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The microarray cancer data obtained by DNA microarray technology play an important role for cancer prevention, diagnosis, and
treatment. However, predicting the different types of tumors is a challenging task since the sample size in microarray data is often
small but the dimensionality is very high. Gene selection, which is an effective means, is aimed at mitigating the curse of
dimensionality problem and can boost the classification accuracy of microarray data. However, many of previous gene
selection methods focus on model design, but neglect the correlation between different genes. In this paper, we introduce a
novel unsupervised gene selection method by taking the gene correlation into consideration, named gene correlation guided
gene selection (G3CS). Specifically, we calculate the covariance of different gene dimension pairs and embed it into our
unsupervised gene selection model to regularize the gene selection coefficient matrix. In such a manner, redundant genes can
be effectively excluded. In addition, we utilize a matrix factorization term to exploit the cluster structure of original microarray
data to assist the learning process. We design an iterative updating algorithm with convergence guarantee to solve the resultant
optimization problem. Experimental results on six publicly available microarray datasets are conducted to validate the efficacy
of our proposed method.

1. Introduction

During cell division and growth, abnormal changes often
happen to genes, which results in varying cancers. With
the rapid development of kinds of biomedical technologies
[1], DNA microarray comes into being and lots of microar-
ray data can be obtained for cancer prevention, diagnosis,
and treatment [2–12]. For various microarray data, classify-
ing the different types of tumors is an important task, but
challenging due to the high dimensionality and small num-
bers of samples [13–15] since the small number of data sam-
ples with large number of genes can easily result in the
“curse of dimensionality” and overfitting problems of data
processing and learning models. When the dimension of
samples is too high, the distance between any two samples
is very inaccurate. Therefore, the classification task for this

kind of data is often challenging. However, it has been veri-
fied by some existing biological experiments that only a very
small proportion of genes contribute significantly to biolog-
ical process and disease indication. Directly processing orig-
inal high dimensional microarray data not only degenerates
the classification performance but also brings extra compu-
tation burden of hardware. Therefore, it is necessary to select
a subset of discriminative genes from high-dimensional
microarray data to serve subsequent tasks [16–25]. If we
treat each gene as a feature dimension in microarray data,
gene selection is similar to the feature selection task in
machine learning and data mining community [26–37]. In
fact, many feature selection methods can be used well for gene
selection. Therefore, mathematical gene selectionmethods can
be also grouped into three classes, i.e., filter methods, wrapper
methods, and embedded methods.
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Filter methods often measure the importance of different
genes in a straight-forward manner based on certain criteria
such as t-test [38, 39], Z-score [40], signal-to-noise ratio
(SNR) [41], Laplacian score [42], mutual information [43],
and information gain [44]. In [41], Golub et al. firstly used
the SNR function to evaluate the weights of the genes. Many
traditional feature selection methods such as ReliefF [45]
and MRMR [46] are combined and used for gene selection
[47]. Since filter methods only depend on the intrinsic prop-
erties of original data [48], a good ranking criterion function
is very important.

As to wrapper methods, varying classification algo-
rithms are often used as a fitness evaluation to determine
the subset of genes and the selected genes can in turn
enhance the classification performance [2, 49–56]. In gen-
eral, wrapper methods can obtain better results than filter
methods, but bring more expensive computational cost. A
lot of evolutionary algorithms such as genetic algorithm
(GA), differential evolution (DE), ant colony optimization
(ACO), and simulated annealing are commonly used as
wrapper methods for gene selection [57, 58].

For embedded methods, the geometric structure and
intrinsic property of data are exploited to construct gene selec-
tionmodels. Among this kind of methods, somemathematical
regularization terms with specific physic meanings such as
representative and sparse characters are commonly used
assumptions. Typical models include self-representation [32,
33, 59–62], low-rank representation [63, 64], and matrix
factorization [65–67]. Based on these basic models, many
variants have been proposed, such as Laplacian graph regu-
larized low-rank representation [63]. Considering the robust-
ness to outliers, Wang et al. [66] proposed a robust l2,1-norm
regularized characteristic gene selection method. In [68],
Guo et al. proposed to identify the disease-associated genes
by utilizing ensemble consensus-guided unsupervised feature
selection method. In an unsupervised manner, the major
priori information can be used is the intrinsic local geometric
structure of data. Therefore, embedded methods that use this
priori information can achieve good performance for various
of microarray data and obtain more and more attention.

