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Abstract

Background: This paper presents a framework for integrating disparate data sets to predict gene
function. The algorithm constructs a graph, called an integrated similarity graph, by computing
similarities based upon both gene expression and textual phenotype data. This integrated graph is
then used to make predictions about whether individual genes should be assigned a particular
annotation from the Gene Ontology.

Results: A combined graph was generated from publicly-available gene expression data and
phenotypic information from Saccharomyces cerevisiae. This graph was used to assign annotations to
genes, as were graphs constructed from gene expression data and textual phenotype information
alone. While the F-measure appeared similar for all three methods, annotations based upon the
integrated similarity graph exhibited a better overall precision than gene expression or phenotype
information alone can generate. The integrated approach was also able to assign almost as many
annotations as the gene expression method alone, and generated significantly more total and
correct assignments than the phenotype information could provide.

Conclusion: These results suggest that augmenting standard gene expression data sets with
publicly-available textual phenotype data can help generate more precise functional annotation
predictions while mitigating the weaknesses of a standard textual phenotype approach.

Background
With the advent the “omics technologies,” researchers
are faced with the problem of analyzing high throughput
datasets. The Gene Ontology (GO) was initiated to
provide a controlled vocabulary for describing the
cellular location, biological process, and molecular

function of gene products and to thus enable extraction
of biological meaning from these large datasets [1]. The
terms in the GO are organized in a directed acyclic graph
where directed edges represent relationships among
terms. The primary relationships between terms in the
GO are “part_of” and “is_a”. Assignment of a GO term to
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a gene product is called annotation. GO annotation has
become a “gold standard” in describing and the function
of gene products and in supporting computational
methods for analyzing high throughput datasets.

Assigning GO terms to gene products has now become a
major bottleneck in the analysis of large datasets and has
prompted the development of many computational
approaches. The Gene Ontology Annotation (GOA)
project [2] employs a pipeline which incorporates both
manually curated and electronic approaches to annotate
UniProtKB entries with GO terms. The manual assign-
ment of annotations relies on curators searching through
literature for evidence that a protein has a particular
function. While this process can be slow and expensive,
the results are typically very accurate and detailed. The
electronic aspect of the pipeline incorporates results
from a variety of sources including Swiss-Prot keywords,
cross references to InterPro, and orthology mapping
from a source species to a target species. Electronic
annotation is particularly useful for the assignment of
GO terms to the proteins of non-model organisms which
likely would not receive manual annotations. Many
other computational annotation pipelines for assign-
ment of Gene Ontology terms have been developed. For
example, DAVID [3] agglomerates data from many
sources, both manually curated and computationally
populated, into a single database. CLUGO [4] utilized
homology search combined with clustering to assign
terms to new sequences. Text mining is also frequently
used to computationally predict gene functions with the
goal of automating the manual process of annotating
gene products from the literature. For example, Daraselia
et al. [5] automatically extract functional annotations for
mammalian proteins from Medline texts by building
regular expression to find relationships between GO
terms and proteins. Groth et al. [6-8] use text mining to
associate phenotypes with genes by clustering term
frequency-inverse document frequency (tf-idf) arrays.
Functional predictions are inferred for all genes in a
cluster for a particular annotation when at least half of
the genes in the cluster had that annotation. In addition
to sequence and text data, gene expression data is also
often used in predicting functional annotations. For
example, Virtual Gene Ontology (VIRGO) [9] constructs
functional linkage networks (FLNs) in which nodes in a
graph represent genes and edges indicate the Pearson
correlation between the expression arrays of genes.
Functional annotations are propagated across the net-
work by treating the network as a discrete Hopfield
network [10].

We present a new algorithm that combines text mining
of phenotypic data with inference based on gene
expression patterns to predict whether a particular gene

should receive a particular GO annotation based on its
similarity to other genes known to have the annotation.
We demonstrate the utility of our approach with the
well-annotated yeast genome where current annotations
are considered the “true annotation.” The algorithm will
be most useful, however, for annotating gene products of
less well studied organisms without large research
communities.

