = 0.004). ANOVAs for the peak amplitude and latency of N1a showed no

significant main effect of Trial, suggesting no differences between Go and No-go trials (N1a

amplitude: F (1, 14) = 1.524, p = 0.237, η2 = 0.098; N1a latency: F (1, 14) = 0.042, p = 0.840, η2

= 0.098) (Table 2).

Regarding the peak amplitude of N2, no significant main effects of Trial were observed dur-

ing somatosensory and auditory paradigms (somatosensory: F (1, 12) = 0.886, p = 0.365, η2 =

0.069; auditory: F (1, 17) = 0.929, p = 0.349, η2 = 0.052). ANOVA for the peak latency of N2

during somatosensory paradigms showed significant main effects of Trial (F (1, 12) = 5.401,

p = 0.038, η2 = 0.310), suggesting a shorter latency of No-go-N2 than Go-N2, whereas no such

difference was observed during auditory paradigms (F (1, 17) = 0.003, p = 0.960, η2 = 0.000)

(Table 3).

The results of ANOVAs for the peak amplitude of P3 showed a significant main effect of

Modality (F (1, 17) = 47.980, p< 0.001, η2 = 0.738), indicating a larger amplitude during

somatosensory than auditory paradigms. ANOVAs also showed significant main effects of

Trial (F (1, 17) = 5.087, p = 0.038, η2 = 0.230) and Electrode (F (4, 68) = 106.029, p< 0.001, η2

= 0.862), as well as Modality-Trial interaction (F (1, 17) = 6.533, p = 0.020, η2 = 0.278), Modal-

ity-Electrode interaction (F (2, 34) = 7.788, p = 0.002, η2 = 0.314), and Trial-Electrode

Table 1. Behavioral data during somatosensory and auditory Go/No-go paradigms with SE.

Somatosensory Auditory

RT (ms) 435 (24) 415 (25)

SD of RT (ms) 123 (8) 120 (7)

Omission error (%) 5.7 (1.3) 4.1 (0.8)

Commission error (%) 4.1 (0.6) 3.5 (0.7)

No significant differences were observed between modalities. RT = reaction time. SD = standard deviation.

https://doi.org/10.1371/journal.pone.0259653.t001

Table 2. Average values for peak amplitudes and latencies of N1s and N1a components with SE.

Go No-go

Fz Cz Pz C3 C4 Fz Cz Pz C3 C4

Somatosensory

N1s amplitude (μV) -3.0 (0.9) 0.3 (1.5) 2.7 (1.4) -2.6 (1.0) -3.8 (0.7) -3.5 (1.2) -1.1 (1.0) -1.2 (1.1) -4.8 (0.9) -6.4 (0.9)

N1s latency (ms) 167 (5) 167 (6) 161 (5) 160 (5) 154 (6) 168 (5) 172 (6) 165 (3) 170 (5) 155 (5)

Auditory

N1a amplitude (μV) -13.5 (1.5) -10.7 (1.2) -7.2 (0.8) -11.9 (1.5) -11.8 (1.3) -12.6 (1.4) -9.8 (1.4) -6.6 (1.3) -11.7 (1.5) -11.6 (1.3)

N1a latency (ms) 121 (6) 109 (6) 101 (6) 117 (7) 118 (7) 121 (6) 110 (6) 102 (6) 121 (6) 126 (5)

https://doi.org/10.1371/journal.pone.0259653.t002
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interaction (F (2, 34) = 30.570, p< 0.001, η2 = 0.643). A post-hoc Bonferroni test of the Trial-

Electrode interaction showed that the peak amplitudes of Go-P3 were significantly larger at Pz

than at Fz and Cz (p< 0.001, respectively), and at Cz than Fz (p< 0.001, respectively). In con-

trast, the peak amplitudes of No-go-P3 during auditory and somatosensory paradigms were

significantly larger at Pz than at Ft and Cz (p < 0.001, respectively). These data indicate that

No-go-P3 has a more anterior distribution relative to Go-P3, the so-called ‘anteriorization’ of