Although there are lots of computational methods pro-
posed for gene selection and achieve great success, most of
them focus on the relation of data samples while the correla-
tion between different genes is ignored. The expression
values of different genes should be interrelated for a certain
microarray data matrix. Therefore, we propose to calculate
the correlation of gene pairs to regularize the gene selection
model, which is named as named gene correlation guided
gene selection (G3CS). In detail, in order to exclude redun-
dant genes, the covariance of different gene dimension pairs
is calculated and embedded into our unsupervised gene
selection model to regularize the gene selection coefficient
matrix. In addition, we utilize a matrix factorization model
which can capture the cluster structure of original data to
assist the learning process. We design an iterative updating
algorithm to solve the resultant problem. Finally, experi-
mental results on six publicly available real microarray data-
sets are conducted to demonstrate that the proposed G3CS
can steadily perform better than other state-of-the-art com-

putational gene selection methods in terms of microarray
data classification. In Figure 1, we give a brief flowchart of
our proposed G3CS model.

2. Related Work

In this section, we introduce some gene selection works that
are most related to our proposed method. Before that, we
firstly present some notations will be used in the following
sections. Throughout this paper, matrices and vectors are
denoted as boldface capital letters boldface lower case let-
ters, respectively. Given an matrix X ∈ℝm×n, Xij represents
its ði, jÞ-th element, xi and x j denotes its i-th row and j-th

column, respectively. XT is the transpose of X. If X is
square, TrðXÞ is the trace of X. Ik denotes an identity matrix

with size k × k. 1 is a vector with all elements are 1. kXk2,1
=∑m

i=1kxik =∑m
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j=1X2
ij

q
denotes the l2,1-norm of matrix

X, which is used to constrain the row sparsity of X. kXkF
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1∑
m
j=1X2

ij

q
is the well-known Frobenius norm of X.

Since our proposed G3CS belongs to the embedded
method, we give a brief review about some related embedded
methods.

2.1. GRSL-GS. In [20], Tang et al. proposed a manifold reg-
ularized subspace learning model for gene selection, in
which the model projects original high dimensional micro-
array data into a lower-dimensional subspace, then original
genes are constrained to be well represented by the selected
gene subset. In order to capture the local manifold structure
of original data, a Laplacian graph regularization term is
imposed on the low-dimensional data space. Finally, the
learned projection matrix can be regarded as an important
indicator of different genes. Specifically, the mathematical
model of GRSL-GS can be formulated as follows:

arg min
C,P

X −XPCk k2F + λTr PTXTLXP
� �

s:t:P ≥ 0,C ≥ 0, PTP = I,
ð1Þ

where P denotes the projection matrix, C represents the data
reconstruction coefficient matrix, and L is the Laplacian
matrix calculated from original data. λ is a hyper-
parameter that balances the two regularization terms. The
first term in Eq. (1) constraints that original microarray data
can be reconstructed from the projected lower-dimensional
gene dictionary, and the second term is the graph Laplacian
regularization term used to preserve the intrinsic local man-
ifold structure of original data samples. Although GRSL-GS
captures the local structure information, it does not exploit
the gene correlation.

2.2. AHEDL. Considering that the graph Laplacian in GRSL-
GS can only capture pairwise sample relationship, Zheng
et al. [22] introduced a computational gene selection model
via adaptive hypergraph embedded dictionary learning
(AHEDL). Similar to GRSL-GS, AHEDL also learns a
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dictionary from original high dimensional microarray data,
and the learned dictionary is then used to represent original
data by a reconstruction coefficient matrix. The difference
of dictionary learning between GRSL-GS and AHEDL is
that GRSL-GS uses projection process but AHEDL directly
utilizes traditional dictionary learning model. The l2,1
-norm is imposed on the coefficient matrix for selecting dis-
criminate genes.

