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Abstract

Purpose of review Machine learning (ML), a branch of artificial intelligence, is influencing
all fields in medicine, with an abundance of work describing its application to adult
practice. ML in pediatrics is distinctly unique with clinical, technical, and ethical nuances
limiting the direct translation of ML tools developed for adults to pediatric populations. To
our knowledge, no work has yet focused on outlining the unique considerations that need
to be taken into account when designing and implementing ML in pediatrics.
Recent findings The nature of varying developmental stages and the prominence of family-
centered care lead to vastly different data-generating processes in pediatrics. Data
heterogeneity and a lack of high-quality pediatric databases further complicate ML
research. In order to address some of these nuances, we provide a common pipeline for
clinicians and computer scientists to use as a foundation for structuring ML projects, and a
framework for the translation of a developed model into clinical practice in pediatrics.
Throughout these pathways, we also highlight ethical and legal considerations that must
be taken into account when working with pediatric populations and data.
Summary Here, we describe a comprehensive outline of special considerations required of
ML in pediatrics from project ideation to implementation. We hope this review can serve as
a high-level guideline for ML scientists and clinicians alike to identify applications in the
pediatric setting, generate effective ML solutions, and subsequently deliver them to
patients, families, and providers.

Introduction

Artificial intelligence (AI) has the potential to dras-
tically reshape medicine. The uncertainty associated
with how this will unfold contributes to mixed
reactions of enthusiasm and concern. Despite this,
most healthcare providers agree that there exists an
increasing need for improved efficiency, enhanced
patient safety, and equitable access to care that is
free from geographic, financial, and racial barriers.
When developed to integrate with existing clinical
workflows and with sound ethical principles in
mind, AI has the potential to address each of these
concerns while adding value to healthcare systems
at scale [1•]. Traditional human workflows do not
generally scale seamlessly in response to spikes in
patient volume and demand. The strain that
healthcare systems are facing globally in response
to the COVID-19 pandemic, for example, is evi-
dence of the fragility inherent to human-based
workflows and highlights the need for innovation.
AI can also help reduce human practice variation,

which is known to be associated with patient
harm, and aid in democratizing medicine for im-
proved equity in care delivery [2], while simulta-
neously reducing healthcare costs [3]. Given this
potential , a surge in machine learning for
healthcare (ML4H) applications can be seen in
both academic and private sectors [4].

Despite the promise, medical specialties have
yet to realize the true potential of AI as evidenced
by very little integration into clinical practice. This
is especially apparent in the field of pediatrics.
Reasons for this are multifactorial and include the
challenges associated with bridging the gap be-
tween pediatric medicine and computer science. In
this review, we present a framework for both com-
puter scientists and pediatric specialists to outline
key considerations and nuances encountered when
conceptualizing, building, and integrating machine
learning (ML) models into pediatric workflows.
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Pediatric ML4H pipeline

At a high-level, the overall pipeline for developing ML4H tools is common
across most fields of medicine and can be seen in Fig. 1. In order to help focus
projects on maximizing clinical utility, a patient-centered clinical use case
should anchor ML4H initiatives. The scope of clinical use cases can involve
any aspect of care as long as the necessary data is available to fuel the develop-
ment of ML models. Of note, “big data” is not always required to build
sophisticated ML models, and the absence of large datasets should not be the
sole reason to not search for ML-based solutions. The amount of data required
for building a successful ML model is influenced by the complexity of the
problem and the clarity of the signal within a dataset, which is often not known
until an initial proof-of-concept trial is completed [5]. After model develop-
ment, statistical validation is required, and the method and degree of rigor of
this evaluation should be influenced by the intended clinical use case and
implementation [6]. For example, a tool optimizing physician scheduling will
require a different method of validation than an AI system developed to
automate treatment decisions for children.

This common pipeline is valuable for clinicians and computer scientists to
use as a foundation for structuring ML4H projects. However, a wide array of
unique considerations also arises when we are specifically considering the
pediatric context. Each stage of the development pipeline from use case design
to implementation contains many clinical, technical, and ethical nuances lim-
iting the direct translation of ML4H applications developed for adults to
pediatric populations. Understanding these differences when compared with
adult medical specialities is essential for the successful development and im-
plementation of AI in pediatric medicine.

