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Acute-on-chronic liver failure (ACLF) is a group of clinical syndromes related to severe
acute liver function impairment and multiple-organ failure caused by various acute
triggering factors on the basis of chronic liver disease. Due to its severe condition, rapid
progression, and high mortality, it has received increasing attention. Recent studies have
shown that the pathogenesis of ACLF mainly includes direct injury and immune injury. In
immune injury, cytotoxic T lymphocytes (CTLs), dendritic cells (DCs), and CD4+ T cells
accumulate in the liver tissue, secrete a variety of proinflammatory cytokines and
chemokines, and recruit more immune cells to the liver, resulting in immune damage to
the liver tissue, massive hepatocyte necrosis, and liver failure, but the key molecules and
signaling pathways remain unclear. The “danger hypothesis” holds that in addition to the
need for antigens, damage-associated molecular patterns (DAMPs) also play a very
important role in the occurrence of the immune response, and this hypothesis is related to
the pathogenesis of ACLF. Here, the research status and development trend of ACLF, as
well as the mechanism of action and research progress on various DAMPs in ACLF, are
summarized to identify biomarkers that can predict the occurrence and development of
diseases or the prognosis of patients at an early stage.
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HIGHLIGHTS

• Immune damage is an important factor in the occurrence of ACLF, but the immune mechanism
is unclear.

• The DAMP cycle and immune damage are important factors leading to cytokine storms.
• According to the “danger hypothesis,” DAMP release, inflammatory cytokine storms, and the

occurrence of ACLF are closely related.
• Intrahepatic infiltration and hyperfunction of immune cells caused by DAMPs are important

factors leading to the occurrence of ACLF.
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• DAMPs can be biological target molecules for the early
diagnosis and treatment of ACLF.

As a group of complex clinical syndromes related to severe
acute liver function impairment and multiple-organ failure
caused by various acute triggering factors on the basis of
chronic liver disease, ACLF is characterized by severe disease,
rapid progression, and high mortality. Currently, there are four
categories of liver failure worldwide, namely, acute liver failure
(ALF) (1), subacute liver failure (SALF) (2), ACLF (3), and
chronic liver failure (CLF) (4), among which ACLF is a
common type of liver failure. Additionally, chronic viral
hepatitis, drug-induced hepatitis, and alcoholic hepatitis are
major diseases induced by ACLF.

Immune damage is an important mechanism for the
occurrence of ACLF. Recent studies have shown that
intrahepatic immune cell infiltration and cytokine storms are
important factors, but the key molecules involved in immune
hyperfunction in ACLF remain unclear. “The danger hypothesis”
holds that in addition to the antigens that the immune system
responds to when detected, the DAMP-mediated injury-
hyperimmunity cycle coincides with the mechanism of ACLF;
thus, DAMPs may be closely related to the occurrence of ACLF.
This paper summarizes the research status and development
trends related to ACLF, as well as the mechanism of action and
research progress on various DAMPs in ACLF.
1 THE DEFINITION, INDUCEMENT,
TREATMENT, RESEARCH STATUS, AND
DEVELOPMENT TRENDS OF ACLF

1.1 The Controversial Definition of ACLF
Liver failure is a group of clinical syndromes in which severe liver
damage caused by many factors results in severe dysfunction or
decompensation of synthesis, detoxification, metabolism, and
biotransformation, with jaundice, coagulation disorders,
hepatorenal syndrome, hepatic encephalopathy (HE), and ascites
as the main manifestations (5). ACLF, as the most common severe
liver disease syndrome in clinical practice, has various causes,
complex clinical manifestations, and high mortality.

Currently, the definitions of ACLF in different areas of
research are controversial, which mainly results from
differences in patients in Europe, America, Asia Pacific, and
other regions, as well as medical histories, diagnostic criteria, and
acute inducing factors. The European Association for the Study
of the Liver-Chronic Liver Failure (EASL-CLIF) defines ACLF as
a severe syndrome in patients with liver cirrhosis that has three
typical characteristics: acute liver decompensation, organ failure,
and short-term high mortality. This definition not only includes
intrahepatic symptoms but also reflects the damage caused by
ACLF to multiple organs or systems including the liver and other
tissues (6). The North American Consortium for the Study of
End-Stage Liver Disease (NACSELD) defines ACLF as involving
two or more extrahepatic organ failures, excluding changes in
liver function and the coagulation system (7). The definition of
Frontiers in Immunology | www.frontiersin.org 2
ACLF by the Asian Pacific Association for the Study of the Liver
(APASL) was published in 2009 (8) and updated in 2014 (9) and
2019 (10), including patients with liver cirrhosis (compensatory
period) or chronic liver disease who have or not been diagnosed
in the past, acute liver injury complicated with jaundice (serum
bilirubin ≥ 5 mg/dl (85 mmol/l), and coagulation disorders
(international normalized ratio ≥ 1.5 or prothrombin activity <
40%), ascites and/or HE within 4 weeks; no history of
decompensation and extrahepatic sediment, renal failure, and
circulatory or respiratory failure are excluded from the
definition, and the mortality rate within 28 days is usually high.

1.2 Inducement and Treatment Status
of ACLF
According to recent clinical studies, the main causes of death in
ACLF patients include hepatitis virus reactivation, sepsis caused
by bacterial infection, severe alcoholic liver disease, and drug
toxicity and side effects.

Currently, the treatment of ACLF generally includes medical
support treatment, artificial liver treatment, and liver
transplantation treatment, but ACLF is still characterized by
severe illness, rapid progression, and high mortality in the clinic
(5). Treatment studies of liver failure have been continuously
developed to further clarify the pathogenesis of ACLF, explore
related factors of its prognosis, find early diagnosis and treatment
targets, predict patient outcomes such that clinical intervention
treatment can be carried out in a timely manner, improve
prognosis, and reduce mortality.

1.3 Research Status and Development
Trends of the Immune Pathogenesis
of ACLF
At present, the pathogenesis of ACLF remains unclear, although
recent studies have shown that the pathogenesis of ACLF mainly
includes direct injury and immune injury. Pathogen-associated
molecular patterns (PAMPs) released by pathogens themselves
or DAMPs induced by various factors bind to receptors and
stimulate the release of proinflammatory cytokines such as
interleukin (IL)-1b, IL-6, and IL-8, leading to immune
disorders and thus causing a “cytokine inflammatory storm,”
sepsis, tissue hypoperfusion, and mitochondrial dysfunction, all
of which can culminate in multiple-organ failure and ACLF
(11–13).