No-go-P3. In addition, we examined the normalized amplitude values to clarify the differences

in the scalp topography [37]. ANOVAs revealed a significant main effect of Electrode (F (2,

34) = 178.071, p< 0.001, η2 = 0.913), and Trial-Electrode interaction (F (2, 34) = 6.320,

p = 0.005, η2 = 0.271). This interaction indicates the different distribution between Go and

No-go trials (Fig 2). However, the three two-way interactions were superseded by a three-way

interaction of Modality-Trial-Electrode (F (2, 34) = 4.498, p = 0.018, η2 = 0.209). Decomposi-

tion of the three-way interaction facilitated examination of Modality-Stimulus within each

electrode and revealed a Modality-Stimulus interaction only at Pz (F (1, 17) = 11.193, p = 0.04,

η2 = 0.397). This two-way interaction indicated that the peak amplitude of Go-P3 was larger

than that of No-go-P3 during the somatosensory paradigms (F (1, 17) = 15.310, p = 0.001, η2 =

0.474), whereas no such difference was observed during the auditory paradigms (F (1, 17) =

1.003, p = 0.331, η2 = 0.056).

ANOVAs for the peak latency of P3 showed a significant main effect of Modality (F (1, 17)

= 23.925, p< 0.001, η2 = 0.585) with a shorter peak latency during somatosensory

(mean = 374 ms, SD = 42) than auditory (mean = 431 ms, SD = 50) paradigms. No other main

effects nor interactions were observed (Table 3).

Relationship between RT and N2 and P3

In auditory Go/No-go paradigms, a significant negative correlation was noted between RT

and the peak amplitude of No-go-P3 at Pz (r = -0.545, p = 0.019), indicating that, for children

with a shorter RT, the peak amplitude of No-go-P3 was larger. Except for this, no other corre-

lations were observed between RT and N2 and P3 (Table 4).

Relationship between SD of RT and N2 and P3

In auditory Go/No-go paradigms, significant positive correlations were observed between SD

of RT and the peak latency of No-go-P3 at Fz (r = 0.610, p = 0.007) and at Cz (r = 0.597,

Table 3. Average values for N2 and P3 in Go and No-go stimulus during somatosensory and auditory Go/No-go paradigms with SE.

Go No-go

Fz Cz Pz C3 C4 Fz Cz Pz C3 C4

N2 amplitude (μV)

Somatosensory -3.4 (1.1) -4.8 (1.0)

Auditory -12.4 (1.6) -13.6 (0.9)

N2 latency (ms)

Somatosensory 266 (6) 253 (6)

Auditory 241 (8) 241 (8)

P3 amplitude (μV)

Somatosensory 7.4 (1.1) 21.1 (1.6) 28.5 (1.7) 16.5 (1.3) 17.9 (1.5) 8.5 (1.2) 17.6 (1.5) 18.2 (1.7) 11.7 (1.1) 12.0 (1.3)

Auditory 2.6 (1.3) 10.5 (1.3) 16.9 (1.2) 8.3 (1.8) 10.5 (1.4) 4.9 (0.8) 11.4 (1.3) 13.0 (1.3) 6.6 (1.0) 7.3 (1.2)

P3 latency (ms)

Somatosensory 393 (16) 394 (17) 377 (16) 400 (20) 400 (20) 378 (18) 350 (14) 354 (21) 369 (16) 393 (19)

Auditory 446 (24) 442 (18) 402 (17) 421 (15) 473 (23) 442 (229) 416 (17) 437 (15) 434 (20) 440 (19)

https://doi.org/10.1371/journal.pone.0259653.t003
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p = 0.009), indicating that, for children with a smaller SD of RT, the peak latency of No-go-P3

was shorter. Except for these, no other correlations were observed between SD of RT and N2

and P3 (Table 4).

Relationship between omission error and N2 and P3

No correlations were observed between omission error and N2 and P3 (Table 4).

Relationship between commission error and N2 and P3

In somatosensory Go/No-go paradigms, a significant positive correlation was observed

between commission error and the peak latency of No-go-N2 (r = 0.645, p = 0.005), indicating

that, for children with a lower commission error rate, the peak latency of No-go-N2 was

shorter. Except for this, no other correlations were observed between RT and N2 and P3

(Table 4).