Methods
Our algorithm first computes the similarity of all genes
under consideration based on two types of data:
phenotype extracted using text mining and gene expres-
sion profiles. A complete graph is then constructed
where each vertex corresponds to a gene and the weights
on edges represent the similarity of a pair of genes.
Assignment of a GO annotation is determined for each
gene based on the similarities to other genes with this
annotation.

GO annotations
In order for the algorithm to predict functions associated
with unlabeled genes, it must have existing labels to use
as a training set. This algorithm uses current GO
annotations as labels [1]. The notation annotation (a, g)
indicates that gene g has annotation a.

Similarity functions
A similarity graph is used to integrate multiple data
sources to predict whether a gene should receive a
particular GO annotation. Similarity functions form the
basis of the prediction algorithm. A similarity function
takes as input a representation of two genes and returns a
value between -1 and 1 reflecting the similarity between
the two genes, where -1 represents high dissimilarity and
1 indicates high similarity. More specifically, a similarity
function is defined for each data set. Thus, integrating n
data sets requires n similarity functions. The functions
need not be distinct. So, f: G × G Æ [0, 1], where f is a
similarity function and G is the set of genes.

Gene expression similarity function
The similarity function for the gene expression data
between two genes is defined as the Pearson correlation
coefficient of the associated expression arrays of the two
genes [11]. Each gene expression array will typically
represent the expression level of a gene under different
conditions or at different time points in a treatment. The
assumption is that genes exhibiting similar expression
profiles will have similar functions. The Pearson
correlation coefficient between two arrays is defined as

BMC Bioinformatics 2009, 10(Suppl 11):S20 http://www.biomedcentral.com/1471-2105/10/S11/S20

Page 2 of 12
(page number not for citation purposes)



r x y
xi x yi y

xi x yi y

( , )
( )( )

[ ( ) ( ) ]

= − −

− −

Σ

Σ Σ2 2
1
2

(1)

where xi is an element from the array x, x is the mean of
the elements in the array x, yi is an element from the
array y, y is the mean of the elements in the array y.
Because negatively correlated genes are not informative
for assigning GO terms to genes[12], negative correlation
values are replaced by 0. Therefore, the similarity of two
genes based on expression is defined as

f g g r v vexpression i j i j( , ) max( ( , ), )= 0 (2)

where vi and vj are arrays representing gene expression
profiles for genes giand gj, respectively.

Textual phenotype similarity functions
Because the textual phenotypes are not easily amenable
to computation, some method to transform the text into
a usable form is necessary. Term frequency – inverse
document frequency (tf-idf) arrays offer one common
approach for turning text into arrays [13]. The term
frequency (tf) indicates how many times a particular
term appears in a particular document; the intuition
asserts that terms which appear often in a document
more accurately describe that document [13]. As a term
appears in more documents, though, that term carries
less information. The inverse document frequency (idf)
accounts for this phenomena [13]. The idf is the log of
the total number of documents divided by the number
of documents containing the term. The tf-idf value for a
term is the product of the tf and idf. Stop lists are used to
remove common words such as articles and prepositions
and stemming algorithms reduce alternate tenses and
forms of words to a single root form [13]. The tf-idf array
for a gene contains the tf-idf values for all possible terms
in the complete set of documents (corpus). The
assumption is that genes with similar tf-idf arrays will
have similar functions. The similarity function for the
textual phenotype data is defined as the cosine distance
between the tf-idf arrays associated with two genes [13]
given by

f g g v v
vi
tv j

vi v j
phenotype i j i j( , ) cos( , )= = (3)

where vi and vj are tf-idf arrays associated with genes gi
and gj, respectively.