From the perspective of immune cell function, cellular immunity
mediated by CTLs is the main factor causing massive hepatocyte
necrosis (14). Studies have shown that IFN-g and TNF-a expression
in the liver of ACLF patients is markedly upregulated, which is
significantly related to accumulation of CD4+ and CD8+ T cells (15).
Some studies have found that the expression level of programmed
cell death protein 1 (PD-1) on CD8+ T cells decreases significantly
in the early stage of ACLF, which diminishes the negative regulation
of CTL immune activity and promotes disease aggravation (16). In
addition, some studies have found that DCs migrate from the blood
to the liver in ACLF patients, inhibiting IFN-g secretion by CD8+ T
cells and reducing liver damage (17). CD4+ T cells are also an
important factor in the occurrence of ACLF. Compared with
July 2022 | Volume 13 | Article 935160
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healthy people and chronic hepatitis B (CHB) patients, regulatory T
cells (Tregs) in the peripheral blood of ACLF patients are
significantly increased, which correlates positively with the viral
nucleic acid load, suggesting that it may be related to disease severity
(18). Other studies have observed immune imbalance between Th17
and Treg cells in ACLF patients. When ACLF occurs, there are
asynchronous increases in Th17 cells and decreases in Treg cells,
and prognosis is poor when the ratio of Treg/Th17 cells is low
(19, 20). Some scholars have studied the number and function of
peripheral blood mononuclear cells in the course of ACLF, with
human leukocyte antigen–DR isotype (HLA-DR) showing a
downward trend with disease aggravation; the proinflammatory
factors IL-1b and TNF-a secreted by monocytes are also increased
in the early stage and decreased in the late stage. The immune state
of the body changes from a severe proinflammatory reaction at the
beginning of the disease to an anti-inflammatory reaction stage,
which enhances the risk of infection and further aggravates the
disease (21). Moreover, some scholars have put forward the “triple
attack theory,” which suggests that the occurrence of liver failure
includes a triple attack of immune injury, ischemia, and hypoxia
injury and endotoxemia. On this basis, it is proposed that
immunotherapy for ACLF should be carried out in stages, that is,
immunosuppressive therapy should be given at the initial stage and
immune enhancement therapy should be given at the middle and
late stages (22).

In addition to various immune cells, many cytokines are
involved in the occurrence and development of ACLF.
Compared with acute hepatitis B patients, CHB patients, and
healthy controls, the serum IL-1Ra level in HBV-ACLF patients
is significantly increased, although the ratio of IL-1Ra/IL-1b is
significantly decreased. Further follow-up has shown that the
level of IL-1Ra and the IL-1Ra/IL-1b ratio are closely related to
survival time, and many proinflammatory cytokines, such as IL-
6, IL-8, and IL-23, are significantly related to the occurrence and
prognosis of ACLF (14, 20, 21).

In summary, a variety of immune cells and cytokines are
involved in the pathogenesis of ACLF. In the early stage, CTLs,
DCs, and CD4+ T cells accumulate in the liver tissue, secrete a
variety of proinflammatory cytokines and chemokines, and
recruit more immune cells to the liver, resulting in immune
damage to the liver and leading to massive hepatocyte necrosis
and liver failure. In general, the key factors leading to aggravation
of immune injury can be identified by further understanding the
immune mechanism of ACLF, which will provide an important
theoretical basis for early treatment of liver failure and curb its
further development.
2 TYPES AND FUNCTIONS OF
INFLAMMATORY FACTORS RELATED TO
THE DANGER HYPOTHESIS

Dr. Matzinger first put forward the “danger hypothesis” in 1994,
which holds that the immune system will respond only when it
detects danger; otherwise, it is immune tolerant (23). Subsequently,
Dr. Matzinger put forward the “danger model” in 2002, which
Frontiers in Immunology | www.frontiersin.org 3
shows that the immune system is more concerned about the danger
signals generated by cell damage or stress, than with unconditionally
recognizing and removing foreign substances. Regardless of whether
danger signals are exogenous pathogens released from necrotic cells
or chemicals synthesized or modified by endogenous cells
themselves, they can trigger immune responses through tissue
damage or cell stress and are not emitted by healthy cells or
cells in a normal physiological death state (24). Necrosis of
cells can result in the generation of danger signals, which
will promote secretion of cytokines by immune cells, further
aggravate immune damage to cells, form a cycle of tissue damage,
and lead to the generation of a cytokine storm and massive tissue
necrosis (Figure 1).

There is no clear definition of the properties of danger
signaling molecules, which can be divided into physical,
chemical, and biological molecular forms according to different
inducements. A large class of danger signaling molecules,
DAMPs belong to the immune stimulation molecular model in
aseptic inflammation, which is different from the microbial
model and is usually related to injury (25). DAMPs are
produced by necrotic and stressed cells or tissues and can bind
to host pattern recognition receptors (PRRs) and other receptors,
transmitting proinflammatory signals and promoting secretion
of inflammatory factors and the inflammatory response. DAMPs
are mainly derived from the nucleus, cytoplasm, organelles, or
extracellular matrix and include uric acid, mitochondrial DNA
(mtDNA), ATP, heat shock proteins (HSPs), amyloid b, S100
protein, high-mobility group box chromosomal protein 1
(HMGB1), ECM protein, IL-1a, IL-33, genomic DNA,
cyclophilic protein A, fibrous actin (F-actin), and calreticulin
(26, 27). DAMPs are associated with LF occurrence and
development. All studies of IL-33, IL-1a, S100 protein, and
mitochondrial DNA and 75% of those of histones have shown
that DAMP expression is elevated during ACLF and correlates
positively with disease severity. Studies of HSPs and 25% of
studies of histones found that expression is decreased, which
might prevent the occurrence of ACLF (Table 1). Therefore,
analysis of the relationship between DAMPs and ACLF may be
of great significance to elucidate the pathogenesis of ACLF.
3 TYPES AND FUNCTIONS OF DAMPS
RELATED TO ACLF