Discussion

The present study evaluated modality differences in ERP components between somatosensory

and auditory Go/No-go paradigms among prepubescent children. We also evaluated the rela-

tionship between behavioral responses (RT, SD of RT, and omission and commission error

rates) and the amplitudes and latencies of N2 and P3 during somatosensory and auditory Go/

No-go paradigms.

Fig 2. Mean values for the amplitudes of Go-P3 and No-go-P3 and the distribution ratio at the midline electrodes in (A)

somatosensory and (B) auditory Go/No-go paradigms. Vertical lines indicate standard error (SE).

https://doi.org/10.1371/journal.pone.0259653.g002
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Table 4. Correlation matrix between behavioral data and amplitude and latency of ERP components.

Go No-go

Fz Cz Pz Fz Cz Pz

RT

Amplitude

Somatosensory-N2 0.279 0.096

Auditory-N2 -0.164 -0.130

Somatosensory-P3 -0.142 -0.246 -0.079 0.040 0.174 0.080

Auditory-P3 0.103 -0.302 -0.452 -0.248 -0.319 -0.545 �

Latency

Somatosensory-N2 -0.248 -0.285

Auditory-N2 -0.362 0.203

Somatosensory-P3 0.095 0.272 0.121 -0.034 -0.111 -0.011

Auditory-P3 -0.247 -0.269 0.014 0.267 0.189 -0.008

SD of RT

Amplitude

Somatosensory-N2 0.104 -0.018

Auditory-N2 -0.399 -0.226

Somatosensory-P3 -0.225 -0.358 -0.303 0.198 -0.059 -0.166

Auditory-P3 0.06 -0.347 -0.480 0.332 -0.407 -0.427

Latency

Somatosensory-N2 0.154 -0.032

Auditory-N2 -0.325 0.395

Somatosensory-P3 0.265 0.304 -0.006 0.254 0.051 0.152

Auditory-P3 -0.016 0.244 0.399 0.610 �� 0.597 �� 0.187

Omission error

Amplitude

Somatosensory-N2 -0.311 0.036

Auditory-N2 -0.490 -0.424

Somatosensory-P3 -0.470 -0.442 -0.242 -0.178 -0.271 -0.211

Auditory-P3 -0.068 -0.29 -0.066 0.291 0.051 -0.057

Latency

Somatosensory-N2 0.051 0.246

Auditory-N2 0.214 -0.326

Somatosensory-P3 -0.081 0.284 0.355 0.292 -0.139 0.032

Auditory-P3 0.019 0.048 0.115 0.368 0.339 0.089

Commission error

Amplitude

Somatosensory-N2 -0.355 -0.432

Auditory-N2 -0.108 -0.254

Somatosensory-P3 0.021 0.095 -0.033 0.042 0.055 -0.141

Auditory-P3 0.05 -0.3 0.201 0.368 -0.006 0.354

Latency

Somatosensory-N2 0.409 0.645 ��

Auditory-N2 0.008 -0.226

Somatosensory-P3 0.342 0.172 -0.258 -0.239 0.097 -0.01

Auditory-P3 0.416 0.135 0.015 -0.039 -0.201 -0.050

� p < 0.05; �: p < 0.01.

https://doi.org/10.1371/journal.pone.0259653.t004
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Behavioral data

RT is an important measure for understanding sensorimotor performance in humans [38],

and is defined as the time from stimulus onset to the response, including components such as

stimulus evaluation and response selection [39]. The SD of RT is often used to evaluate the

reaction time variability of the time from stimulus onset to the response [40, 41]. As a cognitive

model, it is known that omission error is associated with increased attention to punishment,

and commission error is associated with increased attention to reward [42]. In our previous

study, in which we used the same experimental setting as this study with young adults [43],

during somatosensory and auditory Go/No-go paradigms, the mean RTs were 307±50 and

311±52 ms, respectively, and SDs of RT were 75±16 and 77±23 ms, respectively. The percent-

ages of omission and commission errors in the somatosensory Go/No-go paradigms were 1.1

±1.3 and 1.0±0.9%, respectively, and those in the auditory Go/No-go paradigms were 1.9±2.3

and 1.0±0.6%, respectively [43]. These data suggest no significant difference in behavioral

responses between somatosensory and auditory Go/No-go paradigms using young adults.

