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Abstract

Motivation: Discovering and understanding patterns in networks of protein–protein interactions

(PPIs) is a central problem in systems biology. Alignments between these networks aid functional

understanding as they uncover important information, such as evolutionary conserved pathways,

protein complexes and functional orthologs. A few methods have been proposed for global PPI

network alignments, but because of NP-completeness of underlying sub-graph isomorphism

problem, producing topologically and biologically accurate alignments remains a challenge.

Results: We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner

(L-GRAAL), which directly optimizes both the protein and the interaction functional conservations,

using a novel alignment search heuristic based on integer programming and Lagrangian relax-

ation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available

PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs

between the networks, as measured by edge-correctness and symmetric sub-structures scores,

which allow transferring more functional information across networks. We assess the biological

quality of the protein mappings using the semantic similarity of their Gene Ontology annotations

and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we intro-

duce for the first time a measure of the semantic similarity of the mapped interactions and show

that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate

on the PPI networks of baker’s yeast and human the ability of L-GRAAL to predict new PPIs. Finally,

L-GRAAL’s results are the first to show that topological information is more important than

sequence information for uncovering functionally conserved interactions.

Availability and implementation: L-GRAAL is coded in Cþþ. Software is available at: http://bio-

nets.doc.ic.ac.uk/L-GRAAL/.

Contact: n.malod-dognin@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the patterns in molecular interactions is of fore-

most importance in systems biology, as it is instrumental to under-

standing the functioning of the cell (Ryan et al., 2013). Because

molecular interactions are often modeled by networks, a large num-

ber of studies focused on understanding the topology of these

networks (Nepusz and Paccanaro, 2014; Pržulj, 2011). In the case

of protein–protein interaction (PPI) networks, where nodes repre-

sent proteins and edges connect proteins that interact, comparative

studies based on network alignments were particularly successful.

Given two networks, aligning them means finding a node-to-node

mapping (also called an alignment) between the networks that

optimizes two objectives: (i) maximizing the number of mapped

proteins (nodes) that are evolutionarily or functionally related
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and (ii) maximizing the number of common interactions (edges) be-

tween the networks. Network alignment uncovers valuable informa-

tion, such as evolutionarily conserved pathways and protein

complexes (Kelley et al., 2003; Kuchaiev et al., 2010) or functional

orthologs (Bandyopadhyay et al., 2006). Finding these allows trans-

fer of information across species, such as performing Herpes

viral experiments in yeast or fly and then applying the insights

toward understanding the mechanisms of human diseases (Uetz

et al., 2006).

Network alignment problem is computationally intractable

due to NP-completeness of the underlying sub-graph isomorphism

problem (Cook, 1971). Hence, several network alignment heuristics

(i.e. approximate aligners) have been proposed. Earlier methods,

called local network aligners, search for small but highly conserved

sub-networks called motifs (Flannick et al., 2006; Kelley et al.,

2004; Koyutürk et al., 2006). As motifs can be duplicated, local

network aligners often produce one-to-many or many-to-many map-

pings, in which a node from a given network can be mapped to sev-

eral nodes of the other network. Although these multiple mappings

can indicate gene duplications, they are often biologically implaus-

ible (Singh et al., 2007). Hence, global network aligners, which per-

form an overall comparison of the input networks and produce

one-to-one mappings between the nodes of the two networks have

been introduced. Several heuristics have been proposed for solving

the global alignment problem.

The first one is ISORANK (Singh et al., 2007), which rephrases

aligning networks as an eigenvalue problem, mimicking Google’s

Pagerank algorithm. HOPEMAP (Tian and Samatova, 2009) itera-

tively constructs the alignment between two networks by searching

for a common maximally connected component. PATH and GA

algorithms (Zaslavskiy et al., 2009) optimize the same objective

function, which balances between mapping similar proteins and

increasing the number of mapped interactions. The GRAAL family

(Kuchaiev and Pržulj, 2011; Kuchaiev et al., 2010; Memišević and

Pržulj, 2012; Milenković et al., 2010) is a set of network aligners,

which are based on the idea that mapping together nodes that are

involved in similar local wiring patterns (as measured by the statis-

tics of small induced sub-graph called graphlets) will result in a

large number of shared interactions. As newer GRAAL aligners

use improved alignment heuristic strategies, using C-GRAAL or

MI-GRAAL is recommended. Also, these two methods allow using

additional node scores, such as sequence similarity. NATALIE

(El-Kebir et al., 2011) is a combinatorial optimization method based

on Lagrangian relaxation, which searches for top scoring network

alignments over the biologically plausible node mappings obtained

by sequence alignment. GHOST (Patro and Kingsford, 2012) is a

spectral approach, where nodes are mapped according to the simi-

larity of their spectral signatures. NETAL (Neyshabur et al., 2013)