3.1 Interleukin-1 Family Cytokines
In recent years, increasing attention has been given to the
relationship between the function of IL-1 superfamily members
and the occurrence of ACLF. IL-1 superfamily members are
involved in many inflammatory diseases, such as obesity,
cardiovascular diseases, cancer, viral or parasitic infections,
autoinflammatory syndrome, and liver diseases (102). The role
of the IL-1 superfamily in liver diseases can be protective or
proinflammatory, and two members, namely, IL-33 and IL-1a,
which have been studied the most, are considered bifunctional
cytokines. In addition to their functions as classical cytokines, as
part of the DAMP process, IL-33 and IL-1a are early warning
July 2022 | Volume 13 | Article 935160
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signals of cell injury (102). The IL-33/ST2 pathway has a
bidirectional regulatory role in acute hepatocyte injury and
chronic liver fibrosis, and the IL-1a/IL-1R1 axis promotes
massive necrosis of hepatocytes and infiltration of inflammatory
cells into liver tissue, leading to organ failure. Such enhanced
immune cell tissue infiltration and cytokine secretion abilities may
play an important role in liver immune injury.

Knowledge of effects of the IL-33/ST2 axis and IL-1a/IL-1R1
axis on ACLF will be helpful to reveal the pathogenesis of ACLF
to provide a new target for early diagnosis and treatment
of ACLF.

3.1.1 Interleukin-33
IL-33 is a member of the IL-1 superfamily. As a tissue-derived
nuclear cytokine, it is mainly derived from endothelial cells,
epithelial cells, and fibroblasts during inflammation. Its receptor
ST2 is a member of the Toll-like receptor superfamily and is
expressed on the surface of many immune cells, such as mast
cells, type II intrinsic lymphocytes (ILC2s), Tregs, helper T cells,
CD8+ T cells, natural killer cells, B cells, and macrophages (103).

Kotsiou et al. summarized previous studies and found that
acute large-scale liver injury could result in release of IL-33 from
cells, which might be an activator of tissue self-protection and
repair (35) or an anti-inflammatory factor marker of M2
macrophages (36). However, IL-33 acts as a liver fibrosis factor
to aggravate liver deterioration in chronic liver injury (36).
Rickard et al. found that IL-33 released from mouse liver
necrosis tissue into the microenvironment forms a coupling
complex with myeloid differentiation factor 88 (MyD88), IL-1,
and a subset of Toll-like receptors; this process might be
Frontiers in Immunology | www.frontiersin.org 4
regulated by the RIPK1–RIPK3–MLKL axis and drive
inflammation (39). Arshad et al. reported that the expression
of IL-33 in hepatocytes is partly controlled by perforin and
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) under the regulation of natural killer T cells but that
is not controlled by tumor necrosis factor a (TNF-a) or Fas
ligand (FasL). IL-33-deficient mice exhibit more severe liver
injury than WT mice, suggesting that IL-33 has a protective
effect against acute liver injury (37). According to Volarevic et al.,
acute liver injury induced by concanavalin A can be reduced by
activating the IL-33/ST2 axis. ST2-deficient mice developed
more severe hepatitis and more liver inflammatory cell
infiltration, suggesting the potential of the IL-33/ST2 axis as a
therapeutic target (38).

Nevertheless, some studies have shown that the IL-33/ST2
axis has a role in promoting the development of acute liver
injury. Kim et al. (40) and Seo et al. (41) found serum levels of
HMGB1 and IL-33 to be significantly increased in ALF animal
mode l s induced by D-ga lac tosamine (Ga lN) and
lipopolysaccharide (LPS) and that blocking the pathway with
inhibitors (such as necrostatin-1) could reduce liver injury. IL-
33/ST2 promotes activation of the nuclear factor (NF)-kB,
mitogen-activated protein kinase (MAPK), or extracellular
signal-regulated kinase (ERK)/p38-MAPK pathways to produce
proinflammatory cytokines (IL-6, IL-8) and T helper type 2
(Th2)-related cytokines (IL-4, IL-5, IL-9, IL-13) (104, 105).

At present, there are few studies on the IL-33/ST2 axis in
ACLF. Roth et al. found through serological experiments that
compared with healthy people, the concentrations of IL-33 and
soluble ST2 (sST2) in ALF and ACLF patients are significantly
FIGURE 1 | Danger signal cycle: relationships among cell necrosis, DAMPs, and cytokine storms.
July 2022 | Volume 13 | Article 935160
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increased, which is helpful for distinguishing acute and chronic
liver failure or for monitoring the progression and severity of the
disease (28). Subsequently, immunohistochemistry by Lei et al.
showed a weak IL-33 expression and high sST2 expression in
liver slices of HBV-ACLF patients, suggesting that sST2 can be
used as a predictor of disease severity (29). Jiang et al. found no
significant difference in serum IL-33 among HBV-ACLF, CHB,
and HC groups, even though serum sST2 levels were higher in
HBV-ACLF patients, correlated with the survival rate, and
decreased after treatment. It was suggested that sST2 can be
used as a marker for evaluating disease severity and early
recognition (30). In the study of Du et al., the expression level
of IL-33/ST2 was significantly increased in the serum and liver
tissue of ACLF patients, and the level of serum IL-33 was found
to be related to the severity of liver disease. In vitro experiments
proved that IL-33 enhanced the LPS-stimulated inflammatory
storm of monocytes through ERK1/2 activation but not p38 and
JNK activation (31). Regarding the course of ACLF caused by
CHB, Yuan et al. showed that compared with levels in the CHB
group and the pre-ACLF group, serum IL-33 and sST2 were
highest in the ACLF group, which could be used to evaluate
progression and mortality in patients with multiple biological
indicators (32). Gao et al. showed that serum IL-33 and sST2
were highly expressed in HBV-ACLF and that sST2 may be used
as a prognostic marker (106).
Frontiers in Immunology | www.frontiersin.org 5
In conclusion, abundant clinical evidence and experimental
data show that the IL-33/ST2 pathway is related to the
occurrence and development of various acute liver diseases, but
the role of the IL-33/ST2 axis in ALF/ACLF is still controversial.
As a DAMP, IL-33 stimulates the immune system to respond to
virus invasion through its receptor ST2, drives immune cell
infiltration into the liver, increases secretion of cytokines, and
causes toxic damage to liver cells. However, some studies have
found that the IL-33/ST2 axis can also promote Th2-type
responses and hepatic stellate cell activity, promoting the
progression of liver fibrosis due to chronic damage, which is a
protective mechanism.