Consistent with this, the present study showed no significant differences in behavioral

responses between somatosensory and auditory Go/No-go paradigms (Table 1). On the other

hand, RT was longer in prepubescent children than in adults during somatosensory and audi-

tory paradigms, SD of RT was larger in prepubescent children than in adults, and rates of

omission and omission errors were higher in prepubescent children than in adults. These

results were consistent with other previous studies [8, 9], and suggest an immature cognitive

function reflected by behavioral responses in prepubescent children, even if they performed

somatosensory Go/No-go paradigms.

N1 component

The amplitude and latency of N1a did not differ between Go and No-go stimuli in auditory

Go/No-go paradigms (Table 2), being consistent with previous studies in children [11, 13]. As

reported in the literature, N1a, commonly elicited by simple auditory stimuli, is a composite of

multiple components [44] with generators around Heschl’s gyrus and the planum temporale

[35, 36], and the frontal cortex [45, 46]. In the time range recoded in N1a for adults, a previous

study reported different topographic distributions between Go and No-go trials [47], suggest-

ing the involvement of different cortical processing. In prepubescent children, a similar N1a

response to both Go and No-go stimuli may be compatible with similar levels of sensory

processing.

The amplitude of N1s at C4 was significantly larger in No-go trials than in Go trials in

somatosensory Go/No-go paradigms (Table 2). Previous studies using somatosensory Go/No-

go paradigms in adults also showed that the amplitude of No-go-N1s was larger than that of

Go-N1s, and that the latency of No-go-N1s was later than that of Go-N1s [4, 16, 30]. Previous

studies reported that N1s, which is often called N140, was generated from several regions

including the secondary somatosensory cortex, insula, cingulate cortex, and prefrontal cortex

[4, 34, 48, 49]. Moreover, Nakata et al. [4] using magnetoencephalography (MEG) indicated

that No-go-N1s involved these generator mechanisms for N1s as well as No-go-specific neural

activity from the prefrontal cortex (PFC). In other words, when adults performed somatosen-

sory Go/No-go paradigms, the overlapped potentials led to a larger amplitude of No-go-N1s

than that of Go-N1s. On the other hand, as shown in Fig 1, N1s and N2 components in prepu-

bescent children were separated. Thus, the characteristics of N2 in somatosensory Go/No-go

paradigms are separately discussed below.
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N2 components

The functional significance of N2 has been a matter of debate in adults’ data during Go/No-go

paradigms. N2 is clearly recorded during visual Go/No-go paradigms rather than auditory Go/

No-go paradigms [14, 15, 18]. The neural activities of N2 may include the processing of motor

inhibition at PFC [27, 49] as well as conflict monitoring at the anterior cingulate cortex (ACC)

[50, 51]. As for the characteristics of N2 in children, Jonkman [9] showed that the amplitude

of N2 diminished gradually from young childhood through to adulthood.

This is the first study to detect the frontal N2 among prepubescent children, even though a

somatosensory Go/No-go paradigm was used. Indeed, N1s and N2 components in prepubes-

cent children were separated (Fig 1), but we considered that N1s and frontal N2 components in

a somatosensory Go/No-go paradigm gradually overlapped with increasing age. In data from

adults, the amplitude of N1s was the largest at Fz (i.e., frontal electrode) rather than at C4 (i.e.,

lateral electrode) [52]. The difference of distribution in N1s between prepubescent children and

adults may reflect the developmental process for motor execution and inhibition. To clarify

this, further studies including age-related changes are needed. Furthermore, we found that the

peak latency during somatosensory paradigms was significantly earlier in No-go-N2 than in

Go-N2, but was not during auditory paradigms (Table 3). In a study of monkeys, Gemba and