is a fast greedy heuristic that constructs an alignment by iteratively

inserting the node mapping with the highest probability to induce

common edges, where the probabilities are recomputed at each iter-

ation. SPINAL (Aladağ and Erten, 2013) is a two-step approach,

which first computes coarse-grained node similarity scores, and then

based on these scores, iteratively grows a seed solution. PISWAP

(Chindelevitch et al., 2013) optimizes global alignments using a

derivative of the local 3-opt heuristic, which is originally used

for solving the traveling salesman problem. MAGNA (Saraph and

Milenković, 2014) uses a genetic algorithm to maximize the

edge conservation between the aligned networks. HUBALIGN

(Hashemifar and Xu, 2014) uses a minimum-degree heuristic to

align ‘important’ proteins first and then gradually extends the align-

ment to the whole networks. Although all the above methods align

networks to derive additional biological knowledge (e.g. orthology

group and functional annotations), DUALALIGNER (Seah et al.,

2014) does the opposite and uses biological knowledge to produce

network alignments.

The number of known molecular interactions has increased tre-

mendously during the last decade due to the technological advances

in high-throughput interaction detection techniques such as yeast

two-hybrid (Fields and Song, 1989) and affinity purification

coupled to mass spectrometry (Ho et al., 2002). Because of the

increasing amount of available interaction data, coupled with the

computational hardness of the network alignment problem, produc-

ing topologically and biologically accurate alignments is still

challenging.

In this article, we introduce a novel global network alignment

tool that we call Lagrangian GRAphlet-based ALigner (L-GRAAL).

Unlike previous aligners, which either do not take into account the

mapped interactions (e.g. the previous GRAAL aligners and

ISORANK) or use naive interaction mapping scoring schemes (e.g.

NATALIE), L-GRAAL optimizes a novel objective function that

takes into account both sequence-based protein conservation and

graphlet-based interaction conservation, by using a novel alignment

search heuristic based on integer programming and Lagrangian re-

laxation. We compare L-GRAAL with the state-of-the-art network

aligners on the largest available PPI networks from BioGRID and

observe that L-GRAAL uncovers the largest overlaps between the

networks, as measured with edge-correctness (EC) and symmetric

sub-structure scores. These largest overlaps are key for transferring

annotations between networks. Using semantic similarity, we ob-

serve that L-GRAAL’s protein mappings and interaction mappings

are in better agreement with Gene Ontology (GO) (Ashburner et al.,

2000) than any other network aligners. By aligning the PPI networks

of baker’s yeast and human, we additionally show that the results of

L-GRAAL can be used to predict new PPIs. Finally, using our novel

semantic similarity measure of the interaction mappings and the

ability of L-GRAAL to produce alignments by using both topo-

logical and sequence similarity, we observe for the first time that

topological similarity plays a more important role than sequence

similarity in uncovering functionally conserved interactions, a result

that escaped all previous approaches.

2 Materials and methods

2.1 Definitions and notations
2.1.1 PPI network

The PPIs of a given organism are represented by a PPI network,

N ¼ ðV;EÞ, where nodes in V represent proteins and two nodes u

and v are connected by an edge (u, v) in E if the corresponding

proteins are known to interact.

2.1.2 Global network alignment

Given two PPI networks, N1 ¼ ðV1;E1Þ and N2 ¼ ðV2;E2Þ,
for which jV1j�jV2j, a global alignment, f: V1 ! V2, is a 1-to-1

mapping of the nodes in V1 to the nodes in V2. Formally, global

alignment is assigned a real-valued score S:

Sðf Þ ¼
X
u2V1

nðu; f ðuÞÞ þ
X
ðu;vÞ2E1

eðu; f ðuÞ; v; f ðvÞÞ; (1)

where n : V1 �V2 ! Rþ is the score of mapping a node of V1 to a

node in V2, and e : E1 � E2 ! Rþ is the score of mapping an edge

of E1 to an edge of E2. The Global Network Alignment problem

aims to find a global alignment that maximizes S.
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2.1.3 Graphlets and orbits