Constructing the similarity graph
A graph is constructed by creating a vertex to represent
each gene symbol. The graph is then completely

connected and the weight of each edge represents the
similarity of the genes corresponding to the vertices. The
weight of the edge is calculated in two different ways.
The first method uses the sum of the values of all
similarity functions between the two genes:

w f g gi j k i j
k

n

, ( , )=
=∑ 1

(4)

where wi, j is the weight of the edge between the vertices
representing genes gi and gj, and fk is a similarity function
based on one of the data sets. The second method
constructs a graph with the same vertices and edges, but
instead of using the sum of the similarity functions to
find the weights, the max is taken instead. That is:

w f g gi j k k i j, max ( , )= (5)

Predicting functional annotations
Prediction of whether a particular gene should receive a
particular GO annotation is made using the complete
graphs constructed as described above. The nodes in the
graph correspond to genes, and the weights of its edges
correspond to the similarity between genes. These
similarities are derived using the gene expression and
phenotype similarity functions described above. Figure 1
gives the pseudocode for the prediction algorithm. The
same prediction algorithm can be used regardless of
whether the sum or the max was used to calculate edge
weights. For each annotation a, we consider each gene g
in turn and determine whether the annotation should be
assigned to the gene. For a particular gene and
annotation pair (g, a), we first remove gene g from
consideration and then compute two thresholds. Figure 2
illustrates the key similarity computations. In step 1, a
lower threshold on similarities is computed by finding
the gene h with annotation a with the smallest total
similarity to other genes with this annotation.

min ( , ) ( , )i i j i j
j
sim h h h annotation a h h h for all  where  and ≠∑

(7)

We consider this a lower bound and will not assign the
annotation to gene g if it has a total similarity to other
genes with annotation a lower than this threshold.

As shown in Figure 2, the next step is to compute an
upper threshold by finding the gene h without annota-
tion a most similar to genes with the annotation. We
consider this an upper bound threshold and will assign
the annotation to gene g if its similarity to other genes
with the annotation is higher than this threshold.
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Figure 1
Pseudocode for annotation prediction algorithm. The algorithm predicts whether gene g should be annotated
with annotation a. The algorithm consists of four key steps. First, threshold_low, which is the lowest similarity of any gene
known to have a to all other genes known to have a, is calculated. Next, threshold_high, which is the highest similarity
of any gene known to not have a to all genes known to have a, is calculated. Then, total_similarity of g to all genes
known to have a is calculated. Finally, the prediction is made. If total_similarity exceeds threshold_high, then g is always
predicted to have annotation a. If total_similarity is less than threshold_low, then g is never predicted to have annotation
a. If total_similarity falls between threshold_low and threshold_high, then it is linearly interpolated between the
two thresholds to produces a number between 0 and 1. Specifically, the formula for the linear interpolation is

interpolated sim
total similarity threshold low
threshold h

_
_ _

_
= −

iigh threshold low− _
. An predefined cutoff, such as 0.5, is then used to predict whether or not to

assign the annotation to gene g. Thus, if cutoff = 0.5 and interpolated_sim = 0.6 for gene g and annotation a, then
gene g would be predicted to have annotation a.
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The third step is computation of the total similarity of
gene g to all genes with annotation a. In the fourth step,
a prediction decision is made based on the two thresh-
olds and the total similarity as illustrated in Figure 3. If
the total similarity is above the upper threshold,
annotation a is assigned to the gene g. For total similarity
values between the thresholds, we linearly interpolate
between the thresholds and use a predefined cutoff to
determine if the interpolated similarity is sufficiently
high to assign the annotation a to gene g.

Prediction metrics
Because the prediction algorithm given in Figure 1 only
tests for a single gene and a single annotation at a time, it
implicitly uses a jackknifing, or leave-one-out, approach
for prediction [14]. In this approach, all of the genes
except the one in question are used to make predictions
about whether that gene should receive the annotation.
A nice property of jackknifing is the small amount of
bias it induces when considering the generalization of
models [14]. Metrics assessing the quality of the
predictions can be computed by comparing the annota-
tions predicted for gene g when the gene is “left out”
with the annotations already assigned to that gene.