Sasaki [20] observed No-go-related neural activities after an auditory stimulus in the rostral part

of the dorsal bank of the principal sulcus, as opposed to the caudal part of the same bank after a

visual stimulus. The present study did not directly address the differences in generator mecha-

nisms of frontal N2 between somatosensory and auditory paradigms, but our findings suggest

that the appearance itself of frontal N2 among children does not depend on sensory modalities,

and the strength and speed of neural activities involve modality differences. In addition, the dif-

ference in the peak latency of No-go-N2 might be related to the developmental difference

between somatosensory and auditory processing of motor inhibition.

P3 components

We showed that the amplitudes of P3 were significantly larger during somatosensory than audi-

tory Go/No-go paradigms (Table 3), suggesting that neural activities for motor execution and

inhibition were larger during somatosensory than auditory Go/No-go paradigms. Regarding

adults’ data, Imanaka et al. [43] reported that the amplitudes of P3 were significantly larger dur-

ing somatosensory than auditory Go/No-go paradigms, which was consistent with our findings.

Falkenstein et al. [15] also showed that amplitudes of P3 were significantly larger during visual

than auditory Go/No-go paradigms. Studies of adults suggested that neural activities and

strengths in motor execution and inhibition were smaller in auditory paradigms than in visual

and somatosensory paradigms. Our data indicate the existence of a modality difference in the

amplitude of P3 even in prepubescent children. In other words, although it is unclear whether

this phenomenon is innate or a developmental process, modality differences in P3 between

somatosensory and auditory Go/No-go paradigms are already present in prepubescent children.

We also showed that the peak amplitudes of P3 were mainly distributed at centro-parietal

electrodes in prepubescent children compared with adults, even though the weak ‘anterioriza-

tion’ of No-go-P3 was observed in prepubescent children. Some previous studies already sug-

gested an underlying mechanism whereby in young children, functional proficiency in the

detection of Go stimuli is achieved earlier than in inhibition of responses to No-go stimuli [8].

Logan & Cowan [53] proposed that the mechanisms governing inhibition and attention to tar-

gets may function independently to some degree. The larger amplitude of Go-P3 in prepubes-

cent children may be related to the developmental process in neural activity for motor

execution and inhibition.
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The latency of P3 was significantly shorter during somatosensory than auditory Go/No-

go paradigms (Table 3), suggesting that the stimulus classification and evaluation speed

were shorter during somatosensory than auditory Go/No-go paradigms. These data were

inconsistent with previous findings from adults. Imanaka et al. [43] showed no significant

differences in latencies of P3 between the somatosensory and auditory Go/No-go para-

digms. Falkenstein et al. [15] showed that latencies of P3 were significantly shorter during

auditory than visual Go/No-go paradigms. We inferred that the latencies of N2 and P3 and

mean RT were influenced easily by some factors, such as the subject and stimulus condi-

tions. For example, Falkenstein et al. [14, 15] reported contradictory findings even when

they used similar experimental paradigms. Nieuwenhuis et al. [17] also suggested that RT

was associated with context letters. In their paradigms, when the context letter looked simi-

lar but sounded different (i.e., Go trial = T, No-go trial = F), RTs were shorter during the

auditory Go/No-go paradigm than visual Go/No-go paradigm. In contrast, when the con-

text letter looked different but sounded similar (i.e., Go trial = S, No-go trial = F), RTs were

faster in the visual Go/No-go paradigm than auditory Go/No-go paradigm. These factors

also might be applied for prepubescent children.

In addition, when comparing the present data with data from our previous adult study on

the peak latency of P3 [43], the peak latencies of P3 during somatosensory and auditory Go/

No-go paradigms were clearly longer in prepubescent children than adults. These suggest the

immaturity of stimulus classification and evaluation speed in prepubescent children.