Graphlets are small, connected, non-isomorphic, induced sub-

graphs of a larger graph (denoted by G0; . . . ;G29 in Fig. 1) (Pržulj

et al., 2004). Within each graphlet, some nodes are topologically

identical with others: such identical nodes are said to belong to the

same automorphism orbit (denoted by 0; . . . ; 72 in Fig. 1) (Pržulj,

2007). Graphlets generalize the notion of node degree: the graphlet

degree of node v, denoted by di
v, is the number of times node v

touches a graphlet at orbit i (Pržulj, 2007). Graphlet degrees are

successfully used for measuring the distance between two networks

(Pržulj, 2007), as well as measuring the topological similarities

among nodes in networks (Milenković and Pržulj, 2008), which are

further applied for guiding the network alignment process in the

GRAAL family of network aligners, and for comparing protein

structures (Malod-Dognin and Pržulj, 2014).

2.2 L-GRAAL method
2.2.1 Similarity scores and objective function

In L-GRAAL, we measure the evolutionary relationship between

two mapped proteins u and f(u) according to their BLAST sequence

alignment:

nðu; f ðuÞÞ ¼ seqsimðu; f ðuÞÞ
max i;jseqsimði; jÞ ;

where seqsim can be any sequence-based similarity score (in this

article, we use both log of BLAST’s e-values and BLAST’s bit-

scores).

We measure the topological similarity between two mapped pro-

teins u and f(u) using their 2- to 4-node graphlet degree similarity t:

tðu; f ðuÞÞ ¼ 1

15

X14

i¼0

minðdi
u; d

i
f ðuÞÞ

maxðdi
u;d

i
f ðuÞÞ

:

We measure the topological similarity between two mapped

interactions (edges), (u, v) and ðf ðuÞ; f ðvÞÞ, according to the graphlet

degree similarity of their mapped end nodes:

eðu; f ðuÞ; v; f ðvÞÞ ¼ 1

2
ðtðu; f ðuÞÞ þ tðv; f ðvÞÞÞ:

This score is in [0, 1] and it rewards mapping edges that are involved

in similar local wiring patterns. Note that we also use all 2- to

5-node graphlet degrees, but it only resulted in larger running times,

without improving the quality of the alignments.

L-GRAAL’s objective function, S, either favors the evolutionary

relationships between the mapped proteins or the topological simi-

larity between the mapped interactions, according to a balancing

parameter a 2 ½0;1�:

Sðf Þ ¼ a�
X

u

nðu; f ðuÞÞ þ ð1� aÞ �
X
ðu;vÞ

eðu; f ðuÞ; v; f ðvÞÞ (2)

2.2.2 Two-step alignment search strategy

Because of the large sizes of PPI networks, solving the network

alignment problem when considering all possible node mappings is

computationally intractable.

In a first step, we use sequence and graphlet degree similarities

to select a subset of the node mappings on which L-GRAAL will op-

timize seed alignments; namely, we only consider the node mappings

u$ v, such that anðu; vÞ þ ð1� aÞtðu; vÞ�0:5. We term the map-

ping that satisfy this criteria selected node mappings. In a second

step, a greedy heuristic extends the seed alignments using all possible

node mappings, i.e. without being restricted to selected node map-

pings anymore.

Because both L-GRAAL’s and NATALIE’s alignment search

algorithms are based on integer programming and Lagrangian relax-

ation, Supplementary Section 1.4 presents the differences between

the two approaches.

2.2.3 Generating seed alignments using integer programming

First, to each selected node mapping, i$ k; i 2 V1; k 2 V2, we asso-

ciate a binary variable xik, such that xik¼1 if the node

mapping is in the alignment and 0 otherwise. Similarly, we associ-

ate to each edge mapping between selected node mappings,

ði; jÞ $ ðk; lÞ; ði; jÞ 2 E1; ðk; lÞ 2 E2, a binary variable yijkl, such that

yijkl¼1 if the edge mapping is in the alignment and 0 otherwise.

For brevity, henceforth, we ensure that each edge mapping is only

considered once by enforcing k< l. This allows us to differentiate

the two end-node mappings that result from an edge mapping

ði; jÞ $ ðk; lÞ: we term i$ k a tail-node mapping and j$ l a head-

node mapping.

