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Abstract: Future improvement of woody biomass crops such as willow and poplar relies on 

our ability to select for metabolic traits that sequester more atmospheric carbon into biomass, 

or into useful products to replace petrochemical streams. We describe the development of 

metabotyping screens for willow, using combined 1D 1H-NMR-MS. A protocol was developed 

to overcome 1D 1H-NMR spectral alignment problems caused by variable pH and peak 

broadening arising from high organic acid levels and metal cations. The outcome was a robust 

method to allow direct statistical comparison of profiles arising from source (leaf) and sink 

(stem) tissues allowing data to be normalised to a constant weight of the soluble metabolome. 

We also describe the analysis of two willow biomass varieties, demonstrating how fingerprints 

from 1D 1H-NMR-MS vary from the top to the bottom of the plant. Automated extraction of 

quantitative data of 56 primary and secondary metabolites from 1D 1H-NMR spectra was 

realised by the construction and application of a Salix metabolite spectral library using the 

Chenomx software suite. The optimised metabotyping screen in conjunction with automated 

quantitation will enable high-throughput screening of genetic collections. It also provides 

genotype and tissue specific data for future modelling of carbon flow in metabolic networks. 
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1. Introduction 

Short rotation coppice (SRC) willow (Salix spp.) is an established biomass crop that is currently used 

as a feedstock for heat and power generation, and has potential for future production of biofuels and 

other industrial products. Genetic improvement of SRC-willow has been carried out by conventional 

plant breeding techniques and this has led to new commercial varieties, selected for increased pest 

resistance and biomass yield [1]. To develop further the potential of this crop, a molecular genetic 

approach to identifying key genes is being used to accelerate the improvement process via marker 

assisted breeding [2], as demonstrated by a recent report on quantitative trait mapping of loci (QTL 

mapping) for pathogen resistance [3]. To underpin this endeavour Rothamsted Research maintains an 

extensive Salix germplasm bank, including some 1500 accessions in the National Willow Collection 

gathered from around the globe, and a significant number of mapping populations, some which contain 

almost 1000 progeny. A high resolution willow genetic map, aligned with that of the related poplar (for 

which a full genome sequence is available), has been established [4], as have extensive agronomic trials 

in a variety of nutrient and water supply situations. 

Many of the quality traits that are targets for willow improvement e.g., biomass yield, calorific value, 

pest resistance and value-added chemicals are intimately linked with the operation of the plant metabolic 

network, as it responds to genetic and environmental programming. QTL-mapping of metabolite levels 

(mQTL analysis) will lead to biochemical pathways and genes that can be associated with desirable  

traits [5–7]. To develop the mQTL approach, methods for screening the extensive genetic collections are 

a necessity and plant metabolomics technology has developed to an extent where such large-scale screens 

are possible. Metabolomics analysis usually involves the application of 1 dimensional proton nuclear 

magnetic resonance (1D 1H-NMR) spectroscopy and mass spectrometry (MS) in a combination of 

unbiased “metabolite fingerprinting” of un-purified solvent extracts, with more targeted quantitative 

analysis of known compounds [8,9]. In metabolite fingerprinting, the use of chemometrics to mine 

datasets for “metabolite biomarkers”, and correlative statistics to relate metabolite features to genetic 

markers are now established technologies [5,6,10,11]. Key factors in generating high quality data in 

large scale metabolomic fingerprinting experiments are experimental design, sampling and sample 

stability. This leads to spectral stability which is absolutely required for confidence in data mining. 

1D 1H-NMR is routinely used in plant metabolomics due to its high spectral reproducibility and low 

instrument drift [12]. However this relies on plant extracts that are comparable such that all peaks appear 

in consistent positions along the chemical shift scale and that peak resolution between samples is equivalent. 

Factors that impact on spectral quality and comparability between samples includes pH variation, 

differences in ionic strength and peak broadening due to the presence of paramagnetic and other metal 

cations [13–15]. These problems impact differentially on resonances from different compound classes 

and often need to be addressed prior to data collection. The use of buffered NMR solvents to normalise 

pH across samples is regularly used in plant metabolomics to align peaks [14–17], although as an alternative, 

new software algorithms exist to adjust for pH variation [18,19]. Complexation with chelators such as 

ethylenediaminetetraacetic acid (EDTA) addresses peak broadening from the presence of metal  

cations [14,17,20]. In extreme cases, peak broadening is highly variable across datasets and even can 

lead to apparent loss of peaks into the spectrum baseline. 
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Hence, the development of robust protocols for sample handling and data collection are essential 

components of any mQTL screen, where many hundreds of samples are involved. Willow (and other tree 

species) present a range of problems to large-scale screening and metabolomics data collection, which 

has been established on more tractable species such as Arabidopsis [21–23], with other significant studies 

on Solanaceae [24,25], cereals [26,27] and Medicago [28]. Metabolite screening of perennial woody 

plants has been reported for loblolly pine (for milled stem tissue) [29], but generally the heterogeneity 

of tissue types and physical/chemical properties requires considerable re-thinking of the protocols 

developed for annual crops. In this paper we describe the development of new protocols that allow stable 

1D 1H-NMR and MS data collection on both leaf and stem tissue of SRC willow. The utility and robustness 

of the method is demonstrated in a study of source and sink metabolites in two willow biomass 

genotypes. We have also further developed the method for high throughput genetic screens, including 

automated quantitation using a bespoke 1D 1H-NMR spectral library. 

2. Results and Discussion 

2.1. Establishment of a Robust 1D 1H-NMR-MS Protocol for Willow Metabolite Screening 

We had established a number of years ago that 1D 1H-NMR profiling of extracts of freeze-dried 

Arabidopsis aerial tissue, made directly into deuterated methanol-water mixtures produced stable spectral 

fingerprints containing a range of primary and secondary metabolites that could define different 

genotypes [21,30,31]. When this method was applied to wheat flour, a small modification, to incorporate 

a brief 2 min/90 °C heat shock, was added to the protocol in order to denature hydrolytic enzymes that 

remained active in the NMR samples causing spectral instability, particularly in carbohydrate signatures [26]. 

This modified procedure has since been applied to over 100,000 samples of leaf, stem and seed tissues 

in our laboratory over recent years and has been described in detail [32,33]. The utility of this method is 

further enhanced as aliquots of the extract can be taken and diluted with non-deuterated solvent to provide 

parallel samples for mass fingerprinting by electrospray ionisation mass spectrometry (ESI-MS). These 

samples are totally compatible with the electrospray technique and can be infused directly into 

spectrometers and/or subjected to full LC-MS analysis. As the identical samples are used, correlative 

statistical analysis of 1D 1H-NMR versus ESI-MS datasets has credibility and adds much confidence to 

biomarker discovery and structural determination (for example [34]). 

In initial experiments with willow, we utilised freeze-dried leaf and stem tissue, taken from three 

parts (top, middle, bottom) of the two biomass varieties, Tora and Resolution. Plant tissue was harvested, 

from field plots, in June in the middle of the rapid growth season, after coppicing in the previous 

February. It soon became apparent that 1D 1H-NMR fingerprints generated by our standard protocol 

(extraction at 50 °C in 80:20 D2O:CD3OD) [32,33] suffered from two problems: some peaks were poorly 

resolved and secondly many signals (compounds) common to all tissues were misaligned relative to 

added d4-3-(trimethylsilyl)propionic acid (d4-TSP) internal calibration standard (Figure 1). The degree 

to which these two problems manifested themselves varied across the dataset. Misalignment of peaks 

was not a simple linear shift that could easily be dealt with by adding a data processing step. Binning or 

“bucketing” the 1D 1H-NMR spectra is a technique which is commonly utilised in metabolomics prior 

to downstream processing with statistical software. The technique reduces the resolution of the dataset 

to ensure that small changes in chemical shift between spectra do not yield false results from statistical 
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processing of the data. The width (in ppm) of the “bucket” is chosen to try and ensure that a peak remains 

in its given bin or “bucket” despite small chemical shift variations between analyses. This can be 

achieved by using a user-defined fixed bucket width or via the use of intelligent bucketing [35] which 

uses an algorithm to set the optimum bucket width for particular peaks such that they are not split 

between buckets. However, the extent of the variation in chemical shift for the distinctive anomeric 

hydrogen signals of sucrose and α-glucose (Figure 1) was such that application of normal data processing 

strategies resulted in these abundant metabolites residing is different spectral buckets (bins). 