3.1.2 Interleukin 1a
IL-1a, a member of the IL-1 superfamily, is released by RIPK3/
caspase-8 apoptosis signal transduction in a caspase-1-
dependent manner during cell injury or apoptosis, from
macrophages undergoing TNF-induced necroptotic death or
from apoptotic bodies. IL-1a can trigger an inflammatory
response regardless of cell damage or apoptosis (107). The
receptors, the IL-1 receptor (IL-1R) family including more
than 10 structurally related members such as IL-1R1, IL-1R2,
and IL-1R3, which transmit inflammatory signals downstream,
induce the accumulation of immune cells and promote the
secretion of inflammatory cytokines. IL-1Rs are alert receptors
TABLE 1 | DAMPs associated with ALF.

Intracellular location DAMPs
NOT ACLF

ACLF
(ALF/ALI)

Upregulation Upregulation Upregulation Upregulation
(protective) (damaging) (protective) (damaging)

Nucleus IL-33 Animal models: Animal models: Humans:
(28–34)(35–38) (35, 39–41)

IL-1a Animal models:
(44–48)

Humans:
(42, 43)
Animal model: (43)

Histones Humans:
(49, 50)

Animal model:
(53)

Humans:
(51, 52)

Animal models: Animal model:
(49, 50, 54) (55)

HMGB1 Humans:
(56–59)

Humans:
(56, 60)

Animal models: Animal models:
(61–66) (66–68)

Cytosol HSPs Humans:
(69–71)

Animal models:
(73–77)

Humans: (72)

Animal models: Animal model:
(69, 70, 78–90) (87)

ATP Humans:
(91, 92)
Animal models:
(91, 92)

S100 Protein Humans:
(93, 94)

Humans:
(58, 95, 96)

Animal model: Animal model:
(97) (98)

Mitochondria Mitochondrial DNA Human model: Animal model:
(99) (100, 101)
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that play a central role in sensing maladaptive tissue changes
from both outside and within the body (108). One study found
that IL-1R-/- mice had a higher survival rate than wild-type mice
during chronic infection, which was due to the attenuated
inflammatory response in the former, allowing them to recover
from cachexia (109). As a common proinflammatory factor, IL-
1a has been intensely studied in liver injury, mainly with regard
to ALF and less so ACLF. In addition, many studies on the IL-
1a/IL-1R axis in liver disease have high patient numbers.

Romics et al. used LPS to induce liver injury in mice and
found that various serum proinflammatory cytokines (including
IL-1a) were significantly increased and that mRNA expression
levels of various proinflammatory cytokines in the liver also
increased (44). Gehrke et al. showed that inhibiting IL-1R1 by
blocking it with IL-1ra can alleviate the severity of ALF but that
administration of IL-1a aggravates the degree of liver injury (45).
Xiao et al. found that IL-1a can obviously induce and maximize a
reduction in the liver inflammatory state (46). Lactobacillus
reuteri DSM 17938 is a potential probiotic for preventing or
treating liver failure. In one study, the serum IL-1a level, the
inflammatory state, and acute liver injury decreased significantly
in a rat model treated with Lactobacillus reuteri DSM 17938 (47).
Sultan et al. reported that IL-1a plays a central role in the
pathogenesis of fulminant liver failure in mice; the symptoms of
ALF in IL-1a-/-mice were obviously alleviated, and secretion of
inflammatory factors was obviously reduced (48).

Systemic inflammation can easily lead to ACLF, which may
be related to activation of inflammatory corpuscles. The research
of Monteiro and studies of other animal models have confirmed
that development of ACLF in compensated cirrhosis is related to
increases in IL-1a and IL-1b (42). Recently, a genetic study
found two kinds of gene cluster polymorphisms belonging to the
IL-1 superfamily, in which expression of IL-1a-related genes
significantly reduced the occurrence of ACLF (43).

In conclusion, it may be a possible approach to treat ALF/
ACLF by blocking the IL-1a/IL-1R axis.

3.2 Heat Shock Proteins
HSPs, which are produced by heat shock, ischemia, hypoxia, and
other stress factors, participate in the correct folding, modification,
and maturation of proteins; assist in the degradation of aging
proteins; are expressed during cell stress; and play an important
role in regulating antigen presentation, inflammatory signal
transduction, and apoptosis (110). HSPs are classified according
to their molecular weights as HSP25, HSP27, HSP60, HSP70,
HSP90, HSP110, and glucose-regulated protein (GRP), among
others. HSPs play an important role in the proliferation, invasion,
metastasis, and apoptosis evasion of cancer cells and promote the
development of diseases. As a new cancer diagnostic marker and
therapeutic target, HSPs play an important role in evaluating the
molecular mechanism of cancer development and metastasis
(111). Overall, HSPs are very important for cell survival under
unfavorable environmental conditions.

HSP27 overexpression is closely related to the tumorigenesis,
metastasis, and invasiveness of cancer. For example, the elevated
expression of HSP27 increases Salvador–Warts–Hippo pathway
Frontiers in Immunology | www.frontiersin.org 6
(Hippo pathway) nuclear localization, activates related
oncogenic and metastatic pathways, including the TGF-B/
SMAD, WNT/B-Catenin, and ILK signaling pathways, and
leads to increased tumor cell expansion in local tissues (112).
HSP70 induces cell proliferation, inhibits apoptosis and
oncogene-induced senescence, and is a poor prognostic marker
for various cancers (112). HSP70 promotes tumor metastasis and
infiltration by upregulating the expression of molecules such as
N-cadherin, MMP2, SNAIL, and vimentin (113). To date, there
are few studies on the mechanisms of HSPs in ACLF, and those
that have been conducted are mainly related to ALI and ALF.