The network alignment problem can now be expressed with the

following integer program (IP):

IP ¼ max
x;y

a
X

nði; kÞ � xik þ ð1� aÞ
X

eði; j;k; lÞ � yijkl

� �
; (3)

subject to:

X
k2V2

xik�1; 8i 2 V1; (4)

X
i2V1

xik�1; 8k 2 V2; (5)

xjl � yijkl�0; 8ði; jÞ 2 E1; 8ðk; lÞ 2 E2; (6)

xik � yijkl�0; 8ði; jÞ 2 E1; 8ðk; lÞ 2 E2; (7)

where constraints (4, 5) enforce that a node from V1 is mapped

to at most one node from V2 and vice versa and constraints (6, 7)

enforce that the selected edge mappings ði; jÞ $ ðk; lÞmust have their

end-nodes mapped as: i$ k and j$ l.

Because of the 1-to-1 mapping constraints (4,5), the relations

between the edge mappings and their head-node mappings can be

rewritten in a compact form. Given a node mapping j$ l and any

node i 2 N1, such that edge ði; jÞ 2 E1, then at most one edge map-

ping ði; jÞ $ ðk; lÞ can be selected by choosing a node mapping

i$ k. Constraint (6) can then be replaced by the following twoFig. 1. The 2- to 5-node graphlets and their automorphism orbits (Pržulj, 2007)
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set of constraints:

xjl �
X

k

yijkl�0; 8ði; jÞ 2 E1; 8l 2 V2 (8)

xjl �
X

i

yijkl�0; 8ðk; lÞ 2 E2; 8j 2 V1 (9)

In IP, when all the constraints between the node mappings and the

edge mappings are considered, the head-node mappings also respect

the 1-to-1 matching constraints. To keep this property in our

relaxed model, we add the following constraints into LRðkÞ:
X

l

yijkl�1; 8ði; jÞ 2 E1; 8k 2 V2 (10)

X
j

yijkl�1; 8ðk; lÞ 2 E2;8i 2 V1: (11)

2.2.4 Lagrangian relaxation

To solve IP, we apply Lagrangian relaxation (Held and Karp, 1970),

by relaxing constraints (8, 9), i.e. disconnecting the edge mappings

from their head nodes. Relaxed constraints are added as penalties

into the objective function, associated with Lagrangian multipliers

(kijl
E1

for each constraint 8 and kkjl
E2

for each constraint 9). Because

relaxed constraints are inequalities, the Lagrangian multipliers

must be non-negative real numbers (i.e. k 2 Rþ;0). This gives us the

relaxed problem (LRðkÞ):

LRðkÞ ¼ max
x;y

X
nkði;kÞ � xik þ

X
ekði; j; k; lÞ � yijkl (12)

subject to (4, 5, 7 and 10, 11), where ekði; j; k; lÞ ¼ ð1� aÞ � eði; j;
k; lÞ � kijl

E1
� kkjl

E2
and nkði;kÞ ¼ a� nði;kÞ þ

P
jk

jik
E1
þ
P

lk
lik
E2

are the

new node and edge scores after adding the penalties from the

relaxed constraints.

We developed a double bipartite matching algorithm, detailed

in the Supplementary Material, Section 1.1, for solving LRðkÞ in

OðjVj3 þ jVj2d3Þ time, where jVj is the number of nodes in the net-

works and d is the largest degree of a node. Solving LRðkÞ generates

a relaxed solution ðx!; y
!Þ. This relaxed solution is an upper bound

on IP, as its score is greater than or equal to the one of IP, but it is

often infeasible, as chosen edge mappings (the components of y
!

that

are set to 1) may not coincide with chosen node mappings (the com-

ponents of x
!

that are set to 1). However, any relaxed solution ðx!; y
!Þ

can be repaired into a feasible solution ðx!; y0
!
Þ of IP by selecting the

edge mappings y0
!

corresponding to the selected node mappings.

Such feasible solution is a lower bound on IP, as its score is smaller

than or equal to the one of IP.

To solve IP, we solve its Lagrangian dual problem, which is a

minimization of LRðkÞ over k. Many methods have been proposed

so far for solving Lagrangian dual problem (Guignard, 2003).

Here, we choose the sub-gradient descent method (Held et al., 1974)

because of our large number of relaxed constraints. The sub-

gradient descent is an iterative method that generates a sequence

of Lagrangian multipliers kð0Þ; kð1Þ; kð2Þ; . . . , starting from

kð0Þ ¼ 0, where kðiþ 1Þ aims to fix the broken relaxed constraints

in the solution of LR(kðiÞ), by making a step along its sub-gradient

vector. Details on our implementation are given in the

Supplementary Material, Section 1.2. Unfortunately, the Lagrangian

dual problem is also NP-complete, and thus one could not expect

to solve it in a reasonable time.