In addition, the hypergraph is also learned in an adap-
tive manner. In a nutshell, AHEDL can be formulated as
follows:

min
D,C,He ,Hv ,W

X −DCk k2F + αTr CLCT� �
+ β Ck k2,1 + γTr WTW

� �
s:t: dik k2 ≤ 1, wT1 = 1,w eið Þ > 0,

ð2Þ

As can be seen from Eq. (2), AHEDL integrates adaptive
hypergraph learning, dictionary learning, and gene selection
into a uniform framework. The dictionary matrix D, repre-
sentation coefficient matrix C and hypergraph W can con-
strain each other during the optimization process to
obtain their optimums. Since D can be regarded as the
new representation of X in the dictionary space, the row
sparsity imposed on C by using the l2,1-norm can be used
to measure the importance of gene dimensions in the
learned dictionary space.

3. Proposed Method

Given a microarray data X ∈ Rm×n, which contains n data
samples with m different genes. Gene selection aims to select
a gene subset that contains only a small number of genes for
subsequent tasks. Without sample label information, we
should exploit the intrinsic structure of data as much as pos-
sible. In this work, we deploy traditional regression model as

the basic architecture to formulate G3CS, which can be rep-
resented as follows:

min
P

PTX −C
�� ��2

F
+ α Pk k2,1, ð3Þ

where P ∈ Rm×c is a projection matrix that projects original
data into label space C = ½c1,⋯,cn� ∈ f0, 1gc×n, where ci ∈
f0, 1gc is the cluster indicator vector corresponding to xi. In
order to measure the importance of different genes, we impose
the l2,1-norm on P to constrain that important genes contrib-
ute more during the projection process. In machine learning
and data mining community, matrix factorization of target
matrix C often shows remarkable performance [67, 69]. In
our G3CS model, we also decompose C into two components,
i.e., F∈ Rc×c and Z ∈ Rn×c. As a result, Eq. (3) can be rewritten
as following form with appropriate constraints:

min
P,F,Z

PTX − FZT�� ��2
F
+ α Pk k2,1

s:t:FTF= I, ZTZ = I, Z ≥ 0,
ð4Þ

where FTF= I constrain each column of B to be independent
with each other. ZTZ = I is a relaxation constraint that makes
each row of Z to have only one nonzero element. The con-
straints in Eq. (8) make the model to conduct orthogonal clus-
tering which works well for unsupervised feature selection
[70].However, by minimizing Eq. (8) directly for gene selec-
tion neglects the gene correlation information which is impor-
tant in biomedical process. In this work, we embed the gene
correlation information into G3CS. It is well known that in
probability theory and statistics, a covariance matrix is a
square matrix giving the covariance between each pair of
elements of a given random vector. In this work, we use
covariance to calculate the correlation of different gene pairs,
then, we can get a symmetric semipositive definite covariance

⊗

PT

X

F ZT

⊗

M

S

Selected gene subset

Figure 1: Brief flowchart of our proposed G3CS model.
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matrix M. The i, j-th entry of covariance matrix M can be
calculated as follows:

M i, jð Þ = ∑m
i=1 xi − �x
� �

xi − �x
� �

m − 1 , ð5Þ

where �x is the gene average vector, which is calculated as
follows:

�x = ∑m
i=1xi
m

: ð6Þ

However, the diagonal elements inM only reflect the rela-
tionship between a gene dimension and itself, which makes no
sense in our model. Therefore, we adjust M to get a new cor-
relation matrix �M by the following equation:

�M i, jð Þ =
M i, jð Þ if i = j,

〠
k≠i

M i, kð Þ if i ≠ j:

8<
: ð7Þ

In such a manner, �Mði, jÞ represents the correlation
between the i-th gene dimension with all other gene dimen-
sions. Then, �Mði, jÞ can be embedded into Eq. (8) to empha-
size the independence of selected gene dimensions from the
perspective of data information. Therefore, we have

min
P,F,Z

PTX − FZT�� ��2
F
+ α Pk k2,1 + βTr PT �MP

� �
,

s:t:FTF= I, ZTZ = I, Z ≥ 0:
ð8Þ

In addition, the local geometric structure information of
original data should be preserved as much as possible in the
learned new space Z. By using the Gaussian kernel function,
we can get a similarity matrix from original data by the follow-
ing equation:

Sij =
exp

xi − x j
�� ��2

−2t2

 !
, xi ∈N k x j

� �
or x j ∈N k xið Þ ;

0, otherwise,

8>><
>>:

ð9Þ

where N kðxiÞ represents the set of k nearest neighbors of
xi, and t is a width parameter. k and t are set to 5 and 0.5,
respectively, in our experiments. In our G3CS model, we
require that if two data samples are closed to each other in
original space, their cluster indicator vectors in new space Z
should also be close. This constraint can be formulated by
using the following form:

min
z

1
2〠

n

i=1
〠
n

j=1
zi − zj
�� ��2

2S i, jð Þ =min
z

Tr ZTLZ
� �

, ð10Þ

where L is the Laplacian matrix corresponding to S. Finally,
we get the mathematical formulation of our G3CS model as
follows:

min
P,F,Z

PTX − FZT�� ��2
F
+ α Pk k2,1 + βTr PT �MP

� �
+ γTr ZTLZ

� �
s:t:FTF= I, ZTZ = I, Z ≥ 0:

ð11Þ

where α, β, and γ are three hyperparameters to balance dif-
ferent regularization terms. In summary, Eq. (1) integrates
regression, matrix factorization, gene correlation, and data
local structure exploitation into a unified framework. The
gene correlation regularizes the model to exclude redundant
gene dimensions.

4. Optimization Algorithm

There are three variables in Eq. (1) that need to be opti-
mized; we cannot obtain a close-form solution simulta-
neously for all of them. Therefore, we design an algorithm
to iteratively update these variables. For each time, we
update a variable by fixing other ones.

4.1. Optimize P. When other variables are fixed, solving P is
equal to the following problem:

min
P

PTX − FZT�� ��2
F
+ α Pk k2,1 + βTr PT �MP

� �
: ð12Þ

By taking the derivative of Eq. (12) with respect to P and
setting it to zero, we have

2XXTP − 2XZFT + 2αGP + 2β �MP = 0, ð13Þ

Then, we have the closed-form solution of P as follows:

P = XXT + αG + β �M
� �−1XZFT , ð14Þ

where G is a diagonal matrix with Gii = 1/2kPik2. At each
iteration, G and P can be updated alternatively.

4.2. Optimize F. When fixing other variables, the optimiza-
tion problem is equal to the following equation:

min
F

PTX − FZT�� ��2
F
s:t:FTF= I: ð15Þ

By adding a constant matrix Z into the F-norm, Eq. (15)
is equal to

min
F

PTX − FZT� �
Z

�� ��2
F
s:t:FTF= I: ð16Þ

Since Z is an orthogonal matrix, then, we have

min
F

W − Fk k2Fs:t:FTF= I: ð17Þ

where W = PTXZ. In order to ensure the orthogonal con-
straint of F, we add a large positive constant ρ and the opti-
mization problem can be converted to
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min
F

1
2 W − Fk k2F +

ρ

4 FTF− I
�� ��2

F
: ð18Þ

By setting the derivative of Eq. (18) respect to F to 0,
we have

−W + F+ ρ FFTF− F
� �

= 0, ð19Þ

then F can be updated by the following equation in each
iteration:

Fij =
Wij

F+ ρ FFTF− F
� �� �

ij

: ð20Þ

4.3. Optimize Z. When fixing other variables, the optimi-
zation problem for Z is equal to the following equation:

min
Z

PTX − FZT�� ��2
F
+ γTr ZTLZ

� �
s:t:ZTZ = I, Z ≥ 0:

ð21Þ

We add a penalty term for the constraint ZTZ = I and
a Lagrange multiplier for the constraint Z ≥ 0. Then, the
Lagrange function for Eq. (21) can be written as follows:

L Z, αð Þ =min
Z

PTX − FZT�� ��2
F
+ γTr ZTLZ

� �
+ κ

4 ZTZ − I
�� �� + Tr αZT� �

:
ð22Þ

By setting the derivative of Eq. (22) with respect to Z
to 0, we have

−2XTPF+ 2ZFTF+ κ ZZTZ − Z
� �

+ α = 0: ð23Þ

According to the Kuhn-Tucker conditions αijZij = 0,
we have

Zij =
2XTPF+ κZ
� �

ij

2ZFTF+ κZZTZ
� �

ij

: ð24Þ

After we solve the resultant optimization problem as
described by Eq. (1), we can measure the importance of
each gene dimension by calculating the l2-norm of each
row of P. We summarize the optimization procedure of
the G3CS model in Algorithm 1.