Figure 1. 600 MHz 1D 1H-NMR willow leaf and stem spectra, from a polar solvent 

extraction using 80:20 D2O:CD3OD: illustrating chemical shift variation in anomeric sucrose 

(δ5.425–5.400) and glucose (δ5.225–5.195) signals together with shift variation and broadness 

in citrate and malate signals (δ2.75–2.30). 

 

A fix based on processing with very wide bins (either via manual definition of the bucket size, or via 

intelligent bucketing) to encompass these shifts was not feasible as this resulted in signals from normally 

separated metabolites falling into the same bin, effectively reducing the high resolution spectra to a less 

useful, low resolution dataset with many uncertainties in metabolite annotation. The separate problem 

of poor resolution was also evident for a number of spectral regions particularly for the malate and citrate 

signals. In stem tissue samples, these signals could be easily observed but the degree of peak broadness 

varied for one sample to another depending on the harvest point of the willow stem. In leaves, the signals 
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were so broad that they often seemingly disappeared into the baseline. The dual problem of variable line 

width and poor alignment meant that samples from different tissues or those taken from different parts 

of the plant could not easily be compared. 

A similar problem has previously been observed in extracts of fruit tissue such as tomato and fruit 

juices [36,37] that contain varying levels of malic and citric acids. In fruit juices, the problem was easily 

rectified by adding buffer directly to the liquid sample. In tomato tissues the problem was overcome by 

modifying the protocol to add a dry-down step after the initial extraction and removal of aliquots for 

ESI-MS, followed by re-dissolution of the NMR sample in deuterated phosphate buffer. This stabilised 

the 1D 1H-NMR line shape and chemical shift of the organic acids as described by Kim et al. [38] and 

also realigned slight pH shifts in distinctive carbohydrate anomeric hydrogens. The willow spectra 

revealed that this plant also has high levels of citric and malic acids, but unfortunately, the relatively 

straight forward dry down/buffering solution to the problem was not completely successful (Table 1). It 

is known that willow is unusual in that it accumulates high levels of calcium oxalate in leaf tissue [39] 

and we reasoned that the 1D 1H-NMR alignment problems were due to complex interactions of calcium 

ions with a variety of organic acids in the matrix, including malate and citrate as well as the 1D 1H-NMR-

invisible oxalate. To investigate this problem we carried out a detailed array of experiments as shown in 

Table 1, involving buffering at different pHs and ionic strengths and the addition of variable amounts of 

EDTA to complex the calcium ions. Initial trials were carried out on a dried down polar extract (80:20 

H2O:CH3OH) of plant tissue. Reconstitution in 300 mM sodium phosphate buffer at pH6 failed to align 

the 1D 1H-NMR peaks or to sharpen poorly resolved peaks such as those of citrate and malate. Increasing 

the ionic strength of the buffer to 600 mM still did not improve resolution. Trials were then carried out 

using EDTA to complex the Ca2+ in the sample (Table 1). Addition of 10 µL of a 3.2 mM solution of 

EDTA began to sharpen the pair of citrate doublets which appear between δ2.50 and 2.75. However the 

position of these peaks varied between samples. Adding increasing amounts (up to 100 µL) of the  

3.2 mM solution of EDTA sharpened these peaks further but did not completely stabilise the chemical 

shift. Alternate strategies, to deal with Ca2+, such as precipitation as CaF2 following potassium fluoride  

addition [40] or removal by chelation with solid cation exchange resins [41] were also unsuccessful, failing 

to improve resolution or stability of peak position.  

An alternate solution to re-dissolution of the dried extract in aqueous buffer was to reconstitute the 

sample in the same ratios of deuterated methanol-water solvents as used to extract the plant. This improved 

the efficiency of reconstitution. Buffering of this solution via the addition of a small concentrated (10 µL, 

2.6 M) “slug” of pH 6.0 buffer to the final sample appeared to improve the alignment of most signals in 

the spectrum, excluding malate and citrate. Increase of the pH of the concentrated buffer additive to 7.4 

or 8.0 resulted in good alignment of these signals. Sharpening of the citrate and malate signals, such that 

they were of a comparable resolution across different tissues and genotypes, also required the addition of 

EDTA and after further experimentation it was found that a 10 µL addition of a stronger solution (32 mM) 

worked most effectively. The addition of this EDTA solution however, required further adjustments to 

buffer concentration to re-align some signals. It was found that the addition of a further 10 µL portion 

of the 2.6 M buffer such that the final solution was supplemented with 10 µL 32 mM EDTA and 20 µL 

2.6 M potassium phosphate (pH 7.4) was optimum. 
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Table 1. Matrix of methods attempted to align and sharpen willow 1D 1H-NMR signals. 

Initial 

Extraction 

Solvent † 

Dry 

Down 

Step 

Reconstitution 

Solvent † 

(pH/Ionic 

Strength) 

Additives ‡ Spectral Quality 

Additive 

Final 

Concentration 

in NMR Tube 

Peak 

Resolution 

(Citrate & 

Malate) 

Peak 

Alignment 

(Citrate & 

Malate)  

Peak Alignment 

(Other Peaks) 

A Yes C (6.0/300mM) None N/A Poor Poor No 

A Yes C (6.0/600mM) None N/A Poor Good No 

A Yes C (6.0/600mM) 
10 µL 3.2 mM 

EDTA (D2O) 
45 μM Good Poor 

Aligned within, 

but not across, 

tissues 

A Yes C (6.0/600mM) 
30 µL 3.2 mM 

EDTA (D2O) 
131 μM Good Poor 

Aligned within, 

but not across, 

tissues 

A Yes C (6.0/600mM) 
50 µL 3.2 mM 

EDTA (D2O) 
213 μM Good Poor 

Aligned within, 

but not across, 

tissues 

A Yes C (6.0/300mM) 

Cation exchange 

resin (Chelex 100, 

Na form) * 

N/A Poor Poor No 

A Yes C (6.0/300mM) 
10 µL 2M KF 

(H2O) 
28 mM Poor Poor 

Aligned within, 

but not across, 

tissues 

A Yes C (7.0/300mM) None N/A Poor Poor No 

A Yes C (7.0/300mM) 
50 µL 3.2 mM 

EDTA (D2O) 
213 μM Good Poor No 

A Yes C (6.0/300mM) 
100 µL 3.2 mM 

EDTA (D2O) 
400 μM Variable Poor No 

B No N/A 
100 µL 3.2 mM 

EDTA (D2O) 
400 μM Poor Poor Yes 

B No N/A 
10 µL 32 mM 

EDTA (D2O) 
450 μM Poor Poor No 

A Yes B 

10 µL–2.6 M 

Potassium 

Phosphate Buffer 

(D2O), pH = 7.4 

37 mM Poor Good Yes 

A Yes B 

10 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 7.4; 

10 µL–32 mM 

EDTA (D2O) 

36 mM (Pi) 

444 μM 

(EDTA) 

Good Poor Yes 
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Table 1. Cont. 

