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Background. Coinfection with influenza virus and methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening 
necrotizing pneumonia in children. Sporadic incidence precludes evaluation of antimicrobial efficacy. We assessed the clinical char-
acteristics and outcomes of critically ill children with influenza–MRSA pneumonia and evaluated antibiotic use.

Methods. We enrolled children (<18 years) with influenza infection and respiratory failure across 34 pediatric intensive care 
units 11/2008–5/2016. We compared baseline characteristics, clinical courses, and therapies in children with MRSA coinfection, 
non-MRSA bacterial coinfection, and no bacterial coinfection.

Results. We enrolled 170 children (127 influenza A, 43 influenza B). Children with influenza–MRSA pneumonia (N = 30, 87% 
previously healthy) were older than those with non-MRSA (N = 61) or no (N = 79) bacterial coinfections. Influenza–MRSA was 
associated with increased leukopenia, acute lung injury, vasopressor use, extracorporeal life support, and mortality than either group 
(P ≤ .0001). Influenza-related mortality was 40% with MRSA compared to 4.3% without (relative risk [RR], 9.3; 95% confidence 
interval [CI], 3.8–22.9). Of 29/30 children with MRSA who received vancomycin within the first 24 hours of hospitalization, mortal-
ity was 12.5% (N = 2/16) if treatment also included a second anti-MRSA antibiotic compared to 69.2% (N = 9/13) with vancomycin 
monotherapy (RR, 5.5; 95% CI, 1.4, 21.3; P = .003). Vancomycin dosing did not influence initial trough levels; 78% were <10 µg/mL.

Conclusions. Influenza–MRSA coinfection is associated with high fatality in critically ill children. These data support early 
addition of a second anti-MRSA antibiotic to vancomycin in suspected severe cases.
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Epidemiologists from the Centers for Disease Control and 
Prevention (CDC) reported a rise in cases of influenza virus 
coinfection with methicillin-resistant Staphylococcus aureus 
(MRSA) in the 2006–2007 influenza season [1, 2], increas-
ing 3-fold compared to 2004–2005 [3]. In the 2009 influenza 
A  H1N1 pandemic (2009 pH1N1), bacterial coinfection with 
MRSA was an independent risk factor for influenza-related 
mortality in adults [4] and children [5], increasing 8-fold for 

previously healthy children. Rigorous evaluation of optimal 
antimicrobial and other therapeutic strategies to improve the 
clinical outcomes of this devastating combination is impeded 
by its sporadic occurrence and fulminant course. Although 838 
children with confirmed or suspected 2009 pH1N1 were identi-
fied across 35 US pediatric intensive care units (PICUs) in 2009, 
only 34 cases of MRSA coinfection were reported [5].

Intravenous vancomycin or clindamycin are recommended 
as the mainstay of therapy for treatment of hospitalized chil-
dren with community-acquired (CA) pneumonia (CAP) if 
MRSA is suspected [6]. The addition of a second anti-MRSA 
agent is controversial [7], partly because some combinations of 
commonly used antibiotics for MRSA, such as linezolid with 
vancomycin, have shown antagonistic effects in animal mod-
els of invasive MRSA infection [8] and in experimental in vitro 
assays [9]. Studies in animals [10–13] and observational data 
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in humans [14, 15] show that S. aureus toxins likely are driving 
systemic inflammation, immune suppression, and lung necro-
sis. Therapies targeted at specific S. aureus toxins are currently 
being evaluated in randomized trials but are not yet clinically 
available. Staphylococcus aureus antivirulence effects have been 
reported in vitro for clindamycin, reducing staphylococcal 
protein A  expression 3.5-fold [16], Panton-Valentine leukoci-
din expression 2.5-fold [17], and alpha hemolysin expression 
2.4- to 20-fold [18] in CA-MRSA and other clinical S. aureus 
strains. Beta-lactam antibiotics were associated with increased 
S. aureus toxin expression in vitro [18, 19], and vancomycin had 
negligible effect.

In the absence of clinical trials, data from observational 
studies of real-world practice may give insights to guide ther-
apy [20]. Therefore, in a multicenter observational study of 
critically ill children with confirmed influenza infection from 
the Pediatric Intensive Care Influenza (PICFLU) Study, we 
characterized the clinical presentation, immune response, 
and clinical outcomes of those with influenza–MRSA respi-
ratory coinfection, comparing them to critically ill children 
with influenza and coinfection with non-MRSA bacteria 
and to those with no diagnosis of bacterial coinfection. We 
also aimed to examine use of antimicrobial therapy in chil-
dren with influenza–MRSA coinfection and hypothesized 
that variability would be high and would be associated with 
mortality.