Pediatric clinical use case design

Asking the right questions is critical to the success of any ML4H project, and
identifying these questions is no trivial task. This is complicated further in
pediatrics by the nature of varying developmental stages and the prominence
of family-centered care [7]. Different patientsmay be involved in vastly different
data-generating processes and have different abilities to interact with

Fig. 1. A high-level pipeline that can be used to structure ML4H projects in pediatrics. From start to finish: clinical use case design,
data acquisition and preparation, model development, model and user validation, ending with clinical integration. We place special
emphasis on legal, privacy, and ethical considerations throughout the entirety of the pipeline.
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technology based on their developmental age. For example, while it may be
possible to have a mental health assessment tool for use by adolescents that is
patient-facing, an equivalent tool for younger children may have to primarily
target caregivers or parents—a difference which subsequently has a substantial
influence on the data gathering, machine learning, and user experience design
processes.

The task of clinical use case design must not be rushed, as careful consider-
ation of these factors at the beginning of the project will inform the specifics of
every subsequent aspect of the ML pipeline. Design thinking methodology is
one process that provides an excellent framework to approaching clinical use
case design as it is particularly well-suited to the context of pediatrics. Success
with this framework has been seen across an array of use cases, from adolescents
with cancer reporting on their pain to developing collaborative decision-
making around pediatric asthma care [8]. Design thinking focuses on patient
needs and prioritizes engagement with diverse stakeholders (families, children,
clinical providers, administrators, etc.) in order to come to an understanding of
the root causes of a problem, including social, political, economic, and organi-
zational factors [9]. These factors, along with an awareness of current clinical
workflows and how an AI solution will integrate, are essential to mapping a
strategy for final implementation [10].

Data acquisition and preparation

Data is the essential lifeline required for developing and maintaining all ML4H
systems. The field of pediatrics in general suffers from a lack of pediatric-specific
data due to various practical and ethical challenges when gathering data in
children [11] [12]. ML4H has largely been pushed forward through the com-
mon use of large centralized databases, upon which numerous algorithms are
developed and validated. In the adult critical care world, one of the largest such
databases is MIMIC-III, which has been cited by more than 1300 projects [13]
(although most of the MIMIC-III research is focused on adults, it should be
noted that some data from neonates are present). No clear equivalent exists in
the context of pediatric data science, although the recently released PIC database
[14] contains physiological signal data from a large cohort of Chinese pediatric
intensive care units and the ACS’ pediatric surgical outcomes database contains
more than 600,000 operations [15]. Many of the other databases that exist
consist largely of unstructured electronic health record (EHR) data, such as
PEDSnet [16] and EHR4CR [17] andmay only be useful for projects of a specific
nature or may otherwise be limited owing to lack of structure. If we are to
address this research gap that currently exists in ML4H, high-quality pediatric
databases are required.

A particular challenge whenworkingwith pediatric data is that children have
unique physiologic features compared with adults. This has a direct and mean-
ingful impact on the data collected and the associated data pre-processing steps
required prior to training an MLmodel. For example, the median normal heart
rate in children ranges from 140 beats per minute (bpm) for neonates to 70–
80 bpm for adolescents [18]. A similar trend can be seen for respiratory rates in
children and many other physiological parameters and lab measurements.
Again, this large continuum of normal values based on age does not occur in
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adults. In order to apply meaningful clinical context, unique pre-processing
steps may be required to bin pediatric patients into the relevant categories to
assist algorithms in understanding what is normal for a given age. In addition,
the difference in the probability of a diagnosis between a 1-year-old and a 10-
year-old child is generally going to be far greater than the difference between a
50- and 60-year-old adult. This variation imposed by age and the increased
number of subgroups within pediatrics can sometimes require significantly
more data to sufficiently power models when compared with adult ML4H
projects.