Initial 

Extraction 

Solvent 
†
 

Dry 

Down 

Step 

Reconstitution 

Solvent 
† 

(pH/Ionic 

Strength) 

Additives ‡ Spectral Quality 

Additive 

Final 

Concentration 

in NMR Tube 

Peak 

Resolution 

(Citrate & 

Malate) 

Peak 

Alignment 

(Citrate & 

Malate)  

Peak Alignment 

(Other Peaks) 

A Yes B 

10 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 8.0; 

10 µL–32 mM 

EDTA (D2O) 

36 mM (Pi) 

444 μM 

(EDTA) 

Good Good Yes 

A Yes B 

20 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 8.0; 

10 µL–32 mM 

EDTA (D2O) 

71 mM (Pi) 

438 μM 

(EDTA) 

Good Poor Yes 

A Yes B 

20 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 8.0; 

20 µL–32 mM 

EDTA (D2O) 

70 mM (Pi) 

865 μM 

(EDTA) 

Good Poor Yes 

A Yes B 

20 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 7.4; 

10 µL–32mM 

EDTA (D2O) 

71 mM (Pi) 

438 μM 

(EDTA) 

Good 

Excellent 

(within a 0.01 

ppm bin 

width) 

Yes 

B No N/A 

20 µL–2.6 M 

Potassium 

Phosphate buffer 

(D2O), pH = 7.4; 

10 µL–32 mM 

EDTA (D2O) 

71 mM (Pi) 

438 μM 

(EDTA) 

Good 

Excellent 

(within a 0.01 

ppm bin 

width) 

Yes 

† Solvents: A = H2O:CH3OH (4:1) (1mL); B = D2O:CD3OD (4:1), containing 0.01% d4-TSP (1 mL);  

C = Sodium phosphate in D2O, containing 0.05% d4-TSP (750 µL). ‡ Additions are made to final NMR aliquot 

(700 µL) from which 650 μL was removed for spectrum collection; * Solid resin was added to the reconstituted 

extract in buffer, and incubated for 20 min before supernatant (650 μL) was removed for spectrum collection. 

In this way, a dataset was achieved within which all peaks from all tissue types were well resolved 

and aligned such that bucketing to 0.015 ppm reliably captured all the peaks in the same buckets between 

samples. By this approach we developed a protocol that produced stable, reproducible 1D 1H-NMR spectra 

whilst retaining the ability to remove aliquots of the original extract for ESI-MS. To prevent introduction 

of EDTA and buffer salts into ESI-MS samples, concentrated chelator and buffer solutions were added 
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at the end of the process only to the NMR sample. Representative spectra from stem and leaf tissues are 

shown in Figure 2. It can be seen that the organic acids are now well resolved and aligned, as are the anomeric 

hydrogens from common sugars. The signals from the Ca2+ complex of EDTA are visible at 3.1 ppm 

(quartet) and 2.55 (singlet) [42,43] as abundant peaks, but do not interfere with those from endogenous 

metabolites. We can’t rule out the possibility that EDTA was also complexing with other paramagnetic 

and diamagnetic metal ions but characteristic 1D 1H-NMR peaks for e.g., Mg-EDTA (2.8 ppm) [42] or 

Mn-EDTA (2.8 ppm) [20] were not seen suggesting that Ca2+ was the major cation responsible for 

chemical shift variation and peak broadening in willow tissues. Diamagnetic cations such as Ca2+
, are 

commonly associated with chemical shift variation due to their ability to bind to metabolites such as 

citrate [40]. However, it is unusual for these diamagnetic cations to affect peak resolution which normally 

arises due to paramagnetic ion content. For example, studies in saliva showed that no peak broadening 

of the citrate peaks occurred due to the addition of additional Ca2+ [44]. In willow tissues it appears that 

the variable organic acid content in leaf and stem tissues coupled with a high calcium oxalate presence, 

especially in leaves is influencing not just peak position but also resolution of both malate and citrate peaks, 

a situation that varies with the age of the tissue and which cannot be rectified by buffering alone, instead 

requiring a careful balance of metal chelator addition and pH adjustment. 

As the newly developed method involved a dry-down step, it also presented an opportunity to record 

the mass of extracted metabolites from each of the different tissue types. As shown in Table 2 the total 

mass of metabolites extracted from standard aliquots of freeze-dried milled willow tissue varied with the 

location of sampling. 

Table 2. Level of extractable metabolite pool from S. viminalis leaf and stem tissue, 

expressed as a % of total dry biomass. 

Tissue and Position Tora % Extractable Resolution % Extractable 

Leaf–Top 26.9 ± 1.7 26.4 ± 2.6 

Leaf–Middle 28.2 ± 1.7 31.6 ± 3.4 

Leaf–Bottom 31.1 ± 1.2 30.0 ± 3.7 

Stem–Top 32.00 ± 2.9 32.4 ± 2.3 

Stem–Middle 18.3 ± 1.8 18.1 ± 1.8 

Stem–Bottom 11.9 ± 1.7 13.8 ± 1.9 

On the whole, approximately 30% of the dry mass of willow leaf was extractable, and this was 

consistent across both older and younger leaves. However, for stem tissue, not surprisingly, the percentage 

of extractable metabolites per unit dry weight of tissue, decreased from ca. 32% in stem tissue taken 

from the top of the plant to just 12% in stem material harvested from the bottom of the plant, reflecting 

the maturity and hardness of the wood from top to bottom. For qualitative analysis and relative 

quantitative analysis i.e., within sample or across samples of the same tissue type, the lower amount of 

extractives is not an issue. However, for the calculation of carbon pools and flow in different tissues 

around the plant then the extractable mass becomes a factor in any mass-balance analysis. 
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Figure 2. Examples of leaf and stem 1D 1H-NMR data derived from extracts made using 

an:80:20 D2O:CD3OD extraction with final additions of 20 µL 2.6 M potassium phosphate 

buffer and 10 µL 32 mM ethylenediaminetetraacetic acid (EDTA) solutions in D2O.  

(a) Resolution-leaf-top; (b) Tora-leaf-middle; (c) Resolution-leaf-bottom; (d) Tora-stem-top;  

(e) Resolution-stem-middle; (f) Resolution-stem-bottom. 1: sucrose; 2: α-glucose; 3: β-glucose;  

4: malate; 5: Ca-EDTA2−; 6: Ca-EDTA2−; 7: citrate; 8: succinate; 9: free EDTA. 

 

A further issue that came to light during the development of the method concerns the  

flavan-3-ol catechin, which occurs widely in the plant kingdom, and is present at significant levels in 

willow samples. On standing in buffered deuterated aqueous solvents this compound undergoes slow  
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hydrogen-deuterium exchange at the C-6 and C-8-positions.This results in loss of signal at δ6.09 (H-6) 

and δ 6.00 (H-8). Although less rapid than hydroxyl or carboxyl hydrogen exchange, the exchange of 

these aromatic hydrogen atoms, via keto-enol tautomerism, was a fairly fast process and as shown in 

Figure 3, and was complete in 12 h at pH 7.4. The phenomena of H/D exchange have previously been 

reported in response to heating samples containing flavonoid metabolites [45,46] and also in related 

anthocyanin molecules in acidified methanolic or aqueous solutions [47]. For the operation of the high 

throughput screen, varying degrees of exchange of the catechin H-6 and H-8 hydrogens, have potential 

to give false positive results in multivariate analyses of large sets of spectra. This can be avoided by 

either “resting” the samples for 12 h after addition of the buffer solution, before data collection, or, by 

removal of the affected chemical shift “bins” from the spreadsheet of chemical shift versus intensity 

during data processing [32]. This will prevent false discovery of catechin as a biomarker. Other  

non-exchangeable catechin aromatic hydrogens at δ6.93, 6.92 and 6.85, together with the aliphatic 

double doublet at δ2.86 (Figure 3) can be diagnostic for this compound and thus should emerge from 

multivariate analysis if levels are changing across a sample set It should be noted that hydrogen-deuterium 

exchange in flavonoids only affects the buffered NMR sample. Samples for ESI-MS were removed 

before re-dissolution in NMR solvent and thus the flavonoids do not undergo any molecular weight shifts 

in this screen. 