METHODS

Patients (aged <18  years) with confirmed CA influenza 
infection and respiratory failure receiving invasive mechan-
ical ventilation admitted to a PICU that was voluntarily 
participating in the PICFLU Study were prospectively 
enrolled from December 2008 to May 2016 from 34 sites 
in the Pediatric Acute Lung Injury and Sepsis Investigator’s 
Network (PALISI). Detailed methods of the PICFLU study 
have been reported [21–23]. We excluded patients with pre-
existing lung disorders; immune compromise; mitochondrial, 
genetic, or neurologic disorders; and/or preexisting cardiac 
diseases that increase the risk of infection or respiratory fail-
ure [24]. Patients with non-subtypable influenza A were also 
excluded. The institutional review board at each site gave 
study approval, and informed consent was obtained from a 
parent or guardian.

Throughout the study period, sites were encouraged to fol-
low the recommendations published by the CDC to screen all 
symptomatic patients admitted to the PICU for influenza and to 
test all intubated patients for secondary bacterial infection with 
Gram stain and culture of endotracheal secretions [25]. Patient 
management was at the clinician’s discretion. The first study 
samples were taken as soon as possible after PICU admission, 
including respiratory samples from the nasopharynx and from 
the endotracheal tube (ETT).

Viral and Bacterial Testing and Diagnoses

Viral test results included those from the clinical site, which 
could have been performed prior to or after PICU admission, 
as well as additional study testing done at the Marshfield Clinic 
Research Foundation (Marshfield, WI). Influenza and other 
viral testing methods have been previously reported [26, 27]. 
Viruses tested included respiratory syncytial virus; human 
metapneumovirus; human rhinovirus; parainfluenza virus; 
influenza A  and B including A  subtypes H1, H3, and 2009 
pH1N1; coronavirus; and adenovirus [26].

Bacterial coinfection was defined as a diagnosis at the clini-
cal site with microbiologic identification of the pathogen within 
72 hours prior to or after PICU admission (to rule out hospi-
tal-acquired infection). Cultures had to come from a sterile site 
(endotracheal or bronchoscopic specimen, bloodstream, or 
pleural fluid). Positive tests from MRSA colonization screening 
alone were insufficient to determine bacterial coinfection.

Definitions

Race and ethnicity were captured through a parent interview. 
The pediatric risk of mortality III acute physiology (PRISM 
III) score [28] measured severity of illness within 24 hours of 
PICU admission. Invasive mechanical ventilation was via an 
ETT. Acute lung injury (ALI) and acute respiratory distress 
syndrome (ARDS) were acute onset of respiratory distress, 
hypoxia (PaO2/FiO2 ratio of ≤300 for ALI and ≤200 for ARDS), 
bilateral infiltrates on chest radiograph, and no evidence of left 
heart failure [29]. Shock requiring vasopressor support was 
use of a dopamine infusion >5 µg/kg/min or any epinephrine, 
norepinephrine, or phenylephrine infusion to maintain blood 
pressure. Mortality was death during the index hospitalization.

Data and Sample Management

Site investigators collected data on baseline demographic infor-
mation, illness duration, presenting symptoms, initial PICU 
admission findings, and selected clinical events and outcomes 
(hospital and at PICU discharge). Data were then entered into 
a REDCap electronic case report form [30] hosted on a secure 
server at Boston Children’s Hospital. Recorded baseline values 
for laboratory results, vital signs, vasoactive-inotropic dos-
ing, chest radiograph results, and oxygenation were the first 
recorded values in the PICU. If these values were unavailable, 
the values closest to admission (from transport, the emergency 
department, or referral hospital) were used. Data were collected 
as close to 08:00 as possible; data were considered missing if 
no values were available. Final outcome (survival/death) was 
tracked to initial PICU discharge date in all patients and up to 
hospital discharge in patients transferred to the ward.

Data on antibiotics given in the first 24 hours of PICU admis-
sion or prior to PICU admission were collected prospectively. 
In children with influenza–MRSA coinfection, sites collected 
information on timing of all antibiotics prior to and after PICU 
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admission as well as vancomycin trough levels, vancomycin dos-
ing, and antibiotic susceptibility testing results retrospectively.

Samples of blood and endotracheal aspirates (if intubated) 
were taken at enrollment (most within 24 hours of PICU admis-
sion) and 3, 7, and 14 days later if still in the PICU. ETT aspirate 
was kept on ice until centrifugation; then, the ETT supernatant 
was aliquoted and stored at −80°C. Concentrations of cytokines 
were measured in duplicate by the University of Minnesota 
Cytokine Reference Laboratory using standard enzyme-linked 
immunosorbent assay as well as bead-based Luminex multi-
plex assays (Luminex 200 platform, Austin, TX) as described in 
detail in a recent publication [22].