The proposed algorithm converges well with increasing
iteration times. In our experiments, when the objective func-
tion value change between two continuous iteration times is
very small, we stop the optimization process and obtain
good results.

5. Experimental Results

In this section, extensive experiments are conducted on sev-
eral real microarray datasets to validate the efficacy of the
proposed G3CS. In order to demonstrate that the gene subset
selected by G3CS can obtain better classification results, we
use three kinds of classification algorithms including Sup-
port Vector Machine (SVM), Random Forest (RF), and k
-nearest neighbor (KNN) to test the selected gene subset
obtained by different previous gene selection methods.

5.1. Microarray Datasets. Six publicly available microarray
datasets are used in our experiments, which are colon cancer
(colon) [71], B-cell chronic lymphocytic leukemia (CLL SUB
111), breast, lung, tumors-11, and global cancer map (GCM)
(1CLL SUB 111 and lung can be downloaded from: http://
featureselection.asu.edu/datasets.php; breast and GCM can
be downloaded from: http://portals.broadinstitute.org/cgi-
bin/cancer/datasets.cgi; tumors-11 can be downloaded from:
http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html.) and
are used to test the performance of the proposed G3CS and

Input: Microarray data matrix X, parameters: α, β and γ. A small constant ε=0.0000001.
Initialize: M, S, F, and Z.
While not converged do
1. Update P via Eq.(14);
2. Update F via Eq.(20);
3. Update Z by solving Eq.(24);
6. Check convergence condition: jobjt−1 − objt j/objt < ε.
End while
Output: P.
Gene selection: Sort the l2-norm of the rows of P in decent order and select the largest K values.
The gene dimension indexes with the the largest K values are selected to form the gene subset.

Algorithm 1: Optimization algorithm of the proposed G3CS model.

Table 1: Statistics of the microarray datasets used in our
experiments.

Datasets #instance #gene number #class

Colon 62 20000 2

Lung 203 12600 5

Tumors-11 174 12533 11

CLL_SUB_111 111 11340 3

Breast 95 4869 3

GCM 198 16063 14
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other gene selection methods used for comparison. These
datasets are collected for diagnosis of different kinds of can-
cers such as colon cancer, lung cancer, Ewing’s family of
tumors, non-Hodgkin lymphoma, and rhabdomyosarcoma
and prostate cancer. For an instance, CLL SUB 111 contains
high-density oligonucleotide arrays which can be used to
identify molecular correlates of genetically and clinically
distinct subgroups of B-cell chronic lymphocytic leukemia
(B-CLL). Lung is a dataset used to determine whether global
biological differences underlie common pathological features
of prostate cancer and to identify genes that might anticipate
the clinical behaviour of this disease.

It should be noted that the above six datasets are typical
with high-dimensional genes. In each dataset, the number of
genes is much larger than the number of samples, which
brings challenge for many practical tasks. In Table 1, we give
a brief description about these datasets.

5.2. Experimental Settings. In the proposed G3CS, we have
three parameters that need to be adjusted, i.e., α, β, and γ. In
our experiments, we varied their values by a “grid-search” in
the range f10−3, 10−2, 10−1, 1, 10, 102, 103g. In addition, the
optimal number of selected genes is also unknown, we set dif-
ferent numbers of selected genes for different datasets, and
the final best results obtained from the optimal parameter

setting were reported. In our experiments, the number of
selected genes was tuned from f10,20,30,40,50g for each
dataset. For each gene subset, the three abovementioned dif-
ferent basic classification methods were used to classify the
microarray data for testing the discrimination of selected
genes. In order to validate the efficacy of the proposed
G3CS, we compare it with other six state of-the-art gene
selection methods including:

(i) F-test [72], which is a traditional filter-based gene
selection method, it uses the statistical hypothesis
testing

(ii) RLR [73], which is based on linear discriminant
analysis criterion. The class centroid is estimated
to define both the between-class separability and
the within-class compactness

(iii) WLMGS (Weight Local Modularity based Gene
Selection) [74], which uses the weight local modu-
larity of a weighted sample graph to evaluate the
discriminative power of gene subset

(iv) LNNFW [75], which uses the k-nearest neighbors
rule to minimize the within-class distances and
maximize the between-class distances

Table 2: Averaged classification accuracy (ACC ± SD) of different methods by using different classifiers (%) (the best results are marked in
bold font).

Methods Classifiers CLL_SUB_111 Breast Lung Tumors-11 SRBCT GCM

F-test

k-NN 55:90 ± 6:73 56:54 ± 9:36 87:61 ± 2:51 56:37 ± 3:53 94:98 ± 1:52 52:09 ± 6:37
RF 57:97 ± 6:34 58:09 ± 9:01 86:88 ± 1:72 55:07 ± 4:48 95:17 ± 2:37 50:27 ± 6:51
SVM 57:07 ± 6:37 57:40 ± 8:17 85:38 ± 2:34 57:20 ± 4:14 95:37 ± 1:46 51:07 ± 6:81

RLR

k-NN 75:97 ± 6:24 61:63 ± 7:27 91:37 ± 2:52 82:37 ± 3:47 96:04 ± 1:61 63:96 ± 5:25
RF 73:10 ± 5:31 61:87 ± 7:32 91:69 ± 2:07 82:77 ± 4:35 97:09 ± 1:72 60:73 ± 5:34
SVM 74:63 ± 5:45 60:11 ± 7:29 93:34 ± 2:18 81:23 ± 4:07 97:08 ± 1:38 61:79 ± 5:29

WLMGS

k-NN 73:58 ± 5:37 59:37 ± 8:07 91:17 ± 2:47 79:18 ± 4:27 97:08 ± 2:92 59:79 ± 4:56
RF 74:76 ± 6:37 61:13 ± 7:51 91:68 ± 2:17 82:53 ± 4:41 96:95 ± 1:60 59:75 ± 4:67
SVM 74:99 ± 6:74 59:33 ± 7:24 92:26 ± 2:37 80:88 ± 4:38 97:24 ± 1:53 61:48 ± 4:35

LNNFW

k-NN 75:34 ± 6:73 60:17 ± 7:42 89:39 ± 2:74 81:00 ± 4:94 95:76 ± 1:19 61:44 ± 5:19
RF 73:86 ± 5:42 59:82 ± 7:41 92:43 ± 2:22 81:75 ± 4:37 96:51 ± 2:53 61:38 ± 5:61
SVM 74:69 ± 6:14 60:37 ± 7:51 91:74 ± 2:84 81:91 ± 4:07 97:62 ± 2:80 62:57 ± 5:33

GRSL-GS

k-NN 76:19 ± 5:72 63:94 ± 7:70 93:47 ± 2:72 82:14 ± 4:84 97:88 ± 1:34 64:14 ± 4:63
RF 76:37 ± 5:43 62:94 ± 7:30 94:02 ± 2:67 82:12 ± 4:62 97:46 ± 1:20 62:70 ± 5:24
SVM 75:76 ± 5:34 62:45 ± 7:74 93:09 ± 2:33 82:96 ± 3:77 97:66 ± 1:74 63:74 ± 4:31

AHEDL

k-NN 76:97 ± 5:44 65:34 ± 7:64 93:48 ± 2:13 84:74 ± 4:96 98:37 ± 1:15 65:34 ± 4:34
RF 76:88 ± 5:19 64:18 ± 0:74 95:12 ± 2:64 82:79 ± 4:33 98:13 ± 1:15 64:24 ± 5:34
SVM 76:37 ± 5:04 65:87 ± 7:32 94:15 ± 2:31 83:07 ± 3:46 98:61 ± 1:48 65:57 ± 4:64