Figure 3. 600 MHz 1D 1H-NMR spectral regions from δ7.075–5.95 and δ3.05–2.70 to 

illustrate the position of stable and deuterium-exchangeable catechin signals of (a) freshly 

extracted willow leaf extract, (b) 12 h old willow leaf extract, (c) 12 h old catechin standard, 

(d) freshly extracted catechin standard. 

 

2.2. Analysis of Tora and Resolution Using the New Method 

Willow stems and leaves from the two biomass varieties Tora and Resolution were analysed using 

the protocol described above. The choice to analyse two biomass willow varieties which are genetically 

related was deliberately made in order to test the robustness of the newly developed extraction and data 

collection protocol. Unlike many other biomass willows, these two varieties have a very similar phenotype 
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and metabolite changes due to genotype were expected to be subtle. The ability of a protocol to separate 

spectra arising from these genotypes relied on high quality analytical data with a low variation due to 

the method itself. Average relative standard deviations, describing variation in technical replication, for 

abundant metabolites identified in the leaf and stem 1D 1H-NMR spectra ranged from 2%–8% (Table 3). 

PCA of the resultant full 1D 1H-NMR dataset (Figure 4), including all replicates, showed good clustering 

of the experimental data. Samples from technical and biological replicates for relevant samples clustered 

together and showed a lower variance compared to material from different sampling position or that 

from differing genotypes. Unsurprisingly the largest separation within the PCA model, in the direction 

of PC1 accounting for 42% of the total variance, was observed between leaf and stem samples (Figure 4a) 

irrespective of genotype or sampling point. PC2, accounting for 29% of the variance, described the 

separation within the leaf or stem cluster, due to sampling point (top, middle or bottom of the plant). The 

impact of sampling point was greatest in stem samples where samples harvested from the top of the plant 

formed a distinct cluster. When coloured according to genotype, PC4, which accounted for 3.5% of the 

total variance, separated the two biomass lines in the stem samples (Figure 4b). 

Table 3. Relative standard deviations (RSD) observed for characteristic metabolite regions 

in leaf and stem 1D 1H-NMR data. Data is based on three technical replicates per biological 

sample. Reported values represent the average % RSD observed across all leaf or stem 

samples. n.d. denotes a metabolite that was not quantified in a particular tissue. 

Metabolite 
Leaves 

% RSD 

Stems 

% RSD 
Metabolite 

Leaves 

% RSD 

Stems 

% RSD 

Sucrose 2 3 GABA 8 4 

Glucose 4 3 Glutamine 2 2 

Fructose 2 2 Alanine 3 2 

Myo-inositol 2 n.d. Threonine 4 3 

Succinate 6 7 Valine 5 5 

Citrate 3 3 Isoleucine 6 4 

Malate 2 2 Leucine 4 3 

Ascorbate 4 7 2-Phenylethylamine 5 4 

Quinate 4 3 Catechin 2 7 

Lactate n.d. 3 Dihydromyricetin 3 8 

Aspartate 4 8 Gallocatechin 3 8 

Asparagine 7 4 Chlorogenic Acid 3 n.d. 

In leaf samples, the two genotypes could be separated by PC5 accounting for 3% of the total model 

variance (Figure 4c). When leaf and stem samples were analysed separately (Figure 4d,e), clear clusters 

could be seen for sampling point in the direction of PC1 in both models. Separation due to genotype was 

evident in PC2. Interestingly, in stem tissue, the greater discrimination of samples was observed for 

tissues harvested from the bottom or middle of the plant. This discrimination was less evident in leaf 

samples where genotypes could be separated at all positional harvest points. Technical replication could 

also be assessed in the models resulting from separate tissue types (Figure S1) and in general variance 

between the three technical replicates was lower than that observed between biological replicates. In 

order to determine the metabolites responsible for these distinct separations, a series of O-PLS models 
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were constructed using a dummy matrix for separations due to tissue, sampling point or genotype  

(Figure 5). Differences in the abundant metabolites between stems and leaves are shown in the OPLS  

S-plot in Figure 5b. Stem tissues typically contain higher glucose than leaves. In addition a number of 

amino acids are elevated including glutamine, asparagine, aspartate and GABA. The aromatic metabolite 

2-phenylethylamine, a metabolite formed from phenylalanine and which is dominant in juvenile willow 

tissues is more abundant in stem tissues. Finally, signals relating to quinic acid at δ 1.845–2.073 are 

present in both tissues but are elevated in stem tissues and are also discriminatory metabolites.  

Figure 4. PCA scores plots of binned 1D 1H-NMR data, indicating clustering of Tora and 

Resolution leaf and stem samples. (a) PC1 vs. PC2 of leaf and stem data, coloured by harvest 

position; (b) PC1 vs. PC4 of leaf and stem data, coloured by genotype; (c) PC1 vs. PC5 of 

leaf and stem data, coloured by genotype; (d) PC1 vs. PC2 of leaf data only, coloured by 

genotype and harvest position; (e) PC1 vs. PC2 of stem data only, coloured by genotype and 

harvest position. Harvest position: B: bottom; M: middle; T: top. 

 



Metabolites 2014, 4 958 

 

 

Contrastingly, leaf samples contain higher sucrose levels and elevated amounts of the organic acid 

malate. The abundant secondary metabolites, observed in leaves, included catechin and gallocatechin, 

while dihydromyricetin, the most abundant flavonoid in these Salix genotypes, was higher in leaves 

compared to stem samples. Finally, chlorogenic acid, an ester formed from caffeic and quinic acids was 

detected only in leaf samples. Figure 5c,d shows the OPLS model that describes metabolite changes 

observed due to location in the plant irrespective of tissue or genotype. 

Figure 5. OPLS analysis of binned 1D 1H-NMR data. (a) OPLS scores plot with Y variable 

as tissue type; (b) OPLS S-Line plot describing differences between stem (positive) and leaf 

(negative); (c) OPLS scores plot with Y variable as harvesting position; (d) OPLS S-Line 

plot describing differences between tissue harvested from the bottom of the plant (positive) 

and the top of the plant (negative); (e) OPLS scores plot with Y variable as genotype;  

(f) OPLS S-Line plot describing differences between Resolution (positive) and Tora (negative); 

Peak IDs: 1: sucrose; 2: glucose; 3: malate; 4: glutamine; 5: glutamate; 6: asparagine;  

7: aspartate; 8: GABA; 9: 2-phenylethylamine; 10: dihydromyricetin; 11: catechin;  

12: gallocatechin; 13: chlorogenic acid; 14: alanine; 15: threonine; 16: leucine; 17: isoleucine; 

18: valine; 19: quinate; 20: citrate. 
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As can be seen from the S-line plot in Figure 5d, a large number of signals are negative indicating 

that the abundance of the majority of extractable polar metabolites is typically higher in young leaves 

and stems taken from the top of the plant. Metabolites which oppose this, and that have higher 

concentrations in older tissue from the base of the plant, include sucrose, citrate and malate. Finally, the 

model constructed to describe generic differences between Tora and Resolution genotypes in shown in 

Figure 5e,f. Resolution typically contains higher levels of glutamine, asparagine, 2-phenylethylamine, 

glutamate and quinic acid. In contrast, Tora samples are generally higher in the major carbohydrates 

sucrose and glucose. In addition, dihydromyricetin, the major flavonoid in these samples is elevated in 

the Tora genotype. The PCA and O-PLS models demonstrate that utilising the new extraction protocol, 

samples from different willow genotypes, where tissue has been obtained from different locations of the 

plant, can be separated on the basis of their tissue type, harvest point and genotype. O-PLS S-plots detail 

the major metabolites responsible for these separations. However, it was difficult to ascertain which 

quantitative metabolite profiles across the sampling position of the plant were able to discriminate the 

genotypes and which, if any, showed contrasting profiles in the leaf versus stem tissue. Figure 6 shows 

the metabolite trajectories across the height of the plant allowing differences in the profiles to be more 

easily discerned. In leaves, metabolite profiles (Figure 6a) which discriminate Tora from Resolution 

include those of leucine, aspartate and 2-phenylethylamine. These metabolites show a similar trajectory 

but are typically more abundant in one genotype compared with the other. For other metabolites a 

difference between genotypes can be seen when tissue is harvested from a particular position of the plant. 