Figure 2
Computing key similarities for predicting annotations. Three key similarity calculations are required to
determine if annotation a should be assigned to gene g. Step 1: The lower threshold is the minimum of the total similarity
of each gene with annotation a to all other genes with annotation a. Step 2: The upper threshold is the maximum of the
total similarity of each gene without annotation a to every gene with annotation a. Step 3: The total similarity of gene
g to all genes with annotation a is computed and the decision for assigning annotation a to gene g is made as
illustrated in Figure 3.
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As mentioned previously, the algorithm uses a cutoff to
distinguish between positive and negative predictions. In
our experiments, we use a series of cutoffs. For example,
with a cutoff value of 0.6, we would test if the
interpolated similarity (interpolated_sim in the pseudo-
code in Figure 1) for a particular gene and annotation is
greater than 0.6. If it is, then the gene is predicted to have
the annotation. In all cases, annotations with fewer than
five genes known to have the annotation are disregarded.
For comparison, we have predicted annotations using a
combination of gene expression and textual phenotype
data, using gene expression data alone, and using
phenotype data alone. All results referring to predictions
made using the graph constructed from the combination
of the data sets and taking the sum of the similarities will
be referred to as results from the “integrated sum data
set,” and those from the graph constructed from the

combined data sets and taking the maximum of the
similarities will be referred to as results from the
“integrated max data set.” Results referring to predictions
from the gene expression graph will be referred to as
results from the “gene expression data set,” and those
from the phenotype data will be referred to as results
from the “phenotype data set."

The accuracy of the predictions is assessed using
precision, recall and F-measure. Precision is the fraction
of the annotation assignments (positive predictions) that
are correct:

precision tp tp fp= +( ) /( ) (9)

where tp (true positives) is the number of correct
positive predictions and fp (false positive) is the number

Figure 3
Predicting transfer to annotations to genes. When considering whether an annotation a should be assigned to gene g,
the total similarity of each gene with annotation a to gene g is computed. If the total similarity is greater than the upper
threshold, the annotation is assigned. If the total similarity is less than the lower threshold, the annotation is never assigned.
For genes with a total similarity greater than the lower threshold but less than the upper threshold, linear interpolation is used
to determine where the similarity falls relative to the two thresholds. If the interpolated similarity is above a predefined cutoff,
the annotation is assigned. The pink area indicates similarity values for which the annotation will be transferred.
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of incorrect positive predictions [16]. Recall reflects
the fraction of known annotations found by the
algorithm:

recall tp tp fn= +( ) /( ) (10)

where fp (false negatives) are genes known to have an
annotation but predicted as not having the annotation
[16]. The precision and recall measures give comple-
mentary views of the effectiveness of a prediction
algorithm and selecting a cutoff to increase one measure
will typically decrease the other measure. The F-measure
combines these views into a single metric and allows one
to tradeoff precision and recall. In general, the F-measure
can place more or less importance on precision as

compared to recall [11]. For our experiments, the two
were weighted equally:

F measure precision recall precision recall- = ∗ ∗ +( ) /( )2 (11)

Gene expression experimental data
All gene expression data for these experiments
was downloaded from GEO [7] on November 5, 2008.
Yeast expression data were used. All of the data was
generated on the GPL1914 platform [15], which uses a
spotted DNA/cDNA approach. The data are all normal-
ized using the Rosetta Resolver approach [16]. Table 1
lists the GEO accessions and titles of all of the
samples used.