Wemust also pay close attention to some of the unique challenges that arise
when the patient (i.e., the child) is not the only person providing information
about their symptoms and overall health. Pediatric patients typically co-report
health outcomes alongside their caregivers. It is generally acknowledged how-
ever that proxies can sometimes be poor at reporting health-related information
[19]. Specifically, data can be missing, wrong, or incomplete. The degree of
involvement of a caregiver in the presentation of symptoms and other health
data also differs with age, family circumstances, and cultural context, creating a
spectrumof variability that can be difficult to control while also adding bias and
noise to datasets.

Model development

The development of anMLmodel involves passing pre-processed data (cleaned
and prepared) into an algorithm that learns a task by undergoing a variety of
mathematical optimization techniques that differ based on the type of ML
model being utilized. Table 1 highlights some common ML models with their
associated clinical utility.

Novel ML techniques are being developed to synthesize or otherwise sup-
plement our current data. Although there should be an emphasis on building
and growing high-quality pediatric datasets, certain techniques, such as transfer
learning, can enable ML models to perform well in data-constrained environ-
ments [28]. This involves training an algorithm in one domain and exploiting
commonalities between the data in the training domain (e.g., adult chest X-ray
images) and the target domain (e.g., pediatric chest X-ray images) to build a
model that generalizes between them. As a demonstration of the usefulness of
this approach, transfer learning was leveraged by Liang et al. to improve
pediatric pneumonia classification [29]. This field of research is growing, but
it is limited in that it requires enough underlying similarities between the
training and target domains.

Model validation

In order to implement amodel at the bedside after model development, a series
of prospective trials are required to assess and validate model performance
across multiple domains. We propose the following framework illustrated in
Fig. 2 to serve as a high-level approach for the translation of a developedmodel
into clinical practice in pediatrics.
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Initial testing
The statistical outcome metrics used throughout these stages will vary widely
depending on the clinical prediction task being evaluated. These metrics in-
clude, but are not limited to, the following: precision, recall, area under the
receiver operator curve, sensitivity, specificity, and accuracy [30]. Each has their
own unique advantages and disadvantages that should be viewed holistically
when evaluating ML models as opposed to giving sole value to any one
“universal” metric [31] [32].

Initial statistical outcome metrics used to evaluate an ML model should
ideally be generated on a non-random, out-of-time sequenced set of data. If
using a dataset that contains a single year’s worth of EHR patient data, a model
might be trained using data from patients who presented between January and

Table 1. Descriptions of ML tasks and examples of associated clinical use cases

Machine
learning
tasks

Description Common types of
models*

Clinical example

Classification Classify data into pre-specified
groups

Logistic regression, support
vector machines, random
forests, neural networks

Predict critical care usage and
hospitalization in children
presenting to emergency
departments [20]

Regression Predict a continuous variable
outcome

Linear regression, random
forests, neural networks

Predicting fracture healing time in
children [21]

Clustering Completed without labeled data
in order to categorize patients
into either known groupings or
novel subgroups

K-means clustering,
Gaussian mixture models

Discovering phenotypes of pediatric
asthma on the basis of asthma
control [22]

Outlier
detection

Unsupervised approaches to
detecting deviations from
distributions in data

One-class support vector
machines, Bayesian
networks, hidden Markov
models, isolation forests

Detecting copy number variations in
patients with Tetralogy of Fallot
[23]

Time-series
models

Modeling longitudinal data
sampled over multiple time
points

Recurrent neural networks,
long short-term memory
networks

Prediction of cardiac arrest from
continuous physiological signals
over time in pediatric intensive
care unit patients [24]

Reinforcement
learning

Modeling the optimal action to
take in order to maximize a
reward in response to
environmental changes

Markov decision processes,
Q-learning

Determining optimal and
individualized treatment
suggestions for septic patients in
intensive care units [25]

Image-based
models

Models involving medical image
data (i.e., X-rays, MRIs, and
CT)

Convolutional neural
networks, generative
adversarial networks

Diagnosing and providing treatment
suggestions for congenital
cataracts [26]

Natural
language
processing

Processing and analyzing
language-based data (i.e.,
electronic medical records)

Latent Dirichlet allocation,
long short-term memory
networks, transformer
models

Extracting text from an EMR to
predict a patient’s diagnosis,
assisting in triage or aiding in
complex cases [27]

*Does not include all types of models for each category as new modeling techniques are rapidly evolving
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October, then tested on subsequent patients who presented in November and
December. This approach would allow for an assessment of how the model
might behave when making predictions with respect to future patients. Most
importantly, out-of-time validation allows for an initial estimation of model
performance when factoring in seasonality effects and environmental shifts in
the distribution of patient data.