HSPs have been considered to be protective factors in the
occurrence of acute liver injury or liver failure. Oda et al. found
in 2002 that geranylgeranylacetone (GGA) could prevent ALF
after large-scale hepatectomy by inducing and enhancing HSP70
expression in residual liver (78). Subsequently, Kanemura et al.
(79) and Kawashima et al. (80) reported that GGA initiated
strong cell protection by inhibiting the CXC chemokine GRO1
and inducing HSP27 and HSP70. Sepsis causes acute
inflammatory reactions in the liver, which can lead to organ
failure and death. According to Peppler et al., exercise has anti-
inflammatory and hepatoprotective effects; regular exercise
increases liver protein levels, including HSP70, prevents the
inflammatory cascade reaction induced by LPS, and weakens
the severe inflammatory reaction of the liver caused by sepsis
(81). Sumioka et al. showed that HSP25 and HSP70i have
protective effects on acute l iver injury induced by
acetaminophen (APAP) in mice, and their levels might be key
in determining the fate of APAP-injured mice (82). ALF induced
by APAP damages the mitochondria and activates HSP70
expression, whereas diphenyl diselenide prevents ALF induced
by APAP and plays a key role in regulating the cell protection
response (83). Excessive production of HSP70 in the liver
protects hepatocytes under various pathological conditions. It
has been found that prostaglandin E1, a non-toxic HSP inducer,
prevents ALF after large-scale hepatectomy by enhancing the
production of HSP70 in residual liver (84). Bicyclic alcohol is a
new type of hepatoprotective agent that induces the production
of heat shock transcription factor 1 (HSF1) and promotes
synthesis of HSP70 and the stress response, inducing sex-
specific liver protection to prevent liver injury or failure (85).
Dai et al. found that bicyclol induces the overexpression of
HSP27 in the liver, which significantly enhances the protection
of an animal model of acute liver injury induced by D-
galactosamine/lipopolysaccharide (86). In the study of
Vidyasagar et al., serum HSP25 and HSP27 had antioxidant
effects in ALF and CLF patients and reduced the damage caused
by reactive oxygen species (ROS) and prevented the occurrence
of HE (69). El-Baz et al. showed that D. salina hydrochloride
increased HSP25 and improved brain histopathological changes
in HE patients, benefiting ALF prognosis (70).

Most scholars believe that HSPs are important protective
factors in the repair of liver tissue damage and that increases in
their levels are helpful for the prognosis of patients and
predicting efficacy, but the mechanism of some remains
controversial. Ye et al. found that HSP27 accelerated the early
July 2022 | Volume 13 | Article 935160
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acute liver injury induced by ischemia–reperfusion injury in rats
by reducing the number of Treg cells, reducing levels of the
stress-protective factors superoxide dismutase (SOD) and
glutathione, increasing the level of proinflammatory factors,
and aggravating inflammation (73). Wright et al. conducted
ACLF-related animal experiments and showed increased
HSP25 in the corpus callosum of the bile duct ligation (BDL)
rat model, suggesting a cell stress state (such as inflammation and
apoptosis) (87).

Other members of the HSP family also play important roles in
the development of acute liver injury or liver failure. Some
studies have found that GRP78 combined with other
preparations can significantly improve the incidence of ALF or
prevent aggravation of acute liver injury. GRP78, a member of
the HSP70 family, is a molecular chaperone for endoplasmic
reticulum stress and stress-induced autophagy. Win et al.
showed that Japanese miso extract prepared from rice yeast
can enhance the expression of GRP78, inhibiting hepatitis A
virus (HAV) replication and reducing ALF (88). Nwe et al.
reported that free fatty acids or high concentrations of glucose
enhance HAV replication and reduce GRP78 expression but that
thapsigargin has the opposite effects, reducing the occurrence of
ALF (71). The protective effect of kaempferol in the ALF mouse
model occurs through inhibition of hepatocyte apoptosis by
increasing the expression of GRP78 (89). Ren et al. found that
compared with healthy people and patients with CHB, the
expression of GRP78 and GRP94 in ACLF patients decreases
gradually, indicating that HSP-mediated stress protection is
decreased in ACLF patients and correlates negatively with the
degree of liver injury (72).

However, some studies have reported that GRP78 and GRP94
are important factors for acute liver injury or liver failure. Baudi
et al. found that acute liver injury induced by IFN-a-mediated
virus infection could be alleviated by inhibiting GRP78 through a
mechanism that involves IFN-a induction of ER stress-related
cell death by reducing the unfolded protein response (UPR), with
GRP78 promoting high UPR expression and reducing IFN-a-
mediated liver injury in mice (74). Zhang et al. found that
peroxisome proliferator-activated receptor a (PPARa) can
improve liver injury caused by ALF; the mechanism is mainly
to reduce hepatocyte apoptosis by regulating endoplasmic
reticulum stress and reducing the expression of GRP78,
GRP94, and other proteins (75). According to Blas-Valdivia
et al., hypothyroidism reduces cell damage caused by
endoplasmic reticulum stress and redox environment changes
in an ALF rat model, which might be due to inhibition or
decreased protein activation pathways, such as GRP78 (76).

Finally, there are two common HSPs, HSP40 and HSP60, that
act as injury factors during acute liver injury or liver failure and
play an important role in regulating the acute inflammatory
response of the liver. A long-term treatment with isoniazid leads
to severe liver injury and ALF. Verma et al. reported the
following: the mechanism is that isoniazid prevents Nrf2
translocation and induces oxidative stress and apoptosis by
inhibiting ERK1 phosphorylation, thus increasing levels of the
stress proteins HSP40 and HSP60 (114). Hu et al. found that
Frontiers in Immunology | www.frontiersin.org 7
chlorogenic acid (CGA) reduces the infiltration of immune cells
in the liver, prevents increases in HMGB1 and HSP60, and
regulates the Nrf2-mediated HSP60 pathway to alleviate acute
liver injury induced by acetaminophen in mice (77).

Studies of the HSP family in ALF/ACLF are relatively scarce,
and the role of HSPs in the process of liver tissue injury remains
unclear. Due to the lack of basic experiments, more research on
HSPs is needed to clarify the mechanism.