Statistical Methods

Statistical analysis was performed using SAS software version 
9.4 (Cary, NC). Categorical variables were compared using the 
Fisher exact test and Mann-Whitney U test. Continuous vari-
ables were analyzed using Spearman correlation and Kruskal-
Wallis test with Dunn test for post-hoc analyses. Logistic 
regression, adjusting for age and PRISM III score, was used to 
confirm the association between mortality and early vanco-
mycin monotherapy vs additional early anti-MRSA antibiotic 
groups.

RESULTS

We enrolled 170 children who met the inclusion and exclu-
sion criteria across 34 sites between November 2008 and May 
2016. As shown in Table  1, 30 (17.6%) were diagnosed with 
MRSA respiratory coinfection, 61 (35.9%) had a diagnosis 
of non-MRSA bacterial coinfection (31 methicillin-suscep-
tible S.  aureus [MSSA], 10 pneumococcus, and 20 other; see 
Supplementary Table 1 for details), and 79 (46.5%) had no clin-
ical diagnosis of bacterial coinfection. All children with MRSA 
coinfection had 1 or more positive MRSA cultures from endo-
tracheal aspirate, pleural fluid, and/or lung tissue, and 4 also 
had MRSA bacteremia.

The demographic characteristics, underlying health con-
ditions, clinical course, and outcomes of these 3 groups of 
children are shown in Table 1. Children with MRSA were on 
average 2 times older than children in both non-MRSA groups 
(P  <  .001). They were more likely to be previously healthy 
(P = .002) than children with influenza alone. The children with 
influenza–MSSA coinfection overall had baseline characteris-
tics and clinical outcomes similar to those with influenza who 
were coinfected with non-S. aureus bacteria (details shown in 
Supplementary Table 1; all P > .05 except that, on average, they 
were older).

As depicted in Figure  1, more than 90% of children with 
MRSA coinfection had acute lung injury or vasopressor use for 
shock compared to approximately half of the non-MRSA com-
parison groups (all P ≤ .001). More than 70% of MRSA patients 

received extracorporeal membrane oxygenation (ECMO) sup-
port compared to less than 9% of the other groups; P ≤ .001). 
Influenza-related mortality was 40% with MRSA coinfection 
compared to 4.3% without MRSA (relative risk [RR], 9.3; 95% 
confidence interval [CI], 3.8–22.9). One child with severe lung 
necrosis was supported on ECMO for 6 months and died soon 
after receiving a lung transplant. Autopsy results were available 
for 4 MRSA patients, 3 of whom died on ECMO support. All 
showed extensive areas of hemorrhagic infarction, abscess for-
mation, necrosis, and emboli in the lung with pleural adhesions 
and effusions.

Death in the MRSA-coinfected patients was associ-
ated with older age (P  =  .01) and higher PRISM III score 
(P = .02) but not with type of influenza virus infection (see 
Supplementary Table  2), site of MRSA culture, or bactere-
mia (Supplementary Table 3). Although not statistically sig-
nificant (P  =  .15), of the 11 children who died, 6 (54.5%) 
reportedly were vaccinated against influenza that season (4 
not vaccinated, 1 unavailable) compared to 3/18 (16.7%) 
survivors (11 not vaccinated, 4 unavailable). Time between 
first symptom onset and PICU admission was available 
from parental interview starting in the fall of 2010; for 8/11 
(72.7%) children who died and 13/18 (72.2%) who survived, 
median days to PICU presentation was 4 (interquartile range 
[IQR], 3.3, 4.8) vs 2 (IQR, 2, 3), respectively (P = .02).

As shown in Figure 2, influenza–MRSA-coinfected children 
had markedly suppressed white blood cell (WBC) counts in the 
first 24 hours of PICU admission compared to the non-MRSA 
influenza groups (P < .0001). The MSSA-coinfected children had 
admission-day WBC values similar to those who were coinfected 
with other bacteria (Supplementary Table  1). Not all children 
had a differential available, but profound neutropenia was com-
mon in patients with influenza–MRSA (n = 27; median absolute 
neutrophil count [ANC], 360; IQR, 120–1190; Supplementary 
Figure 1) compared to patients with influenza and other bacte-
rial coinfection (n = 51; median ANC, 5610; IQR, 1410–10 100; 
P  <  .0001) or influenza patients without bacterial coinfection 
(n = 69; median ANC, 8900; IQR, 4670–14 710; both P < .0001).