Silent trial
Conducting a silent trial enables further prospective validation and is the next
safe step forward toward translation. A silent trial involves integrating a devel-
opedMLmodel into a data pipeline (e.g., EMRs) in real-time such that data can
be passed into the model and predictions can be made at a frequency that
directly represents how the model will be utilized in clinical practice. These
predictions are made in the background (i.e., silently) without being disclosed
to patients and/or their providers and does not influence current patient care.
Statistical outcome metrics of the model’s ongoing prospective performance
should be captured and repeatedly evaluated to ensure that it maintains per-
formance over time. During this phase, the integrity of data streams, network
speeds, computational capacity, andmodel latency can also be evaluated. These
technical considerations are important as they directly impact the evaluation
and usability of ML tools in practice.

Fig. 2. A framework of prospective studies to consider when focusing on model validation in pediatrics. From start to finish: initial
testing, silent trial, and clinical evaluation, ending with clinical integration and continuous monitoring. We suggest fairness
assessments occur throughout each stage of the pipeline.
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Clinical evaluation
After a silent trial demonstrates that amodel behaves well prospectively, clinical
evaluation can be undertaken as needed to determine the impact themodel will
have on patient and provider outcomes. Themajority ofML4H research consists
of proof-of-concept models or systems built on retrospective cohorts [33] that
are beneficial for rapid prototyping and development. However, retrospective
analysis does not offer researchers the same insights as well-designed prospec-
tive studies based on local cohorts. Prospective studies are vital for ensuring that
retrospective validity translates into real clinical impact. The structure of the
clinical evaluation needed will depend on the clinical use case in question and
may involve both traditional research (e.g., prospective cohort study, random-
ized control trial, RCT) and quality improvement (QI) methodologies. The
procedures and study designs appropriate in fulfilling this task will vary based
on the complexity of the task and the level of risk associated with the model’s
implementation [34].

Prior to conducting a clinical evaluation, patient risk should be reassessed
based on the outcome metrics obtained during the silent trial—with these
results directly informing approval from research ethics boards. Issues to con-
sider with clinical trials in ML4H largely mirror traditional trials: studies must
be sufficiently powered for clinical endpoints, comparisons must be made to
best available practice (e.g., current standard of care), and the objective of the
trial (e.g., demonstrating superiority, non-inferiority, or equivalence) should
align with the design and analytic methods used. Finally, researchers have
pointed out that randomization, done to balance known and unknown con-
founders between treatment groups, can be difficult to implement with ML
applications that change clinical workflows [35•]. Such challenges can be
ameliorated with pragmatic, stepped-wedge cluster designs that allow for an
increase in the number of clusters that are exposed to an intervention over time
[35•], [36].

Prospective cohort studies of ML4H applications in pediatrics are
more common than RCTs, the “gold-standard” in clinical medicine,
but are still rare compared with retrospective studies. Examples of these
studies include predicting disease trajectory in children with juvenile
idiopathic arthritis, identifying neuroanatomical vulnerability in youth
at high risk for psychosis, and detecting autism from home videos [37],
[38], [39]. Only one RCT of an ML4H application had occurred in
pediatrics by early 2020—a Chinese study on a previously published
system for diagnosing and providing treatment recommendations for
cataracts [40].