3.3 Histones
Histones are an important structural component of eukaryotic
chromatin that help regulate gene transcription. Histones are
considered key mediators of systemic inflammatory diseases;
induce endothelial injury and platelet aggregation and activate
coagulation and cytokine production; and may cause sepsis,
severe trauma, vasculitis, and acute liver, kidney, brain, and
lung injury (115). Silvestre-Roig et al. found that the extracellular
histone H4-mediated membrane lysis of smooth muscle cells
(SMCs) triggers arterial tissue damage in atherosclerotic mice
and attracts neutrophils to exacerbate the inflammatory response
and that neutralizing histone H4 can prevent SMC death and
stabilize atherosclerotic lesions (116). Ray-Gallet et al.
summarized the potential oncogenic roles of histones H3 and
H4 and their chaperones in several cancers, indicating that they
stimulate the epithelial–mesenchymal transition (EMT) in
various ways or the alternative lengthening of telomeres (ALT)
pathway to promote tumor progression, illustrating their
potential clinical application as biomarkers (117). Despite
increasing attention on histone H3, only a few studies have
explored the importance of H4 and its chaperones or ways to
inhibit their action as a new therapeutic strategy (118).

In recent years, increasing attention has been given to the role
of histones as DAMP molecules in acute liver injury, ALF, and
ACLF to find potential new biomarkers and therapeutic targets.
Extracellular histones, especially H4, have been recognized as
important mediators of cell injury under various inflammatory
conditions. High expression of extracellular histones is closely
related to the development of inflammation in acute liver injury
and acute liver failure.

In the ALF mouse model of Ferriero et al., pyruvate
dehydrogenase complex (PDHC) and lactate dehydrogenase
(LDH) are transferred to the nucleus, which leads to an increase
in acetyl coenzyme A and lactic acid concentrations in the nucleus
and promotes acetylation of histone H3 and expression of injury-
related genes. However, liver injury in ALFmice can be reduced and
the survival rate improved by the enzyme inhibitors gamboge and
galloflavin (54). Wen et al. (49) and Yang et al. (50) both showed
that extracellular histones increase to different degrees in ALF
patients and ALF mice, demonstrating that extracellular histones
are the main mediator inducing systemic inflammation, cell
damage, and multiple-organ failure. Clinical studies by Li et al.
highlighted that compared to levels in chronic hepatitis B (CHB),
liver cirrhosis, and healthy control groups, plasma histone H4 levels
in HBV-ACLF patients are significantly increased, aggravating cell
injury and systemic inflammation, and are significantly related to
disease severity, systemic inflammation, and outcomes (51). Ding
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et al. found that the Qing Chang Li Gan formula (QCLGF) is a good
traditional Chinese medicine for treating ACLF, which may be due
to its ability to interfere with extracellular histone-mediated cell
damage and systemic inflammation. In one study, extracellular
histones and proinflammatory cytokines in ACLF patients
(conventional drugs + QCLGF) were lower than those in the
conventional drug treatment group. In vivo experiments have
revealed that QCLGF significantly improves the survival rate of
concanavalin A-induced liver fibrosis mice, improves
hepatotoxicity, and reduces extracellular histone levels and
proinflammatory reactions (55).

Histone methylation, phosphorylation, and acetylation are
markers of gene transcriptional status in several diseases, and
different posttranslational modification patterns are related to
some inflammatory diseases (119). Jin et al. found that the
whole-genome histone H3 lysine 9 acetylation analysis of
CD4+ T cells indicated endoplasmic reticulum stress defects in
ACLF patients, which provided a useful clue for further study of
the pathogenesis of ACLF (52). Zhang et al.’s research showed
that trichostatin A (TSA) reduces the activity of histone
deacetylase inhibitors (HDACs) in liver tissue, promotes
histone acetylation, inhibits release of various proinflammatory
cytokines (TNF-a, IFN-g, IL-10, and IL-18), and improves the
survival rate of ACLF model rats (53).

Although studies of extracellular H3 and H4 in ALF and
ACLF are rare and the mechanism is still unclear, some
experiments have shown that extracellular histones play an
irreplaceable role in liver injury. The importance of histones as
proinflammatory proteins in ALF and ACLF should be
further explored.

3.4 High-Mobility Group Box Chromosomal
Protein 1
HMGB1 is a non-histone chromatin-related protein that is widely
distributed in eukaryotic cells. A DAMP, HMGB1 is actively
secreted by immunocompetent cells or passively released from
apoptotic necrotic cells, which activates the immune response and
promotes inflammation and cancer development (120). HMGB1
transmits danger signals by binding with various receptors, thus
intensifying a series of cellular reactions that are closely related to
inflammatory diseases, autoimmune diseases, and cancer (121).
Extracellular HMGB1 transmits danger signals to surrounding
cells by interacting with its classical receptors. For example,
HMGB1 can bind to the receptor for advanced glycation end
products (RAGE) (122) and induce inflammation together with
Toll-like receptor 2/4/9 (TLR-2/4/9) (25, 123, 124). HMGB1 is
released from damaged host cells and activates PRRs (such as
RAGE), which upregulates the expression of NLRP3 and IL-1b
precursors, activating the NLRP3 inflammasome and binding with
IL-1b to exacerbate immune cell-induced inflammation and cellular
damage, which then accelerates cancer progression (125, 126).

In recent years, HMGB1 has been studied in ALF, ALI, ACLF,
and CLI, although only the relationship between HMGB1 and
ACLF is summarized here. HMGB1 is an important
proinflammatory molecule in many inflammatory diseases, but
its role in ACLF is not completely clear. The existence of HMGB1
Frontiers in Immunology | www.frontiersin.org 8
is strongly associated with early liver injury, immune activation,
and further immune injury during ACLF.

Some clinical experiments showed that increases in serum or
tissue HMGB1 levels correlate positively with the occurrence and
development of ACLF inflammation. A meta-analysis of 16
studies by Hu et al. revealed that the serum level of HMGB1 in
patients with severe HBV and HBV-ACLF is higher than that in
patients with mild and moderate hepatitis, and it was speculated
that HMGB1 might be an important diagnostic target for ACLF
(56). Jhun et al. showed that the expression of HMGB1, RAGE,
and IL-17 increased in the liver tissue of severe HBV patients. IL-
17 expression induced by the HMGB1/RAGE axis further
aggravates the inflammatory reaction of peripheral blood cells
in HBV patients, and downregulation of the HMGB1/RAGE axis
may effectively reduce the inflammatory reaction (57). According
to Cai et al., compared with levels in the healthy control, liver
fibrosis, and CHB groups, the serum HMGB1 levels of ACLF
patients are significantly increased, suggesting that HMGB1 can
provide diagnostic or prognostic information for HBV-related
ACLF (58). However, Wu et al. found levels of proinflammatory
cytokines to be significantly increased in ACLF patients, whereas
serum HMGB1 levels did not change (67).