Clear differences in dihydromyricetin levels are observed when leaves are harvested from the top of the 

plant, but older leaves from the lower part of the plant are unable to discriminate the genotypes. Similar 

observations are seen for aspartate and glucose. In general, the major soluble carbohydrate concentrations 

decrease as leaves are sampled from the top to the bottom of the plants while organic acid concentrations 

(malic and citric) are higher in the lower older leaves. Similarly, the amino acids GABA, glutamine, 

valine, isoleucine and leucine show higher concentrations in these older leaves from the base of the plant. 

Contrastingly, alanine, glutamine and threonine levels reach their highest concentration in samples from 

the top of the plant. Figure 6b shows the same type of metabolite profiles obtained from stem tissue. As 

suggested by the O-PLS plots, the extracted levels of many metabolites decrease in stem tissue obtained 

from the lower part of the plant. In many cases, although the profile follows the same trajectory the 

intensity of the profile is greater in material sampled from Resolution and examples here include 

asparagine, 2-phenylethylamine, threonine, isoleucine, lactate and glutamine. From this dataset the only 

metabolite that consistently increased when sampling the lower part of the stem was sucrose. This is in 

contrast to the profile observed in the leaves where sucrose was typically at its highest level when 

material was sampled from the top of the plant. Similarly the profiles of many amino acids and organic 

acids show contrasting profiles in the leaf and stem samples.  

The data described in Figure 6 was obtained via scaling the 1D 1H-NMR dataset to a known 

concentration of internal standard (d4-TSP) which was present in the extraction solvent. Since  

1D 1H-NMR is a quantitative technique, irrespective of metabolite chemistry, scaling to the internal 

standard gives information regarding the absolute concentration of metabolite extracted from 15 mg of 

dried plant sample. However, from the data in Table 2 we know that the total amount of extractable 

metabolites is not consistent across all samples in the experiment. Whilst the mass of the soluble 
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metabolome is fairly consistent in leaves and from stem samples obtained from the top of the plant, the 

amount of extractives obtained from older basal stem sections is considerably lower.  

Figure 6. Metabolite trajectories for (a) leaf and (b) stem samples. Data generated from  

1D 1H-NMR data using binned regions for characteristic peaks for each metabolite. Plot 

intensities represent the intensity value of the binned region. 
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Thus, while Figure 6 gives an overall picture of levels of each metabolite in each sample, it cannot 

describe relative changes within the soluble metabolite pool since some of these changes may be masked 

via a larger change in extractive yield. The new protocol described in this paper, incorporating a 

measurement of the extractives after dry down, allows the metabolomic 1D 1H-NMR data to be 

normalised to a constant sample weight. This reveals the spatial variation in the dataset allowing metabolite 

changes within the soluble metabolite pool to be discerned. Figure 7 shows the effect of normalising the 

data back to a constant 3 mg weight of extractable material. The effect of the normalisation does not 

alter the direction of the leaf profiles (Figure 7a). This is to be expected since leaves harvested from 

different parts of the plant typically yielded the same amount of extractable metabolites. However, 

Figure 7b shows the effect of the normalisation of the stem data. Unlike the data displayed in Figure 6b, 

which described the diminishing concentrations of the majority of soluble metabolites down the stem, 

this plot now shows a range of contrasting profiles and represents the real soluble metabolite changes 

happening within the part of the tissue, irrespective of a changing, and presumably increasing,  

non-extractable portion of the tissue sample. There is an approximately three-fold difference in the amount 

of extractives obtained between stems sampled from the top and bottom parts of the plant. Thus, the 

profile of any metabolite change which is within a three-fold difference may reverse its trajectory when 

normalised. Those which showed greater than three-fold changes will continue to show the same 

trajectory although the magnitude of that difference will be attenuated. For the abundant soluble 

carbohydrates (glucose, fructose and sucrose) the profiles show a similar trajectory to that previously 

described. However, there has been a large effect on the malate and citrate profiles which now show that 

both these metabolites actually increase in concentration within the soluble metabolite pool as sampling 

proceeds from the top to the bottom of the plant. Similarly, we see that secondary products such as catechin, 

gallocatechin and dihydromyricetin increase in stem tissues obtained from the lower portion of the plant. 

In terms of differences between genotypes, the normalisation of the dataset to a constant weight of 

extractable metabolites shows that one of the largest differences in profile intensity is now observed for 

the asparagine content in stems which is very clearly higher in the material sampled from Resolution. 

Examination of the direct infusion ESI-MS data from the top, middle and bottom sections of the two 

genotypes using PCA of the concatenated positive and negative ion spectra revealed that the data shape 

is in line with that seen for the 1D 1H-NMR profiles (Figure S2). Leaf and stem samples could be easily 

separated in the direction of PC1 (45%) while PC2 (25%) separated the stem data based on sampling 

location (Figure S2a). When coloured by genotype, PC4 (5%) separated the stem data based on genotype 

(Figure S2b) and PC5 (1%) discerned differences due to genotype in the leaf samples (Figure S2c). 

When PCA models were constructed using stem or leaf data alone, the data further mirrored the 

clustering observed in PCA of the 1D 1H-NMR data (Figure 4). In leaves (Figure S2d), PC1 (81%) 

described the separation due to sampling point while PC2 (9%) separated the two genotypes. Samples 

taken from the top of the two different genotypes were easily differentiated. For the stem data only, 

(Figure S2e), the ESI-MS data again mirrored the 1D 1H-NMR data (Figure 4e) with harvest location 

described by PC1 (58%) and genotype described in the direction of PC2 (32%). Interestingly, it was 

more difficult to separate samples by genotype when material from the top of the plants was analysed 

by ESI-MS compared to samples taken from older, lower parts of the plant.  
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Figure 7. Trajectories for (a) leaf and (b) stem samples representing changes within the 

extractable metabolite pool. Data generated from 1D 1H-NMR data using binned regions of 

characteristic peaks for each metabolite which were normalized back to a comparable 3 mg 

extractable pool weight. Plot intensities represent the intensity value of the normalized 

binned region. 
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This mirrored the observations from the PCA models constructed from stem 1D 1H-NMR data  

(Figure 4e). Contrastingly, in the leaf only ESI-MS PCA model (Figure S2d), the separation between 

middle and bottom harvest points was less discernible, when compared to the corresponding 1D 1H-NMR 

PCA model (Figure 4d). However, on the whole the shape of the ESI-MS data matched that of the 1D 
1H-NMR data, demonstrating that correlation of 1D 1H-NMR signal versus ESI-MS signal is a valid 

strategy for metabolite annotation. 