Table 1: GEO Accessions

Sample Sample Title

GSM112158 Yeast cell cycle-time point 0 min 2001-10-30_O.rfm Yeast W303 cells
GSM112159 Yeast cell cycle-time point 5 min 2001-11-09_0005.rfm Yeast W303 cells
GSM112160 Yeast cell cycle-time point 10 min 2001-11-09_0010.rfm Yeast W303 cells
GSM112161 Yeast cell cycle-time point 15 min 2001-11-09_0015.rfm Yeast W303 cells
GSM112162 Yeast cell cycle-time point 20 min 2001-11-09_0020.rfm Yeast W303 cells
GSM112163 Yeast cell cycle-time point 25 min 2001-11-09_0025.rfm Yeast W303 cells
GSM112164 Yeast cell cycle-time point 30 min 2001-11-09_0030.rfm Yeast W303 cells
GSM112165 Yeast cell cycle-time point 35 min 2001-11-09_0035.rfm Yeast W303 cells
GSM112166 Yeast cell cycle-time point 40 min 2001-11-09_0040.rfm Yeast W303 cells
GSM112167 Yeast cell cycle-time point 45 min 2001-11-09_0045.rfm Yeast W303 cells
GSM112168 Yeast cell cycle-time point 50 min 2001-11-09_0050.rfm Yeast W303 cells
GSM112169 Yeast cell cycle-time point 55 min 2001-11-09_0055.rfm Yeast W303 cells
GSM112170 Yeast cell cycle-time point 60 min 2001-11-09_0060.rfm Yeast W303 cells
GSM112171 Yeast cell cycle-time point 65 min 2001-11-21_0065.rfm Yeast W303 cells
GSM112172 Yeast cell cycle-time point 70 min 2001-11-21_0070.rfm Yeast W303 cells
GSM112173 Yeast cell cycle-time point 75 min 2001-11-28_0075.rfm Yeast W303 cells
GSM112174 Yeast cell cycle-time point 80 min 2001-11-28_0080.rfm Yeast W303 cells
GSM112175 Yeast cell cycle-time point 85 min 2001-11-29_0085.rfm Yeast W303 cells
GSM112176 Yeast cell cycle-time point 90 min 2001-11-29_0090.rfm Yeast W303 cells
GSM112177 Yeast cell cycle-time point 95 min 2001-11-29_0095.rfm Yeast W303 cells
GSM112178 Yeast cell cycle-time point 100 min 2001-11-29_0100.rfm Yeast W303 cells
GSM112179 Yeast cell cycle-time point 105 min 2001-12-06_0105.rfm Yeast W303 cells
GSM112180 Yeast cell cycle-time point 110 min 2001-11-29_0110.rfm Yeast W303 cells
GSM112181 Yeast cell cycle-time point 115 min 2001-11-29_0115.rfm Yeast W303 cells
GSM112182 Yeast cell cycle-time point 120 min 2001-11-29_0120.rfm Yeast W303 cells
GSM81064 Yeast cell cycle-time point 0 min 2001-05-03_0000.rfm
GSM81065 Yeast cell cycle-time point 10 min 2001-05-03_0010.rfm
GSM81066 Yeast cell cycle-time point 20 min 2001-05-03_0020.rfm
GSM81067 Yeast cell cycle-time point 30 min 2001-05-03_0030.rfm
GSM81068 Yeast cell cycle-time point 40 min 2001-04-11_0040.rfm
GSM81069 Yeast cell cycle-time point 50 min 2001-04-11_0050.rfm
GSM81070 Yeast cell cycle-time point 60 min 2001-04-11_0060.rfm
GSM81071 Yeast cell cycle-time point 70 min 2001-04-11_0070.rfm
GSM81072 Yeast cell cycle-time point 80 min 2001-04-11_0080.rfm
GSM81073 Yeast cell cycle-time point 90 min 2001-04-11_0090.rfm
GSM81074 Yeast cell cycle-time point 100 min 2001-04-11_0100.rfm
GSM81075 Yeast cell cycle-time point 110 min 2001-04-11_0110.rfm
GSM81076 Yeast cell cycle-time point 120 min 2001-04-11_0120.rfm

These data were downloaded from GEO on November 5, 2008. The data sets were generated by a variety of researchers in many different
laboratories.
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As previously mentioned, the identifiers for the gene
expression data do not exactly correlate to single genes.
Affymetrix provides a bridge which maps between
expression identifiers and Entrez gene symbols [17].
Not all expression identifiers mapped to a gene symbol,
and others mapped to more than one gene symbol. Only
expression identifiers which mapped to a single gene
symbol were retained. All other expression data was
discarded. A total of 6251 expression identifiers were
present in 39 expression runs. After mapping identifiers
to Entrez gene symbols, 3169 entries remained. There-
fore, each of the 3169 genes had an associated 39-
dimensional array of expression values.