The mechanism by which HMGB1 participates in the
occurrence of ACLF has been partially confirmed. Xu et al. found
that HMGB1 mainly exists in bile duct cells. HMGB1 begins to
increase gradually at 4 h after stimulation with LPS or TNF-a in
cholangiocarcinoma cell TFK-1 culture until the end of stimulation.
Due to ischemia and hypoxia, inflammatory stimulation leads to the
death of initial hepatocytes and release of HMGB1, demonstrating
that HMGB1 plays a key role in the systemic inflammation related
to ACLF (59). Gao et al. reported that the protective effect of the
recombinant Ad-HGF-HIL-6 adenovirus with hyper-IL-6 and
hepatocyte growth factor can significantly reduce serum HMGB1
and other proteins in ACLF rats as well as liver injury and apoptosis
activity (61). Xu et al. found that levels of the serum
proinflammatory cytokines IL-22, IL-6, and HMGB1 are
significantly decreased in ACLF mice treated with a lncRNA-rich
transcript-1 (NEAT1)-related adenovirus because NEAT1 blocks
TRAF6 ubiquitination in an ACLF rat model to inhibit the
inflammatory response (62). Wang et al. reported that ethyl
pyruvate significantly improves liver histopathology and reduces
levels of serum endotoxin, inflammatory cytokines, and HMGB1 in
liver tissue (63); Fang et al. reported that quercetin reduces oxidative
stress and apoptosis by inhibiting HMGB1 and its translocation,
thus alleviating liver injury in ACLF rats (64); and Yang et al.
reported that plasma-soluble T-cell immunoglobulin and mucin-
domain-containing molecule-3 (sTim-3) are significantly increased
in ACLF and inhibit the release of HMGB1, alleviating
inflammatory reactions and liver injury by promoting autophagy
and regulating monocyte/macrophage function (65). The latest
research results of Hou et al. (2021) revealed that the thermal
apoptosis of hepatocytes induced by HMGB1 enhances the
inflammatory reaction to aggravate ACLF and that inhibiting
HMGB1 in vivo obviously improves liver function and
coagulation function in ACLF rats, indicating that it is a potential
therapeutic target for ACLF treatment (66).
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In conclusion, the mechanism of action of HMGB1 in ACLF
is not yet fully understood. Blocking the production of HMGB1
with certain drugs or small-molecule preparations can reduce the
inflammatory response in the process of ACLF, which may be a
new targeted therapeutic strategy for ACLF.

3.5 S100 Protein
The S100 protein family is the key mediator for initiating and
maintaining inflammation, not only amplifying the initial
inflammatory signal and inducing inflammatory reactions but
also slowing inflammation, promoting tissue repair, and
regulating inflammation, cell proliferation and differentiation,
energy metabolism, apoptosis, calcium homeostasis, cytoskeletal
functions, and microbial resistance under certain conditions.
This family is also becoming a new diagnostic marker for
identifying and monitoring various diseases (108). The S100
protein is released by a variety of cells in the inflammatory state
to promote the expression of inflammation-related genes and cell
damage effects, among which S100A12 was the first S100 protein
identified as a RAGE ligand (34). ACLF research has mainly
focused on serological experiments, and the mechanism involved
remains to be further elucidated.

Early studies revealed that serum S100b levels in fulminant
hepatitis patients and ACLF patients are higher than those in
cirrhosis patients and normal controls and unrelated to survival
time (95). Another study showed that compared with 13
cirrhosis patients without HE and 8 healthy subjects, blood
levels of S100b in most of the 35 ALF patients studied were
increased but unrelated to the survival rate (93). Later, some
scholars found that serum S100b is a useful marker of HE in
fulminant hepatitis patients (96). Serum S100A12 may reflect the
oxidative stress and inflammation levels of HBV-ACLF patients,
and an increase in S100A12 may be an important biological
index of poor prognosis (58). Others have found that M2
macrophages can alleviate liver injury and play a protective
role in ACLF mice by inhibiting the S100A9 protein-related
necrotic inflammation axis, which provides new insight for the
treatment of ACLF patients (98). In addition, in children with
pediatric acute liver failure (PALF), the serum S100 b level may
correlate positively with the severity of the disease (94).
Researchers have also found that the serum S100 b level is
increased at an early stage in animal ALF models and may be
used as a marker of HE (97).

On the basis of clinical experiments, S100 proteins can be
used as new potential inflammatory markers of ACLF to assist in
the diagnosis or assess the prognosis of ACLF.

3.6 Mitochondrial DNA
In recent years, mtDNA, as a DAMP molecule, has been
increasingly studied in the context of cell damage. As a
proinflammatory mediator, its mechanism in many
inflammatory diseases has also been discussed. For example,
Tumburu et al. found that mtDNA is a proinflammatory DAMP
molecule in sickle cell disease (127) and Todkar et al. reported
that mtDNA can enhance the proinflammatory effect in vesicles
(116). Zhang et al. reported that mtDNA is greatly increased in
systemic inflammatory response syndrome (SIRS), promoting
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MAPK activity, increasing Ca2+ flux and phosphorylation,
inducing neutrophil-mediated organ damage, and leading to
death in patients by binding with TLR9 and activating human
polymorphonuclear neutrophils (PMNs) (117). mtDNA is of
concern in genetic diseases and systemic diseases, and its level is
related to the severity of inflammation. However, there are few
studies on the role of mtDNA in ALF or ACLF.

When hepatocyte damage leads to mitochondrial
dysfunction, mtDNA is damaged, consumed, and released into
the blood circulation from cells and triggers an inflammatory
reaction through TLR9, the inflammatory corpuscle, and the
stimulator of interferon genes (STING) pathways, which
aggravates hepatocyte damage and even multiple-organ
dysfunction (128). McGill et al. reported that compared with
survivors, the group of APAP-induced ALF patients who died
had higher serum mtDNA levels and that mtDNA could be used
as a good biomarker to predict prognosis (99). The mtDNA of
DAMPs can be released into the tissue environment by necrotic
hepatocytes during liver injury, and free mtDNA can promote
the development of inflammation and lead to ACLF by
interacting with cyclic GMP-AMP synthase (cGAS) to induce
IFN (100). He et al. found that APAP can significantly increase
serum mtDNA levels in ALF mice and that mtDNA in necrotic
hepatocytes triggers TLR9 on neutrophils, induces expression
and infiltration of proinflammatory mediators, and aggravates
liver injury (101).