2.3. Construction and Application of a Bespoke Willow 1D 1H-NMR Spectral Library for Automated 

Quantitation of Metabolites 

Provision of a list of metabolites in a sample with their concentrations is the output of choice for 

multidisciplinary projects where the data is to be mined against other trait or omics datasets or passed 

onwards for further statistical processing. The nature of 1D 1H NMR data and the complexity of typical 

plant extract spectra with many overlapping peaks from multiple metabolites make manual quantitation 

difficult and time consuming. Chenomx NMR suite is a set of tools for identifying and quantifying 

metabolites from 1D 1H-NMR spectra of mixtures [48], allowing for quantitation of metabolites even 

when some signals are overlapped with those from another metabolite. Matching and quantitation can 

be carried out in automation based on comparison to a library of pH sensitive signatures of authentic 

metabolites run at differing instrument field strengths. However, as it was developed for clinical 

metabolomics, the Chenomx library does not contain many common plant metabolites, especially the 

species specific secondary metabolites. Furthermore, there is no capacity to compare spectra which have 

been collected in D2O:CD3OD mixtures. While this was a problem with some earlier versions of the 

software, Version 7.6 allows users to build user-defined signatures based on their own extraction protocol 

and 1D 1H-NMR data collection parameters. We have therefore constructed a library of signatures from 

all the abundant primary metabolites detected in Tora and Resolution willow leaves and stems and have 

supplemented this with signatures from key secondary metabolites such as flavonoids and phenolics and 

their glycosides, such as salicin and salicortin and triandrin, which are well documented in the Salix 

literature. To date, this bespoke library contains 90 signatures, 52 of which overlap perfectly with those 

obtained when using the newly developed protocols described above. As an example, matching and 

quantitation (in μmoles/g dry weight and mg/g dry weight) of the Tora and Resolution leaf and stem data 

was evaluated and is detailed in Tables S1 and S2. As can be seen by comparison with the data in Figure 6, 

the use of the Chenomx profiling software has increased the number of metabolites that we were able to 

quantify. As a means of comparison to the relative data obtained from binning, quantified data in mg/g 

d.w. have been plotted across tissue types in Figures S3–S6. The profiles of these concentrations agrees 

well with the majority of metabolites following the same trajectory as that obtained from plotting 

characteristic regions from the 1D 1H-NMR directly. Based on this quantified metabolite data, metabolites 

showing significant (p < 0.05) differences between the Tora and Resolution genotypes could be identified 

in both stem and leaf tissues sampled at each part of the plant (Table 4). 
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Table 4. Metabolites showing a statistically significant difference between genotypes at 

varying parts of the willow plant in both leaf and stem tissue. Data is derived from a  

one-way ANOVA analysis of Chenomx-quantified metabolite concentrations derived from 

1D 1H-NMR data. 

Differentiating 

Metabolite 
p-value 

Differentiating  

Metabolite 
p-value 

Differentiating  

Metabolite 
p-value 

Top of the plant Middle of the plant Bottom of the plant 

Leaves      

Methionine <0.00001 Salicin <0.00001 Methionine <0.00001 

Triandrin <0.00001 Uridine 0.00052 Lysine 0.00004 

Asparagine 0.00005 Asparagine 0.00061 Tyrosine 0.00006 

Raffinose 0.00013 3-Hydroxymandelate 0.00094 Triandrin 0.00009 

Uridine 0.0003 Leucine 0.00276 Lactic acid 0.00027 

Citrate 0.00044 Glutamate 0.0028 Uridine 0.0004 

Arginine 0.00065 Maltose  0.00307 Stachyose 0.00053 

Dihydromyricetin 0.00138 2-Phenylethylamine 0.0033 Glutamate 0.00071 

Stachyose 0.00141 Gamma Aminobutyric acid 0.00404 Sucrose 0.00102 

Succinate 0.00174 Glycine 0.00422 Leucine 0.00398 

Tyrosine 0.00243 Succinate 0.00727 Asparagine 0.00531 

Galactose 0.00254 Lactic acid 0.01097 Arginine 0.00963 

Leucine 0.00405 Sucrose 0.01543 Succinate 0.01145 

3-Hydroxymandelate 0.00506 Dihydromyricetin 0.02112 Maltose 0.01511 

2-Phenylethylamine 0.00722 2-Hydroxyisobutyrate 0.02151 2-Phenylethylamine 0.01618 

Lysine 0.01531 Chlorogenic Acid 0.02225 
3-Hydroxy-3-

methylglutarate 
0.02667 

Maltose 0.02151 Tyrosine 0.02266 
Gamma Aminobutyric 

acid 
0.02981 

Quinate 0.02193 Glutamine 0.02382 Acetate 0.03418 

Salicin 0.0232 Stachyose 0.03126 Aspartate 0.03775 

Glycine 0.036 Fumarate 0.03775   

Chlorogenic acid 0.03749     

Malate 0.04741     

      

Stems      

Lactate <0.00001 Arginine 0.000137 Uridine 0.00016 

Stachyose 0.00002 Raffinose 0.000181 Stachyose 0.000274 

Succinate 0.00038 Sucrose 0.001103 Succinate 0.001132 

Glycine 0.00044 Uridine 0.001187 Arginine 0.00196 

Leucine 0.00057 Stachyose 0.002002 Glycine 0.003298 

Tryptophan 0.00123 Lysine 0.00206 Methionine 0.003722 

Raffinose 0.00133 Methionine 0.002868 Acetate 0.004415 

Salicin 0.00143 Tyrosine 0.005116 Trigonelline 0.01361 

Uridine 0.00208 Trigonelline 0.005893 Triandrin 0.01569 

Dihydromyricetin 0.00371 Maltose 0.006116 Raffinose 0.01611 

  Glutamate 0.007043 Leucine 0.01977 
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Table 4. Cont. 

Differentiating 

Metabolite 
p-value 

Differentiating  

Metabolite 
p-value 

Differentiating  

Metabolite 
p-value 

Top of the plant Middle of the plant Bottom of the plant 

Stems      

  Dihydromyricetin 0.008189 Salicin 0.01997 

  2-Phenylethylamine 0.008416 Lysine 0.02147 

  Glycine 0.008923 Valine 0.02848 

  Choline 0.01115 Lactic acid 0.02986 

  Gamma Aminobutyric acid  0.0154 Betaine 0.0316 

  Citric acid 0.02168 Maltose 0.0436 

  Leucine  0.02354   

There is surprisingly little published comparative quantitative data on S. viminalis primary 

metabolites and thus it is difficult to compare the levels of individual metabolites or compound classes 

found in our study. Some other diverse Salix genotypes have been studied although often these studies 

have been sampled at different points in the developmental cycle, on other tissue types and are often 

subject to stresses or heavy metal treatments. Such examples include the assessment of amino acids in 

phloem and xylem of Salix species [49,50]. In the case of soluble sugars, glucose, sucrose and fructose 

have been described as the major soluble carbohydrates present in hydroponically grown, juvenile  

S. viminalis leaves [51] where levels reached 35 mg/g d.w. for glucose, 12.5 mg/g d.w. for fructose and 

44 mg/g d.w. for sucrose. Our data from field grown tissue mirrors the profile in that glucose and sucrose 

levels were similar to each other in leaves harvested from the top of the plant and that fructose levels 

although still abundant were somewhat lower in concentration. The overall concentration of leaf soluble 

sugars appears lower in older field grown material compared to that reported for young plants. This is in 

agreement with data presented on Populus deltoides × nigra where similar levels of carbohydrates were 

reported to our own study [52]. 

In terms of organic acids, malate, citrate, ascorbate and quinate levels dominated the organic acids 

fraction of leaves in our study while major components in stems were ascorbate, malate, quinate and  

2-oxoglutarate, the latter being highest from stem material harvested from the top of the plant. Malate 

and citrate levels (on a fresh weight basis) are reported in leaves of S. alba at 1.6 and 0.6 mg/g F.W. 

respectively [53]. Thus, our observations of 3–10 mg/g d.w. of citrate in leaves are broadly comparable. 