In practice, the process of solving the Lagrangian dual is

used for generating a sequence of seed solutions ðx!0; y
0
!

0Þ;
ðx!1; y

0
!

1Þ; . . . , until a given time limit or an iteration number limit is

reached (we use 1 h and 1000 iterations as default).

2.2.5 Heuristically extending seed alignments

At each iteration of the sub-gradient descent, the seed alignment

ðx!; y0
!
Þ is extended to include all node mappings with a three-step

greedy heuristic (see Algorithm 1 in Supplementary Material,

Section 1.3). All node mappings that do not positively contribute to

the score of the alignment are removed. The alignment is then max-

imally extended by sequentially visiting the yet unaligned nodes in

V1 and mapping them to the yet unaligned nodes in V2, so that the

score of the alignment is maximized. Then, a greedy local search

sequentially visits V1 and tries inserting or exchanging node map-

ping i$ k to improve the score of the alignment. Note that the

extended alignments are not returned to the dual solver, since they

are not computed on the same search space (seed alignments are re-

stricted to selected node mappings, whereas the extended alignments

are not), so they would invalidate the sub-gradient descent scheme

if included. When these computations end, L-GRAAL returns the

extended alignment with the best score.

2.3 Datasets
From the manually curated BioGRID database (v3.2.101, June

2013) (Chatr-Aryamontri et al., 2013), we obtained PPI networks

of eight organisms that have the largest number of known phys-

ical interactions: Homo sapiens (HS, 13 276 nodes and 110 528

edges), Saccharomyces cerevisiae (SC, 5831 nodes and 77 149

edges), Drosophila melanogaster (DM, 7937 nodes and

34 753 edges), Arabidopsis thaliana (AT, 5897 nodes and 13 381

edges), Mus musculus (MM, 4370 nodes and 9116 edges),

Caenorhabditis elegans (CE, 3134 nodes and 5428 edges),

Schizosaccharomyces pombe (SP, 1911 nodes and 4711 edges) and

Rattus norvegicus (RN, 1657 nodes and 2330 edges). Note that

physical interactions in BioGRID include both direct (e.g. from

yeast-two-hybrid) and indirect (e.g. from affinity capture) inter-

actions, so edges in our PPI networks connect proteins that either

directly interact or that co-exist in stable complexes. We retrieved

the corresponding protein sequences and GO annotations from

NCBI’s Entrez Gene database (Maglott et al., 2005). Note that we

only retrieved experimentally validated GO annotations, from

which we further removed the annotations inferred from PPIs (code

IPI). L-GRAAL is one of the few methods that can align even the

largest of the networks presented above. As already reported by

Clark and Kalita (2014), many of the other aligners have memory

issues when handling the two largest networks of yeast and human.

Thus, the comparisons presented in sections 3.1 and 3.2 are based

on the 6
2

� �
¼ 15 pairs of networks that involve DM, AT, MM, CE,

SP and RN, which can be solved by all methods. L-GRAAL’s align-

ments of yeast and human PPI networks are presented in Section

3.3. In the Supplementary Material, we also assess the robustness

of our results by comparing the performance of network aligners

on two more datasets. First, we create the binary PPI networks by

restricting our BioGRID networks to the yeast-two-hybrid captured

interactions only. Second, we use the synthetic random networks

from the NAPA benchmark (Sahraeian and Yoon, 2012).

2.4 Evaluation
We compare the alignments of L-GRAAL to those of HUBALIGN,

MAGNA, PISWAP, SPINAL, NETAL, GHOST, NATALIE, MI-

GRAAL and ISORANK. We set MI-GRAAL to use graphlet degree

vector similarity (GDS) alone, as well as to use GDS coupled with

sequence similarity (GDSþSEQ); since it is a randomized algorithm,

we repeat each alignment process 15 times for GDS and 15 times

for GDSþSEQ, to find alignments of the best topological and
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biological quality. We set SPINAL to use mode II, as recommended

in the corresponding paper. For all aligners that can produce

alignments using pure topology or pure sequence information

by balancing parameters varying in [0,1] (e.g. parameter a for

L-GRAAL), we sample the balancing parameters from 0 to 1 in

increments of 0.1. We set the time limits of both L-GRAAL and

NATALIE to 1 h per alignment. We set MAGNA to optimize S3

score, on a population size of 2000, over 15 000 generations, setting

that is recommended in the corresponding paper. For all network

aligners, we leave other parameters at their default values. All com-

putations are done on a desktop computer with an Intel Core

I7–2600 CPU at 3.40 GHz with 64 GB of memory. For all these

aligners, we report the results of their best alignments, according to

the following measures.