As an inflammatory mediator in the process of hepatocyte
injury, mtDNA has received significant attention, but further
research is needed to find a stable inflammatory marker for the
early diagnosis of ALF or ACLF.
4 SUMMARY AND PERSPECTIVES

Currently, liver transplantation is the most effective treatment for
ACLF, but its use is limited by the number of donors. Therefore,
finding a treatment that limits excessive systemic inflammation
without inducing immunosuppression is important for ACLF
treatment. The danger signal theory states that the death of
tissue cells causes immune cell activation and release of a large
number of cytokines, increases immune damage to organs, and
eventually leads to systemic inflammation. Early inflammatory
mediators such as TNF-a, IL-1b, IL-17, and IFN-g are important
cytokines leading to ACLF, and DAMPs such as HMGB1 and IL-
33 have been shown to regulate early inflammatory mediators
through the NF-kB signaling pathway. IL-33 enhances the ability
of Tc cells to secrete IFN-g, NK cells to secrete IL-12, and DCs to
secrete TNF-a and IL-1b by binding to ST2 on the surface of
immune cells. TNF-a and HMGB1 synergistically promote D-
galactosamine/LPS-induced acute lethal liver injury, and blocking
TNF-a and HMGB1 synergistically improves liver injury (129)
while promoting histone acetylation, inhibiting release of a variety
of proinflammatory cytokines (TNF-a, IFN-g, IL-10, IL-18) (53).
DAMP-related molecules have been confirmed to be expressed
abnormally in ACLF patients, and IL-33, sST2 (28, 30, 32, 106),
and HMGB1 (58) have also been found to be single biomarkers
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that predict the prognosis of ACLF. There is currently no ACLF
therapy targeting DAMPs, but neutralization of IL-33 (130) using
sST2, HMGB1, and IL-33-blocking antibodies (131–133) and
TSA-acetylated histones (53) can effectively reduce the
inflammatory cytokine storm caused by DAMPs, which shows
the potential of ACLF precision immune diagnosis and treatment
targeting DAMPs.

In this paper, the relationship between DAMPs and ACLF in
the danger hypothesis is systematically analyzed, the possible
mechanism of DAMPs participating in the immune mechanism
of ACLF is explored, and the role of DAMPs in the occurrence of
ACLF is studied systematically and deeply by summarizing
various methods related to ACLF research. DAMPs mainly
result in the occurrence of ACLF by increasing the infiltration
of immune cells into the liver and causing a cytokine storm
(Figure 2). However, the mechanism of these pathways remains
unclear, and research is still in the stages of in vivo and in vitro
experiments. Regarding some of the research results, there are
still disputes, and the safety and effectiveness need to be further
studied. Therefore, it is necessary to further explore the
mechanism of the involvement of DAMPs in ACLF.

ACLF is a disease model of systemic inflammation, and studies
on the interaction between DAMPs and ACLF will add value to the
study of innate immunology and adaptive immune responses that
can be extended to other inflammatory diseases beyond ACLF.
Furthermore, ACLF serves as a suitable disease model to study the
Frontiers in Immunology | www.frontiersin.org 10
mechanisms of systemic inflammation and tissue damage, as the
relationship of each immune cell to DAMPs during ACLF
development is poorly understood. With the development of new
research tools, such as single-cell RNA-seq and other cutting-edge
technologies, the immunological characteristics of ACLF
development will be further determined, and how DAMPs affect
immune cell polarization and their subsequent effects on ACLF will
be revealed. In conclusion, we conducted a literature review of
DAMPs and their interactions in ACLF to increase, updating our
understanding of this research area and providing new ideas for
finding an appropriate immune intervention for ACLF.
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GLOSSARY
ACLF acute-on-chronic liver failure
CTL cytotoxic T lymphocyte
DC dendritic cell
DAMPs damage-associated molecular patterns
ALF acute liver failure
SALF subacute liver failure
CLF chronic liver failure
HE hepatic encephalopathy
EASL-
CLIF

European Association for the Study of the Liver-Chronic Liver Failure

NACSELD North American Consortium for the Study of End-stage Liver
Disease

APASL Asian Pacific Association for the Study of the Liver
PAMPs pathogen-associated molecular patterns
PD-1 programmed cell death protein 1
Tregs regulatory T cells
HLA-DR human leukocyte antigen-DR isotype;
PRR pattern recognition receptors
mtDNA mitochondrial DNA
HSPs heat shock proteins
HMGB1 high mobility group box chromosomal protein 1
F-actin fibrous actin
ILC2 type II intrinsic lymphocytes
MyD88 myeloid differentiation factor 88
TRAIL tumor necrosis factor-related apoptosis inducing ligand
TNF-a tumor necrosis factor a
FasL Fas ligand
GalN D-galactosamine
LPS lipopolysaccharide
NF nuclear factor
MAPKs mitogen-activated protein kinases
ERK extracellular signal-regulated kinase
Th2 T helper type 2
sST2 soluble ST2
IL-1R IL-1 receptor
GRP glucose-regulated protein
GGA geranylgeranylacetone
APAP acetaminophen
HSF1 heat shock transcription factor 1
ROS reactive oxygen species
SOD superoxide dismutase
BDL bile duct junction
HAV hepatitis A virus
UPR unfolded protein response
PPARa peroxisome proliferator-activated receptor a
CGA chlorogenic acid
SMCs smooth muscle cells
EMT mesenchymal transition
ALT alternative lengthening of telomeres
PDHC pyruvate dehydrogenase complex
LDH lactate dehydrogenase
CHB chronic hepatitis B
QCLGF Qing Chang Li Gan formula
TSA trichostatin A
HDAC histone deacetylase inhibitors
RAGE receptor for advanced glycation end products
TLR toll-like receptor
NEAT1 lncRNA rich transcript-1
PALF pediatric acute liver failure
SIRS systemic inflammatory response syndrome
PMN polymorphonuclear neutrophils
STING stimulator of interferon genes
cGAS cyclic GMP-AMP synthase.
sTim-3 soluble T-cell immunoglobulin and mucin-domain containing

molecule-3
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