G3CS

k-NN 78:37 ± 5:14 66:75 ± 7:34 94:78 ± 2:45 85:69 ± 4:32 98:87 ± 1:25 66:88 ± 4:64
RF 77:19 ± 5:69 65:77 ± 0:31 94:39 ± 2:85 84:89 ± 4:36 98:42 ± 1:25 66:04 ± 5:37
SVM 77:67 ± 5:81 66:96 ± 7:03 95:65 ± 2:18 84:88 ± 3:59 98:97 ± 1:38 67:11 ± 4:35
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(v) GRSL-GS [20], which is based on subspace learning
and manifold regularization

(vi) AHEDL [22], which is based on dictionary learning
theory with adaptive hypergraph learning and
regularization

As to WLMGS and GRSL-GS, we set the number of
nearest neighbor for constructing the sample graph to 5.
The kernel width σ used in the Gaussian kernel function
and other regularization parameters in GRSL-GS and RLR
are tuned with 5-fold cross validation (CV). For other
parameters in other methods, we use the recommended set-
tings in the corresponding references. We run all the imple-

mentation programs on a desktop computer with Intel Core
i5-4200M 2.5 GHz CPU and 8GB RAM.

5.3. Experimental Comparison of Different Methods. In order
to verify the superiority of the proposed G3CS, we compare
it with the other six state-of-the-art gene selection methods
on different datasets. For each dataset, we can obtain 5 dif-
ferent gene subsets with the numbers of selected genes which
vary from 10 to 50. As to each gene subset, three classifiers
and 5-fold CV are used for classification performance evalu-
ation, and we report the average accuracy of 5 times of CV in
Table 2. We mark the best results in bold font for clear
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Figure 3: The classification accuracy of different methods with
different selected number of genes on CLL SUB 111 dataset.
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Figure 4: The classification accuracy of different methods with
different selected number of genes on breast dataset.

1 10 20 30 40 50
0.8

0.9

0.85

0.95

1

No. of selected genes

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 b
y 

SV
M

F−test
RLR
WLMGS
LNNFW

GRSL−GS
AHEDL
G3CS

Figure 5: The classification accuracy of different methods with
different selected number of genes on lung dataset.
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Figure 2: The classification accuracy of different methods with
different selected number of genes on colon dataset.

7BioMed Research International



comparison. As can be seen from the results, the proposed
G3CS can consistently outperform other methods in terms
of averaged classification accuracy, which demonstrates
that G3CS can effectively select more discriminative genes
for original high-dimensional microarray data for classifi-
cation task.

5.4. Classification Accuracy with Different Numbers of
Selected Genes. Since the optimal number of selected genes
for each dataset is hard to determine, we investigate the clas-
sification performance of different methods on different
datasets with different numbers of selected genes. We plot

the classification accuracy curves of different methods on
different datasets with varied numbers of selected genes in
Figures 2–7. For each method and each dataset, we plot
the average classification accuracy value of the 5 times CV
obtained by the SVM classifier. As can be seen from
Figures 2–7, the proposed G3CS performs steadily better
than other methods when the number of selected genes
changes. With a small number of selected genes, our method
can select more discriminative genes than other methods,
which validates that the selected gene subset obtained by
G3CS can better serve classification of microarray data.

6. Discussion and Conclusions

In this work, we present a novel gene selection method by
taking the gene correlation into consideration, named gene
correlation guided gene selection (G3CS). In detail, we cap-
ture the correlation of different gene dimension pairs by cal-
culating the covariance matrix from the perspective of gene
dimension and embed it into the proposed model to regu-
larize the gene selection coefficient learning. In such a man-
ner, redundant genes can be effectively excluded to reduce
the redundancy of the selected genes. In addition, a matrix
factorization term was utilized to exploit the cluster struc-
ture of original microarray data to assist the learning pro-
cess. We design an iterative updating algorithm to solve
the resultant optimization problem. Experimental results
on six publicly available microarray datasets are conducted
to validate the efficacy of our proposed method. With varied
selected gene dimensions, the proposed method can consis-
tently outperform other compared ones in terms of classifi-
cation accuracy.
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