2.4.1 Topological quality

Network aligners are first compared by their ability to map proteins

that are similarly connected in both PPI networks. First, the size of

the alignment is measured by EC, which is the percentage of inter-

actions from the smaller network that are mapped to interactions

from the other network (Kuchaiev et al., 2010). Because large EC

can be achieved by mapping sparse regions of the smaller network

to densely connected regions of the larger one, we also measure how

topologically similar are the mapped regions using the symmetric

sub-structure score (S3), which is the percentage of the conserved

edges between the smaller network and the sub-network from the

larger network that is induced by the alignment (Saraph and

Milenković, 2014). Finally, we use the size of the largest connected

component (LCC) to ensure that the alignments correspond to large

common connected sub-structure, instead of several small discon-

nected ones (Kuchaiev et al., 2010).

2.4.2 Biological quality

It is not known which proteins from one PPI network should be

mapped to which ones in the other PPI network. Biological similar-

ity of two mapped proteins can be measured by the semantic similar-

ity of their GO term annotations. We compute the semantic

similarity using Resnik semantic similarity (Resnik, 1995) with best-

match average mixing strategy. Then, we measure the biological

quality of the entire alignment by the sum of the semantic similar-

ities of the mapped proteins, divided by the smaller number of anno-

tated proteins in the two networks.

3 Results and discussion

Here, we present the results achieved by network aligners on the

real PPI networks from BioGRID.

3.1 Topological analysis
First, L-GRAAL, HUBALIGN and GHOST produce the largest

alignments, with EC of 52.2% for L-GRAAL, 52.1% for

HUBALIGN and 42.7% for GHOST (see the left panel of Fig. 2).

These large alignments are key, as they allow transferring more

information across networks. We also measure the statistical signifi-

cance of the obtained EC scores using the standard model of sam-

pling without replacement, as proposed by Kuchaiev et al. (2010)

(the formula is presented in the Supplementary Material). All are

statistically significant, as the probability of obtaining similar or

higher values by chance is always smaller than 0.05. We test

whether L-GRAAL achieves larger EC by mapping the smaller net-

work to the densest regions of the larger network (the dense regions

corresponding to, e.g. large complexes captured by affinity capture-

based methods). This is not the case, since L-GRAAL, NETAL

and MAGNA best map sparse regions with sparse regions and

dense regions with dense regions, with symmetric sub-structures

score¼31.1% for L-GRAAL, 29.3% for NETAL and 26.4% for

MAGNA (see the middle panel of Fig. 2). In other word, L-GRAAL

is less biased toward cliquish structures than other aligners. On the

opposite, while HUBALIGN achieves EC that is comparable to the

one of L-GRAAL, it achieves smaller S3 score. This is not surprising

as HUBALIGN favors mapping densely connected proteins. Finally,

HUBALIGN, L-GRAAL and MI-GRAAL produce the least frag-

mented network alignments, with LCC¼74.6% for HUBALIGN,

71.5% for L-GRAAL and 67.7% for MI-GRAAL (see the right

panel of Fig. 2).

Overall, L-GRAAL and HUBALIGN outperform all other align-

ers in terms of the topological quality of their alignments on the real

networks from BioGRID (we also observe similar results when

aligning binary PPIs only, see Supplementary Fig. S4). However,

although L-GRAAL also achieves good performances when aligning

the synthetic networks from the NAPA benchmark, HUBALIGN

does not, which shows the higher robustness of L-GRAAL (see

Supplementary Fig. S5).

3.2 Biological analysis
As presented in the left panel of Figure 3, L-GRAAL, HUBALIGN

and GHOST map proteins that are involved in similar GO biolo-

gical processes (GO-BPs) best, with average semantic similarity of

the protein mappings of 1.09 for L-GRAAL, 1.08 for HUBALIGN

and 1.04 for GHOST. Similar holds for GO molecular functions

(GO-MFs) and GO cellular component annotations (GO-CC), as

presented in the middle and right panels of Fig. 3).