Similarly, results of 6–22 mg/g d.w. of malate in S. viminalis are comparable with levels observed on a 

fresh matter basis in S. alba leaves. Willow and poplar are well known for the diversity of phenolic 

glycosides present in stem tissues [54], although it is also recognized that levels of such metabolites vary 

over the growth season [55]. S. viminalis tissue is typically low in the salicinoids, during periods of active 

growth, compared to other varieties of willow such as S. purpurea [56]. Thus, as expected, we observed 

only small amounts of salicin (typically <1 mg/g d.w.) in this experiment. Additionally, the  

1,4-substituted analogue triandrin was detected in all leaf and stem samples, consistent with previous 

findings [56] that it is a common component in S. viminalis. The aromatic regions of our spectra also 

contained a mixture of flavanols, with major components such as dihydromyricetin, catechin and 

gallocatechin. Levels of these compounds in our study ranged from 0.23–7 mg/g d.w. Such high levels 

of these compounds have previously been reported in stem tissues of e.g., S. caprea [57]. 
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Conversion of quantified data to units of mg/g d.w. allowed a total concentration of quantified 

metabolites to be elucidated (Table S2). Of note here is the fact that, in leaf, the concentration of  

total quantified metabolites ranged from 75 mg/g d.w. to 93 mg/g d.w. and did not vary significantly by 

genotype or tissue position. This is in parallel with the data outlined in Table 2 relating to the variation 

in % extractable metabolites from leaf. However, 90 mg/g d.w. of quantified metabolites in leaf samples 

represents approximately 30% of the known extractable mass. Thus, in leaves, ~70% of polar extractives 

relate to unknowns that either have not yet been quantified or to substances that do not give signals in 

the 1D 1H-NMR spectrum (Figure 8). Examples here would be inorganics such as phosphate, metal salts 

or oxalate (which is known to be high in willow leaves, [29]) or multiple low abundance metabolites 

that are below the level of detection in NMR. From Chenomx assignments, it is the latter which is most 

likely. When compounds are examined by their chemical classes (Figure 9), it is clear to see that the 

only class that changes in the absolute amount per gram of leaf tissue is the organic acids which are at 

their highest level in older leaves at the bottom of the plant. 

Figure 8. Calculated quantifiable metabolites (%) as a proportion of (a) total plant tissue and 

(b) total soluble metabolite pool. Data obtained from Chenomx quantification of metabolites 

as measured by 1D 1H-NMR. 
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Figure 9. Calculated levels of compound classes via Chenomx quantification of metabolites 

as measured by 1D 1H-NMR. (a) Class levels expressed as mg/g dry weight; (b) expressed 

as a percentage of the total soluble metabolite pool. 

 

When metabolite concentrations were normalised to the metabolite pool, we can also see that total 

levels of amino acids, carbohydrates and aromatics are highest in young leaves from the top of the plant. 

In contrast, mass that is 1D 1H-NMR invisible such as inorganic salts is lowest in young leaves. In stem 

tissues the absolute amount of metabolites that can be quantified per gram of plant tissue decreases 

(Figure 8). However, within the pool the % of these quantifiable metabolites is relatively static. In terms 

of 1D 1H-NMR invisible metabolites, these are lowest in material from the top of the plant and increase 

in older stem tissue, although even here the mass of such metabolites is lower than seen in leaf material 

(Figure 9). In terms of stem organic acids, these show a similar behaviour in both genotypes with highest 

levels at the top of the plant. In contrast to leaves, organic acid concentrations are lowest from stem 

material collected from the bottom of the plant. Levels of total soluble carbohydrates and amino acids 
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discriminate genotypes with Tora containing higher stem carbohydrate and Resolution higher stem 

amino acids. Total aromatic metabolites are similar in both genotypes with highest levels of these 

compounds isolated from younger tissue. The development of the Chenomx metabolite library in concert 

with the methods described for sample handling and data collection therefore enable a detailed list of 

metabolites to be generated in high throughput for comparison of metabolite pools and compound classes 

between samples and will enable future large scale metabolomics experiments, such as mQTL studies, 

in willow. 

2.4. Simplification of the Method for High Throughput 1D 1H-NMR-MS Screening 

Above, after much optimisation we developed a robust protocol for 1D 1H-NMR-MS screening of 

the willow metabolome. The protocol (Figure S7a) was developed and deployed above with a dry-down 

step, for recording of extractable weight, allowing normalisation and study of the dynamics of the 

metabolite pool. However, for the large-scale screening of comparable tissues from genetic populations 

for mQTLs, where wet-lab processing steps are ideally kept to a minimum, the method was modified 

according to Figure S7b and the final entry of Table 1. Tissue was extracted directly into deuterated NMR 

solvent and the dry down/reconstitution step was removed. After removal of aliquots for ESI-MS, NMR 

samples were then modified with pH 7.4 phosphate buffer and EDTA, prior to spectral data collection. 

Analysis of the resultant 1D 1H-NMR spectra showed that samples prepared without the dry down step 

contained higher levels of ascorbate and acetate. These were the only evident changes between the two 

methods. Comparison of the data, obtained by the two methods, by PCA (Figure 10) showed that 

corresponding samples prepared by each method still clustered together and that the separation by harvest 

position or genotype was larger than any difference between the two modes of extract preparation.  

3. Experimental Section 

3.1. Plant Material 

Tissue from the two biomass varieties, Tora and Resolution, was harvested from the National Willow 

Collection at Rothamsted in June 2012 (Figure S4). Both genotypes are Salix viminalis ×  

S. schwerinii hybrids and are female and diploid. They are distantly related in that a sibling of Tora 

(Bjorn) is the male parent of both parents of Resolution. The original planting of Tora was in 2002, 

whilst that of Resolution was 2004. The plots had previously been coppiced in February 2012 and thus 

the material represented circa 4 months fresh regrowth from stools. The freshly coppiced plots had been 

treated with herbicide (amitrole, 20 L/ha) and nitrogen fertiliser in February 2012. Immediately after 

harvest, leaves and stems from each genotype were each divided into three samples representing bottom 

(1–30 cm), middle (31–60 cm) and top (61 cm and above) parts of each plant. Two similar sized plants 

were harvested and dissected thus producing two biological replicates of each genotype/tissue type. 

Samples were frozen in liquid nitrogen, then freeze-dried and milled to a powder in a cryo-mill. They 

were stored at −80 °C prior to analysis. 
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Figure 10. Comparison of binned 1D 1H-NMR data from extracts prepared by method “a” 

and method “b” (Figure S7). (a) PCA scores plot of willow stem 1D 1H-NMR data coloured 

by method used to prepare NMR extracts; green: method “a”; blue: method “b”. (b) PCA 

scores plot of willow leaf 1D 1H-NMR data coloured by method used to prepare NMR 

extracts; green: method “a”; blue: method “b”. 