Phenotype textual experimental data
The PhenomicDB http://www.phenomicdb.de/ incorpo-
rates data from many different data sources about a wide
variety of organisms, including human, yeast, mouse,
and many others [18]. The database provides a large
number of searching options, including searching by
Entrez gene symbols. For each of the gene symbols
identified with gene expression values, PhenomicDB was
consulted for phenotypes associated with that gene
symbol in yeast. The data was downloaded on Novem-
ber 23, 2008.

In general, PhenomicDB contains multiple phenotypes
for each gene symbol. Each phenotype is a textual
description. To form a single document for each gene
symbol, all of the phenotypes are simply concatenated.
However, this plain text representation of knowledge
does not easily lend itself to learning approaches.

The document associated with each symbol was trans-
formed into a tf-idf array. The doc2mat utility from the
CLUTO package [19] applies a stop word list and the
Porter stemming algorithm to produce a term frequency
description of each document [13]. A stop word list is
used to remove common, uninformative words, such as
articles and prepositions, from the documents. The
stemming algorithm is used to remove prefixes and
suffixes from words. The term frequency and inverse
document frequency values for each term are multiplied
to produce a tf-idf array for each document. A total of
6541 distinct terms were discovered after pruning and
stop words were applied. Hence, each of the tf-idf arrays
had 6541 dimensions. Each dimension in the array
corresponds to one unique term. The value of each
dimension is a fraction in which the numerator is the
number of times the term corresponding to that
dimension occurs in the document and the denominator
is the total number of documents in which the term
appears. Because the numerator cannot be less than 0
and the denominator cannot be less than 1, the resulting
values are always nonnegative.

Functional annotations
Our algorithm utilizes GO terms as labels. Fortunately,
the file provided by Affymetrix which provides the
mapping between expression identifiers and gene sym-
bols also includes all GO terms associated with each
gene symbol [17]. A total of 3,466 distinct GO
annotations were identified in the Affymetrix file. A
total of 39,680 annotation assignments were defined
between the GO annotations and the 3,169 genes.

Results and discussion
When considering the correctness of predictions, two
different approaches were used. In the first case, only
exact annotation matches are considered correct. For
example, if predicting that gene g has annotation a, the
prediction is considered a true positive only if g is
labelled exactly with a. Otherwise, the prediction is a
false positive. These are referred to as “exact” predictions.
However, the Gene Ontology enforces the “true path
rule” stating that “the pathway from a child term all the
way up to its top-level parent(s) must always be true”
[20]. This means that if annotation a is predicted for
gene g and the gene has been previously assigned a GO
term that is a child of a, the assignment of a to the gene g
is also correct. Therefore, we use an alternate method of
computing the number of correct predictions where, if
predicting that gene g has annotation a, the prediction is
considered a true positive if g is labelled exactly with a or
with any child term of a. The second case is referred to as
“generalized” predictions.

Figure 4 indicates the total number of GO annotations
predicted for each of the three data sets. The MAX method
for combining similarities results in more positive predic-
tions of GO terms than the SUM method. Figure 5 shows
the total number of correct GO terms assigned using both
the exact and generalized scoring methods. As expected, the
generalized scoring method gives a much higher number of
correct assignments. Figure 4 and 5 indicate that, overall,
the gene expression data set resulted in the most GO terms
predicted and in the most and correct GO assignments.
Both of the integrated approaches produced numbers of
assignments and correct assignments that were only
somewhat lower than those for the expression data set.
The textual phenotype data set produced far fewer total
assignments and correct assignments at all except the most
stringent cutoff values. These results indicate that the gene
expression and integrated approaches have the potential to
discover many more new annotations than the phenotype
data set.