Large semantic similarities of the protein mappings indicate

that the alignments map functionally conserved proteins, but it does

Fig. 2. Topological comparisons of aligners. Methods (x axis) are compared according to the minimum, average and maximum of the best topological scores

(the error bars on y axis) that they obtain when aligning PPI networks. Left: Methods are compared according to EC. Middle: Methods are compared according

to symmetric sub-structure score (S3). Right: Methods are compared according to the size of the LCC in their alignments
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not mean that these functions are performed through conserved

interaction patterns between the two PPI networks. Although func-

tionally conserved interactions may highlight fundamental mechan-

isms (e.g. key binary interactions or complexes that must be

conserved), network aligners are never compared in this respect.

To measure the functional conservation of the mapped interactions,

we define the semantic similarity of two mapped interactions as the

average of the semantic similarities of the corresponding pairs

of mapped proteins. Then, we measure the biological quality of

the whole interaction mapping as the sum of all the interaction

semantic similarities divided by the smaller number of interactions

between annotated proteins in the two networks. To the best of our

knowledge, this is the first time that the biological quality of the

interaction mapping is considered.

As presented in Supplementary Figure S1, HUBALIGN,

L-GRAAL and SPINAL are the best in mapping interactions that

are involved in similar BPs, in similar MFs, and that are localized

in similar cellular regions. Overall, L-GRAAL and HUBALIGN

outperform all other aligners in terms of the biological quality

of their alignments when aligning real networks from BioGRID

(we also observe similar results when aligning binary PPIs only,

see Supplementary Fig. S4) and again L-GRAAL shows higher

robustness than HUBALIGN when aligning synthetic networks

from the NAPA benchmark (see Supplementary Fig. S5).

3.3 Predicting protein interactions
Although a good network alignment should map together function-

ally related proteins that interact in similar ways, alignments are

also composed of edge-mismatches, where interacting proteins are

mapped to non-interacting proteins.

To illustrate this phenomenon, we first investigate the largest

shared pathway between Saccharomyces cerevisiae and Homo sapi-

ens PPI networks that is found in L-GRAAL’s alignment, which is the

ribosome pathway (KEGG Id 3010) that contains 105 proteins and

862 interactions.

This alignment, illustrated in the left panel of Figure 4, correctly

aligns the dense sub-network from yeast to the dense sub-network of

human. However, it also aligns interacting proteins to non-interact-

ing ones. For example, it aligns yeast’s MRPS5 and MRP17, which

interact according to BioGRID’s data, with human’s MRPS5 and

MRPS6, which are not reported to interact in BioGRID (see the inset

of Fig. 4). Further investigation shows that these two protein map-

pings are biologically relevant. First, the proteins are evolutionarily

related: human’s and yeast’s MRPS5 share 33.6% of sequence

identity, and human’s MRPS6 and yeast’s MRP17 share 29.3% of

sequence identity. Second, human’s MRPS5 and MRPS6 are known

to interact, as captured by anti tag coimmunoprecipitation assay

(Richter et al., 2010). Therefore, L-GRAAL’s alignment of yeast

edge (MRPS5, MRP17) predicted the missing interaction in human

data from BioGRID.

Building upon this insight, we measure how many potential

interactions can be predicted by L-GRAAL’s alignment, by counting

the number of edge-mismatches whose node mappings involve

proteins with high sequence identity. In this way, we show that

L-GRAAL’s alignment can predict 200 potential interactions for

which the sequence identity between the mapped proteins is �70%,

Fig. 3. Biological comparison of network aligners. Methods (x axis) are compared according to the minimum, average and maximum semantic similarity of their

aligned proteins (the error bars on y axis), when semantic similarity is measured using GO-BP (left), GO-MF (middle) or GO-CC (right)

Fig. 4. Predicting new protein interactions. Left: Part of L-GRAAL’s alignment that aligns human and yeast ribosome pathways. The PPI sub-network of yeast

(white nodes and gray edges) is mapped to the PPI sub-network of human (red nodes and orange edges) as indicated by the blue edges. The inset highlights a

predicted interaction: Proteins MRPS5 and MRP17, which are interacting in the yeast PPI network, are aligned to proteins MRPS5 and MRPS6, which are not inter-

acting in the human PPI network. Right: Using the whole L-GRAAL’s alignment between yeast and human PPI networks, we plot in black the number of predicted

interactions (y axis) as a function of the minimum sequence identity between the aligned yeast-human proteins (x axis). We add in red the number of these pre-

dicted interactions that are also predicted in I2D database
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threshold for which the mapped proteins are expected to share the

same functions (Rost, 2002), see the right panel of Figure 4.