 

3.2. Preparation of NMR-MS Samples for Willow, Incorporating a Dry-Down Step for Determination 

of Mass of Extracted Metabolites 

To triplicate aliquots (15.0 mg) of each freeze-dried, milled plant sample in 2 mL round bottom 

Eppendorf tubes, was added H2O-CH3OH (4:1) extraction solvent (1.0 mL). After mixing, the tubes were 
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heated to 50 °C for 10 min, cooled and centrifuged. From each tube, supernatant (850 μL) was transferred to 

a clean Eppendorf tube and then heated to 90 °C for 2 min. The samples were then cooled to 4 °C for 30 

min and then centrifuged. For ESI-MS, 50 μL of the supernatant was removed to a glass HPLC vial and 

diluted with 950 μL of H2O-CH3OH (4:1). For extract mass determination and subsequent 1D 1H-NMR 

analysis, 700 μL of the supernatant were transferred to a clean pre-weighed Eppendorf tube and then 

evaporated in a vacuum concentrator overnight at 30 °C. After further drying (30 min) in a vacuum oven 

(room temperature), the weight was recorded and 700 μL of NMR solvent [D2O-CD3OD, 4:1 v/v, 

incorporating 0.01% w/v 2,2,3,3-d4- 3-(trimethylsilyl)propionic acid (TSP)] was added. After dissolution at 

room temperature, 20 μL deuterated 2.6 M phosphate buffer, pH 7.4 [containing 4.19 g K2HPO4 and 

0.808 g KH2PO4 in 10 mL D2O] was added along with 10 μL of EDTA solution [32 mM, containing 12 mg 

ETDA-Na2.2H2O in 1 mL D2O]. After mixing and standing for 30 min, the samples were centrifuged 

and 650 μL were removed to clean, dry 5 mm NMR tubes. 

3.3. Sample Preparation for High-Throughput 1D 1H-NMR-MS Screening of Willow, Utilising Direct 

Extraction into Deuterated NMR Solvent 

To triplicate aliquots (15.0 mg) of each freeze-dried, milled plant sample in 2 mL round bottom 

Eppendorf tubes, was added D2O-CD3OD (4:1 v/v) incorporating 0.01% w/v TSP (1.0 mL). After 

mixing, the tubes were heated to 50 °C for 10 min, cooled and centrifuged. From each tube supernatant 

(850 μL) was transferred to a clean Eppendorf tube and then heated to 90 °C for 2 min. The samples 

were then cooled to 4 °C for 30 min and then centrifuged. For ESI-MS, 50 μL of the supernatant was 

removed to a glass HPLC vial and diluted with 950 μL of H2O-CH3OH (4:1). For NMR, 700 μL of the 

supernatant was removed to a clean Eppendorf tube and mixed with 20 μL deuterated 2.6 M phosphate 

buffer, pH 7.4 and 10 μL of 32 mM EDTA solution in D2O, as above. 650 μL of this buffered sample 

was transferred to a 5 mm NMR tube.  

3.4. 1D 1H-NMR and Direct Infusion ESI-MS Data Collection and Data Analysis 

These were respectively carried out on an Avance 600 MHz NMR Spectrometer (Bruker Biospin, 

Coventry, UK) and an Esquire 3000 mass spectrometer (Bruker Daltonics, Coventry, UK) using parameters 

and settings as previously described [30]. Briefly, 1D 1H-NMR spectra were acquired at 300 K using a 

5 mm SEI probe. A water suppression pulse sequence (noesygppr1d) was utilised employing a 90° 

excitation pulse angle and a pre-saturation pulse during the relaxation delay of 5 s. Data were acquired 

using 128 scans of 65,536 data points across a sweep width of 12 ppm. 1D 1H-NMR FIDs were zero filled 

to double their original size, and Fourier transformed with an exponential window function (0.5 Hz). 

Spectra were manually phased and automatically baseline corrected in Amix (Analysis of MIXtures, 

Bruker Biospin) using a 2nd order polynomial. 1H chemical shifts were referenced to d4-TSP at δ0.00 

and spectra were automatically reduced to create an ASCII file containing integrated regions of equal 

width (0.015 ppm). Spectral intensities were scaled to the d4-TSP region (δ0.05 to −0.05). The ASCII 

file was imported into Excel for the addition of sampling/treatment details. The regions for unsuppressed 

water (δ4.865–4.775), d4-MeOH (δ3.335–3.285) and d4-TSP (δ0.05 to −0.05) were removed prior to 

importing the dataset into SIMCA-P 13.0 (Umetrics, Umea, Sweden) for multivariate analysis. Multivariate 

analysis (PCA and OPLS) was carried out using unit variance scaling. For construction of trajectory 



Metabolites 2014, 4 971 

 

 

plots of individual metabolites, data from characteristic regions for known metabolites was combined to 

give a single intensity response for each metabolite. Technical replicates were averaged and errors 

displayed on the basis of 2 biological replicates. Annotation of peaks to individual metabolites was 

achieved via comparison to a library of authentic standards prepared in identical conditions to the test 

samples and run under identical 1D 1H-NMR conditions.  

3.5. Automated Batch Quantification of Target Metabolites 

Batch quantification of metabolites in 1D 1H-NMR spectra was achieved using the Chenomx NMR 

Suite 7.6 (Chenomx Inc., Edmonton, AB, Canada) [48]. A database of 90 metabolite signatures was built 

from spectra of authentic pure samples of common plant metabolites and willow-specific secondary 

products, by collecting spectra at 600 MHz on the same spectrometer and instrument settings in the  

pH 7.4 and EDTA modified solvent as above. The standard metabolites were quantified against the 

known concentration of reference compound (TSP) and fitted to record peak centres and coupling 

constants in the database. Quantitative profiling across the willow batched spectra was carried out using 

the Profiler module in the software, which superimposes a Lorentzian peak shape model for each 

database entry onto the analyte spectra, and reports a concentration for each matched metabolite in each 

spectrum. Every metabolite fit was manually inspected. Data for technical replicates were averaged and 

a mean concentration for each biological sample was tabulated. The output data table was examined by 

PCA (SIMCA-P, Umetrics, Umea, Sweden), to quality assure the Chenomx determined quantitations by 

means of the inbuilt biological and technical replication. Significance of metabolite concentration 

differences was determined using one-way ANOVA and was carried out in Microsoft Excel. A table of 

characteristic chemical shifts for metabolites identified from Tora and Resolution genotypes has been 

included as Table S3. 

4. Conclusions 

In summary, we have overcome a variety of technical challenges and developed a robust method for 

high throughput screening of the willow primary and secondary metabolomes, which gives 1D 1H-NMR 

and ESI-MS data on the same samples with low variation due to technical replication. The method allows 

direct statistical comparison and correlation of stem (wood) and leaf samples from any part of the willow 

plant and across the two spectroscopic datasets, and this has been demonstrated via a range of statistical 

methods which are common in many metabolomics studies. The processing regime also allows for 

measurement of the extractable mass of the soluble metabolome, data that will be necessary for modelling 

metabolic flow from sources to sinks. A streamlined adaption of the method for high-throughput screening 

was also refined and demonstrated to be robust. 

In addition to the quantification of metabolites via integration of characteristic bins in the processed 

data, we have automated quantitation of 52 metabolites in the 1D 1H-NMR spectra, using Chenomx and 

show that the results are comparable. Either method enables rapid extraction of quantitative data from 

high throughput genetic screens, which we are now conducting across the extensive genotype collections 

held at Rothamsted. We would anticipate that the methods developed here are directly applicable to 

related species such as poplar, and potentially to many other woody biomass crops. Using samples taken 

from the two willow genotypes, we have also demonstrated that the 1D 1H-NMR and ESI-MS datasets 
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show the same trajectories when modelled by PCA, and thus we expect that meaningful NMR to MS 

structural information can be gleaned from combined analysis of these two datasets. Furthermore, as 

NMR is non-destructive, the samples are available for further spectroscopic investigation to follow up on 

metabolites of interest. We are now applying these methods to diversity and mapping populations, with 

a view to identifying mQTLs for biomass yield and other agronomic traits, including selection of lines 

for novel metabolite related properties. Studies in annotation of the ESI-MS data are also underway, 

including a very high resolution uHPLC-ESI-MS-MS study to further enhance the value of the screen. 

Details of this study will be published elsewhere.  
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