The lack of clinical trials in ML4H may be partly explained by the different
publishing strategies that apply in computer science as compared with those in
medicine. Computer science places greater emphasis on publishing in confer-
ence proceedings than do most other academic disciplines [41]. Whereas pro-
spective studies and RCTs can take several years to design, recruit for, and
publish in peer-reviewed journals, conference publication cycles take place
every few months. As outlined throughout this piece, the development of
ML4H systems is a collaborative effort, and discussions need to be had between
stakeholders across disciplines on the advantages of publishing in different
venues depending on the stage of the project.
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Once clinical trials for ML4H tools are established and begin to move into
later phases requiring more participants, a unique consideration in pediatrics is
the concentration of patients in highly specialized, often urban, tertiary care
centers [42]. To bolster recruitment, prospective studies may need to become
multicenter, which has important implications due to dataset shift. Special
attention must be paid to the training data used, and the generalizability of
themodel when anML4H application becomes used across different centers, as
changes in underlying statistical distributions can substantially decrease model
performance [43]. External model validation has been commonly completed
with various clinical risk scores created using traditional epidemiological
methods, and is becoming more commonplace in ML4H [44]. This external
model validation is especially important because a major critique of ML
methods is that there is a risk of “overfitting” or memorizing training data such
that the accuracy of a model may not be sustained across sites containing
variations in patient distributions.

Continuous monitoring
In order to ensure that model performance is maintained, statistical outcome
metrics should continue to be assessed even after an ML tool is implemented
[45•]. The interval of how frequently this is done should reflect the potential
risk associated with implementation of the model. Ideally, a software is devel-
oped to continuously monitor relevant outcome metrics, and alarms/flags are
raised when performance declines. Failure to undertake ongoing assessment
could lead to a decline in model accuracy because patient features, including
corresponding distributions of data and trends in children, may change over
time. Continuous auditing of the model’s performance is a proactive way to
address this concern while simultaneously gathering information about how
frequently model retraining and recalibration should be completed [46].

Fairness assessment
An assessment of outcome metrics across gender, age, ethnicity, socioeconomic
status, and geography is strongly advocated for at each stage ofmodel validation
to ensure equitablemodel performance across all subgroups. Failure of amodel
to perform on a select subgroup may reflect an underlying deficiency or bias
within the dataset. Implementing a model without accounting for these perfor-
mance inequities may unintendedly contribute to socioeconomic disparities in
pediatric healthcare rather than improve upon them [47].

User validation

It is essential for user validation testing to be incorporated into the pipeline
when building an ML model for clinical integration, in order to ensure that
associated clinician and patient user experiences are positively impacted [48]
[49]. From a human computer interaction perspective, the needs of the end-user
should be heavily factored into the evaluation of the clinical utility of an AI tool.
Many medical innovations fail to adequately consider these needs and cannot
be effectively integrated into clinical practice as a result [50]. Similar to the
engagement in Pediatric Clinical Use Case Design, circling back to design thinking
methodology at this time provides an excellent framework for re-engagement of
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all stakeholders. This will help to ensure the solutions developed are usable and
yield both quantitative and qualitative improvements in patient care. Machine
learning scientists, interprofessional clinical staff, children, and families all have
a role to play in effectively designing and implementing useful AI tools in a
pediatric setting [35•].

Clinical integration

Integrating a successfully validated ML model into clinical practice rep-
resents the final hurdle to overcome prior to attaining meaningful
clinical impact from an ML4H project [45•]. Augmenting clinical
workflows such that patients, their families, and clinicians each obtain
value from the new process is key to user uptake and satisfaction [51•].
Ignoring this concern at the use case design stage and again at time of
clinical integration is known to contribute to the failure of technology
innovation in healthcare [52] [53]. Features associated with successful
integration of new technology include the following: automation of use,
providing customizable and specific recommendations rather than just
alerts, and providing information at the time and location of decision-
making [54].

The implementation of effective change management strategies also con-
tributes to success by proactively addressing issues associated with provider
resistance [55]. Indifference of healthcare professionals and lack of motivation
is known to contribute to poor organizational adoption of new technologies
[56]. This often stems from lack of confidence in the tool’s performance and
workflow disruption. Anticipating these challenges and addressing them head-
on can improve ease of integration.