Supplementary Figure S3 presents the number of predictions

that are obtained when using less stringent sequence identity thresh-

olds (the list of all predicted interactions is available in the

Supplementary Excel Table).

We find that 34% of these predicted interactions are also pre-

dicted in the Interologous Interaction Database (I2D ver. 2.3)

(Brown and Jurisica, 2007), which is statistically significant since

the probability to obtain better or equal overlaps by chance is less

than 10�99 (using sampling without replacement, as detailed in the

Supplementary Material, Section 1.5). This result suggests that net-

work aligners such as L-GRAAL can be used as alternative protein

interaction predictors.

3.4 Balancing sequence and topological information
L-GRAAL can produce alignments from topology and sequence in-

formation when the balancing parameter, a, varies from 0 to 1.

In the previous experiments, we report the best scores (EC, S3,

semantic similarities of protein and interaction mappings) that are

obtained when a varies from 0 to 1 using a step size of 0.1. Here, we

report the effect of a on each of these scores. The corresponding

plots are presented in Supplementary Figure S2.

First, all topological scores reach their maximum values when

using topological information only (a¼0), with EC¼51.5%,

S3¼30.9% and LCC¼68.1% on average. It is also important to

notice that using sequence information only (a¼1) results in align-

ment having almost no common interactions (EC¼2.0%, on aver-

age). Second, the semantic similarities of the aligned proteins either

reach their maximum when using both topological and sequence

information or when using sequence similarity only, a ’ 0:9 for BP

and cellular component and a¼1 for MF. In contrast, the semantic

similarities of the aligned interactions reach their maximum when

using topological information only (a¼0).

These results show again the complementarity of the two sources

of information. Also, the comparison between the interactions’ se-

mantic similarities that are obtained when using topological infor-

mation only with the ones that are obtained when using sequence

information only suggests that topology plays a more important role

than sequence for uncovering functionally conserved interactions.

To the best of our knowledge, this is the first time that this is

observed. The importance of topology may be due to the concept

of function itself, which implies interactions with some part of the

cell or the environment (Hartwell et al., 1999) and these interactions

are captured by the topology of the PPI networks. Also, sequence

similarity may fail at identifying the correct one-to-one relationships

between genes when their homology relationships are not straight-

forward. Such difficult cases where topology is required include

finding the relationships between a set of paralogous genes in a

given species and its set of co-ortholog genes in another species.

4 Concluding remarks

First, we propose a global network alignment method called

L-GRAAL, which combines a novel objective function where the

topological similarity of the mapped interaction is based on graphlet

degree, with an efficient network alignment search algorithm

based on integer programming and Lagrangian relaxation. Using the

largest PPI networks from BioGRID, we show that L-GRAAL’s

alignments outperform other network alignments: they uncover

the largest common sub-networks between aligned networks, as

measured by EC and symmetric sub-structure scores.

Second, as measured by the average semantic similarity of the

mapped proteins, we observe that L-GRAAL best uncovers function-

ally conserved proteins. Because the objective of network aligners

is not only to uncover functionally conserved proteins but also func-

tionally conserved interactions among these proteins, we propose

a novel way of measuring the semantic similarity of the mapped

interactions and observe that L-GRAAL is among the best aligners

for uncovering functionally conserved interactions.

Third, on a case study of aligning human and yeast PPI net-

works, we show that L-GRAAL can be used to predict new inter-

actions. Designing a whole benchmarking and validation strategy

needed for finding which network aligners best predict protein inter-

actions and for precisely comparing such predictions with the ones

of traditional predictors are out of scope of this study.

Fourth, using the ability of L-GRAAL to produce alignments

using topological and sequence similarity, we observe that topo-

logical similarity plays a more important role than sequence simi-

larity for uncovering functionally conserved interactions. To the

best of our knowledge, this is the first time that this has been

observed.

Finally, L-GRAAL’s computations can be easily speed up by

using parallel programming. In each iteration of the Lagrangian

dual solver, i.e. when solving LRðkÞ for a given k, each local bipart-

ite matching for finding the best set of outgoing edges from a given

node is an independent task. In addition, each bipartite matching

problem, local and global, can be solved with parallel versions of

the successive shortest paths algorithm (Storøy and Sørevik, 1997).

This high level of parallelism for speeding up L-GRAAL’s computa-

tions is very promising as it allows it to scale with the future growth

of the interaction data.
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Pržulj,N. (2007) Biological network comparison using graphlet degree distri-

bution. Bioinformatics, 23, 177–183.
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