Relationship between behavioral responses and ERP components

The amplitude is smaller during the auditory Go/No-go paradigm than the somatosensory

Go/No-go paradigm, but it currently remains unclear whether neural functions relating to

motor execution and inhibition processing differ between somatosensory and auditory Go/

No-go paradigms. Based upon the present results (Fig 1 and Tables 3 and 4), we propose that

the smaller amplitude of P3 in the auditory Go/No-go paradigm more sensitively reflects the

neural functions of motor execution and inhibition. Moreover, these results may indicate that

relationships between behavioral responses and ERP components might be stronger in No-go

than Go trials, even though behavioral responses such as RT and SD of RT were recorded from

Go trials. Similar results were observed in previous studies on adults among somatosensory

[30] and visual and auditory Go/No-go paradigms [18]. Given these results, coupled with our

previous studies in adults using functional magnetic resonance imaging (fMRI) and MEG dur-

ing somatosensory Go/No-go paradigms [49, 54], the greater activation of the dorsolateral

(DLPFC) and ventrolateral prefrontal cortices (VLPFC), anterior cingulate cortex (ACC), infe-

rior parietal lobule, and caudate due to No-go relative to Go trials may be correlated with the

results of behavioral responses. That is, behavioral responses might be closely linked to the

strength of neural activity for motor inhibition rather than motor execution.

In somatosensory Go/No-go paradigms, a correlation was only found between commission

error and the peak latency of No-go-N2. Behavioral responses including RT, SD of RT, and

error rates, and the peak amplitude and latency of ERPs indicate different indices in human

information processing, but many previous studies in adults reported correlations between

behavioral responses and ERP components during visual, auditory, and somatosensory Go/

No-go paradigms [27–32]. In other words, the construction of relationships between actual

behavioral responses and neural activities reflected by ERPs in adults may reflect the maturity

of the cognitive function. Taking these previous studies into consideration, such a relationship

between them would be weaker in prepubescent children than in adults, suggesting an imma-

turity of the cognitive function in prepubescent children.
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Limitation of the present study

The present study used peak measurements for each ERP component. However, since peak

measurements may involve high-frequency noises (ex., double peaks of P3), the definition to

determine the peak amplitude and latency would be important in this study. In addition, Fig 1

shows simply grand-averaged ERP waveforms across all participants. Therefore, for example,

if there are subjects with a large and shorter P3 amplitude, the ERP waveforms could be dis-

torted. This may be related to the difference in appearance between the actual value (i.e.,

tables) and waveforms (i.e., figures). Finally, we did not directly compare the data between pre-

pubescent children and adults. Thus, further studies are needed to clarify the detailed differ-

ences in neural mechanisms between them.

Conclusion

This is the first study to examine modality differences in ERP waveforms between somatosen-

sory and auditory Go/No-go paradigms in prepubescent children. The frontal N2 component

was specifically recorded among prepubescent children using visual and auditory Go/No-go

paradigms [7–13], and our data showed that this component was detected even with a somato-

sensory Go/No-go paradigm. This finding suggests that the existence of the frontal N2 does

not depend on sensory modalities. In addition, since N1s and N2 components were separately

recorded (Fig 1) and the characteristics of N1s among prepubescent children differed from

those of adults, we propose that the changes in the frontal negative potentials with increasing

age reflect the developmental process for motor execution and inhibition. In a direct compari-

son of P3 between somatosensory and auditory Go/No-go paradigms, the amplitudes of P3

were significantly larger during somatosensory than auditory Go/No-go paradigms (Table 3).

It is unclear whether this phenomenon is innate or a developmental process, but our data sug-

gest that modality differences in P3 between somatosensory and auditory Go/No-go para-

digms were already present in prepubescent children.

We also evaluated the relationship between behavioral responses (i.e., RT, SD of RT, and

omission and commission errors) and N2 and P3 components. Based upon the present results

(Tables 3 and 4), the characteristics of P3 components in prepubescent children included

modality differences between somatosensory and auditory Go/No-go paradigms, and we pro-

pose that the smaller amplitude of P3 in the auditory Go/No-go paradigm more sensitively

reflects the neural functions of motor execution and inhibition. Our data provide findings to

advance understanding of the neural development of motor execution and inhibition process-

ing, which is dependent on or independent of the stimulus modality.
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