Precision, recall, and F-measure
Figures 6, 7, and 8 show the precision, recall, and
F-measure values respectively, for annotation predictions
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using each data source for a variety of cutoffs for the two
scoring methods. The integrated approach results in
improved precision over predictions based on either data
set alone – especially for high cutoff values. Recall is
higher for the expression dataset. These prediction results
illustrate the precision/recall tradeoff problem. Because
of the large number of negative samples, simply
predicting that a gene should never have an annotation
results in a very high precision; of course, such a scheme
defies the point of developing an algorithm to predict
functional predictions. The F-measure attempts to
combine precision and recall into a single metric. The
highest F-measure is obtained with a cutoff of 0.6. Note
that this cutoff does not yield the highest precision or the
highest recall. Because the precision values for all data
sources are quite low, it might be preferable to use an
F-measure metric that gives a higher weight to precision.

The results show that, as expected, the generalized
scoring method yields higher precision, recall and
F-measure values than the exact method. One can
argue that the exact scoring method is unnecessarily
strict and somewhat arbitrary because it requires the

automated method to learn GO terms at exactly the same
level as those assigned by expert annotators. In general,
automated procedures tend to assign GO terms at higher
levels than can be obtained by expert biocurators reading
the literature. The “true path rule” of the Gene Ontology
guarantees that the annotations scored as correct by the
generalized scoring method are truly correct. The
weakness of this scoring method is that more general
terms are less informative than more specific terms.
Although the precision values obtained using general-
ized scoring are substantially higher than those obtained
with exact scoring, precision is still quite low. It should
be noted that some of the GO term assignments scored
as incorrect, may indeed be correct. Although yeast is one
of the best annotated model organisms, annotation of
yeast gene products is not complete and new annota-
tions are constantly being added. In some cases the
automated algorithm may have “learned” a more specific
term than is currently assigned. Another factor contribut-
ing to the low precision is the type of gene expression

Figure 4
Total Number of Positive Predictions. As the cutoff
used in the prediction algorithm is increased, all of the
datasets make fewer positive predictions. That is, they
predict that fewer genes should be annotated with a
particular GO term. However, the number of predictions
based on only the phenotype data is consistently far less than
the number based on the expression data or the combined
data set. This suggests that, in general, the phenotype data
will not be as much aid in making novel predictions as the
other data sets. There is no difference in the number of
predictions assigned by either the generalized or exact
approaches since those only differentiate between which
predictions are considered correct.

Figure 5
Total number of correct positive predictions. As the
cutoff used in the prediction algorithm is increased, all of the
datasets make fewer correct positive predictions. The
integrated data set makes nearly as many correct predictions
as the gene expression data set, and they both make many
more predictions than the phenotype data set. This confirms
that the phenotype data set is not as capable as the other
data sets in predicting new annotations. The generalized
predictions always result in more true positives. Figure 5a
shows the results for the generalized predictions. Figure 5b
shows the results for the exact predictions.
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data used. Because all of the experiments concern cell
cycle, many of the genes do not have informative
expression profiles. Including other types of gene
expression data could help alleviate this problem and
increase precision. The higher precision scored obtained
by the integrated approach indicates that this approach
allows one to take advantage of the large number of
assignments that can be made based on gene expression
data while at the same time gaining the precision
afforded by the phenotype data.

Prediction depths
Because of the differences in the nature of the textual
phenotype data and the gene expression data, their
performance at predicting annotations at different
depths in the GO was also investigated. Terms deeper
in the GO are more specific and thus more informative.
Figure 9 demonstrates how the F-measure at different
depths in the GO hierarchy varies for each data source.
Although the phenotypic data provides the highest

F-measure deeper in the hierarchy, this type of data
resulted in far fewer predicted annotations than the gene
expression data. The integrated approach improves the
F-measure values deep in the hierarchy over what is
obtained by the gene expression data alone.

In summary, the integrated approach results in nearly as
many annotation predictions as the gene expression
data, as indicated in Figure 3, but still maintains much of
the precision of the phenotype data set, as shown in
Figure 5.