Successful clinical integration is also associated with a hospital’s ability to
effectively execute QI initiatives [57]. Having a QI focus at this stage enables
ML4H project teams to iterate through plan, do, study, act (PDSA) cycles, in order
to measure the impact of clinical integration on both primary outcomes and
counterbalancing measures [58]. PDSA cycles also allow for review and re-
adjustment of integration approaches as needed until target levels of engage-
ment and success are achieved.

Legal, privacy, and ethical considerations

As the technical science continues to advance, researchers are also working to
identify and address the ethical and legal challenges that arise when using AI in
various healthcare settings. Since much of the work in ML4H is taking place
within adult healthcare settings, so too has the bulk of the related social
scientific work. Among the ethical and legal issues being explored are:

& concerns about how data is collected
& whether that data contains biases
& fairness and equity regarding who will benefit
& how to adequately and ethically test and regulate ML tools
& where liability should lie for harm that results from reliance on ML
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& whether and when healthcare institutions might have amoral or legal duty
to inform patients, staff, and/or hospital users about monitoring, data
collection, and the use of predictive analytics to inform administrative
and/or clinical decision-making

In the pediatric context, concerns about privacy and consent in partic-
ular are more nuanced and take on greater significance. This includes
complex issues around surrogate decision-making. Given the data-
intensive nature of modern medicine, how we collect pediatric data and
obtain consent for its secondary use is very important. This is particularly
true if we wish to work toward building larger local or site-specific pedi-
atric datasets. Obtaining blanket authorization for secondary use of data
from a surrogate, although legally acceptable, is qualitatively different than
actually obtaining a patient’s informed consent. It is for this reason that
the ethical and legal norms that govern research generally maintain that
consent is an ongoing process [59]. Furthermore, our normative and legal
frameworks work from the premise that data should only be shared with a
deep “respect for the context in which it was collected” (e.g., to help
advance research into a particular disease). Machine learning challenges
this premise because it looks for things we cannot see or predict. If we
want informed consent to remain meaningful in a world of big data, we
must find ways to explain what analytics are expected or likely to do [60].

Until it is feasible to provide a specific and meaningful explanation
to patients and their proxies about what we expect from data analytics,
re-contacting children (e.g., once they reach legal adulthood or otherwise
gain the requisite capacity) for ongoing permission to use of their data
shows respect for that child’s autonomy and their evolving maturity
[61]. Researchers should ideally address the topic of re-contact when
children are first enrolled or provide consent for their data to be used in
research [59]. That being said, there remains some debate in the litera-
ture about whether re-contact is always appropriate given logistical
challenges, the scope of parental authority, and what the actual justifi-
cation for the re-contact is [61]. Regardless of how one chooses to tackle
the challenge of re-contact, ensuring that children retain the right to
withdraw consent for the use of their data is an ethically meaningful
practice that should be undertaken whenever possible [61].

Some creative solutions to this challenge of re-consent in pediatric data
sharing have also been proposed. One possible approach could be to move
away from using the language of property law when we talk about EHR data
and to re-think whose data it is that we are referring to. We might re-imagine
EHR data as being about patients instead of belonging to patients and consider
this data to be co-constructed “through a collaborative process involving the
patient and the clinician, with support from other professionals within the
health system” [62]. Under such a re-imagining, an alternative approach to
consent might involve exploring different models of collective data governance
that include patients, families, healthcare professionals, and stakeholders from
different relevant communities. That governance community could make col-
lective decisions about how individual data sets can be used. Patients and/or
their proxies could be told about this data governance model at the time
consent is sought for the collection and use of their data, and this infrastructure

346 Patient Safety (M Coffey, Section Editor)



could help allay concerns about the need to re-contact and re-consent individ-
uals as they gain capacity.

Conclusion

The application of AI and ML in pediatric medicine presents a range of unique
considerations, from project ideation to implementation. In this paper, we
highlight the different stages of effectively building and implementing ML
models in pediatrics. Having a robust understanding of how ML is different
in pediatrics will allow for the effective design of solutions by clinicians and
data scientists in collaboration with patients, families, and caregivers.
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