Biologically relevant results
The integrated methods do produce biologically relevant
predictions which are not made by the individual data
sets. For example, the Saccaromyces Genome Database
http://yeastgenome.org/ indicates that the gene PDR11 is
a “multidrug transporter involved in multiple drug
resistance.” While it is annotated with GO:0015918

Figure 6
Precision. As the cutoff used in the prediction algorithm is
increased, the precision of all of the data sets increases.
Precision is defined as (tp)/(tp + fp) [16]. Combined with
Figures 4 and 5, this indicates that, while fewer false positives
are predicted as cutoff is increased, fewer true positives are
also predicted. This is especially true in the case of the
phenotype data set, which resulted in far fewer predictions
than the other data sets. The integrated data set does
outperform the other data sets. The generalized predictions
result in a better precision than the exact predictions.
Figure 6a shows the results for the generalized predictions.
Figure 6b shows the results for the exact predictions.

Figure 7
Recall. In contrast to recall, as the cutoff is increased, the
recall decreases. Recall is defined as (tp)/(tp + fn) [16]. Since
false negatives indicate negative predictions of known
positive annotations, it is not surprising that the values would
decrease as the cutoff is increased since that results in fewer
predictions. The gene expression data set has the highest
recall, but the integrated data set is only slightly lower.
The generalized predictions have a better recall than the
exact predictions. Figure 7a shows the results for the
generalized predictions. Figure 7b shows the results for
the exact predictions.
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(sterol transport) and GO:0042626 (ATPase activity,
coupled to transmembrane movement of substances), it
is not explicitly annotated with any functions related to
multidrug transport. The MAX integrated data set
predicts that it should be annotated with “multidrug
transport,” GO: 0006855. The gene expression data set
alone is not able to make this prediction. As another
example, the MAX integrated data set predicts that SPT21
should be annotated with GO: 0006348 “chromatin
silencing at telomere.” The Saccaromyces Genome Data-
base description of SPT21 states that the gene is involved
in telomere maintenance; however, it is not annotated
with any GO molecular functions. This prediction is not
made when using only the phenotype data set. These
examples demonstrate that not only can the prediction
algorithm make novel predictions consistent with
biological knowledge, but also that integrating the data
types can result in predicted annotations that either
individual data set alone would fail to identify.

Conclusion
This paper presents an algorithm that incorporates both
gene expression data and textual phenotype data to
predict the function of genes. This graph-based approach
generates a complete graph weighted with gene-gene
similarities. It then makes predictions based on the
weights connecting the nodes. The results indicate that
integrating the gene expression with the textual pheno-
types produces more precise annotations than predic-
tions based upon either type of data alone.

The integrated approach outperformed the gene expres-
sion-only graph in the precision metric; it also tended to
outperform the textual phenotype graph in the recall
metric. Furthermore, the integrated similarity graph
produced many more correct annotation assignments
than the phenotype graph alone. We believe that this
integrated approach can augment the usefulness of
standard gene expression data by facilitating annotation
predictions with increased precision and an increased
F-measure deeper within the GO hierarchy.

Future work could focus on development of better
methods to integrate the data sets. For example, rather

Figure 8
F-measure. The F-measure tends to favor cutoffs which are
neither very high nor very low. F-measure is calculated as
(2*precision*recall)/(precision + recall) [16]. Thus, the best
F-measures strike a balance between precision and recall.
The integrated data set using the max to combine the
similarities results in the highest F-measure with a cutoff of
0.6. Figure 8a shows the results for the generalized
predictions. Figure 8b shows the results for the exact
predictions.

Figure 9
F-measures at different depths within the GO.
Because of the more specific information available in the
phenotype data set, it results in more accurate predictions at
deeper levels in the GO. This figure shows that for
predictions at levels between 7 and 12 in the GO, the
phenotype data almost always has a higher F-measure.
However, by combining the phenotype data with the
expression data, the many more predictions (see Figures 4
and 5) made by the integrated data set do fare better than
those of the gene expression data set alone. These were only
evaluated using the generalized predictions. A cutoff of
0.6 was used in all cases.
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than equally weighting the gene expression and textual
data, methods could be developed for assigning different
weights to different data types when determining the
edge weights. A less naïve integration method could be
used to map the correlation and cosine values to more
meaningful numbers, such as p-values.
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