Serum cytokine analysis results were available prior to 
2016 (105/170 patients including 21/30 patients with MRSA). 
Granulocyte-colony stimulating factor  (GCSF), interleukin 
(IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha were mark-
edly elevated in the children with influenza–MRSA coinfection 
(P ≤ .001; Supplementary Figure 2) compared to children with 
no bacterial coinfection and with other bacterial coinfection.

Antimicrobial Use and Association With Mortality

Choice of early (within the first 24 hours of PICU admission) 
anti-MRSA antibiotic administration in children with influ-
enza–MRSA coinfection varied. One child who died received 
early clindamycin monotherapy. Early vancomycin was given 
to 96.7% of patients (N  =  29/30). Figure  3 shows whether 
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additional early anti-MRSA antibiotics were received in these 
29 patients, stratifying these children by hospital survival. 
Although 43.3% (N = 13/29) received vancomycin monother-
apy, 51.7% (N  =  15/29) received additional therapies, most 
commonly clindamycin (4 children received a third early anti-
MRSA antibiotic, 3 received ceftaroline, 1 received linezolid, 
and 1 received ceftaroline plus vancomycin).

Age, gender, PRISM III score, type of influenza infection, and 
influenza vaccination did not significantly differ between the 
early vancomycin monotherapy and the additional early anti-
MRSA antibiotic groups (see Supplementary Table 4). Mortality 
was 69.2% (N  =  9/13) in those who received early vancomy-
cin monotherapy compared to 12.5% (N = 2/16) in those who 
received vancomycin and a second anti-MRSA agent within the 
first 24 hours (RR, 5.5; 95% CI 1.4, 21.3; P = .003); the estimated 
number needed to treat with more than 1 anti-MRSA agent 
to prevent 1 death would be 2 (95% CI, 1.2, 3.7). This finding 
remained significant (P = .01) after adjusting for illness severity 
in the first 24 hours (PRISM III score) and age. The majority 
of children who survived (11/18, 61.1%) and all 11 who died 
received extracorporeal life support.

For children with data available on time to presentation, 7/13 
(53.8%) who received vancomycin monotherapy and 14/16 
(87.5%) with additional anti-MRSA therapy reported median 
time between symptom onset and presentation of 4 days (IQR, 
2, 5) vs 3 days (IQR, 2, 4), respectively (P = .18). Even with impu-
tation of the 75th and 25th percentiles, respectively, for time to 
presentation for missing data (5 days for deaths and 2 days for 
survivors), time to presentation would not have reached statis-
tical significance between the 2 groups (3/6 children in the van-
comycin-only group with missing data were survivors).

All tested MRSA isolates were susceptible to clindamycin 
(N = 28, 2 MRSA isolates not tested). The minimum inhibitory 
concentration (MIC) of tested MRSA isolates to vancomycin was 
≤1 µg/mL in 56% of the 30 children, 1–2 µg/mL in 13.3%, and 
not reported in 30.0%. We were able to obtain the first vancomy-
cin trough levels from 28/29 children with MRSA who received 
vancomycin in the first 24 hours. We excluded 2 patients with 
acute renal failure on admission whose vancomycin dosing 
required adjustment. As shown in Figure 4A, 78% of initial van-
comycin trough levels were <10 µg/mL. Vancomycin dosing was 
not associated with vancomycin trough levels (Figure 4B).

Table 1. Characteristics and Clinical Course of 170 Children With Influenza Critical Illness With and Without Bacterial Coinfection

Characteristic/Outcome
Influenza–Methicillin-resistant 

Staphylococcus aureus (N = 30)
Influenza–Other 
Bacteria (N = 61)

Influenza–No 
Bacteria (N = 79) P  Valuea

Male (%) 19 (63.3) 36 (59.0) 49 (62.0) .91

Hispanic ethnicity (%) 7 (23.3) 15 (24.6) 21 (26.6) .95

Race .75

 White (%) 25 (83.3) 44 (72.1) 55 (69.6) .35

 Black (%) 3 (10.0) 9 (14.8) 14 (17.7) .66

 Mixed/Other (%) 2 (6.7) 8 (13.1) 10 (12.7) .74

Age, years (median, IQR) 12.7 (10.0, 14.6) 6.0 (2.2, 12.0)b 5.7 (2.6, 9.9)c <.0001

Baseline health statusd

 Previously healthy (%) 26 (86.7) 43 (70.5) 42 (53.2)e .002

 Mild chronic respiratory (%) 2 (6.7) 12 (19.7) 22 (27.6)f .04

 Other (%) 2 (6.7) 6 (9.8)g 23 (29.11)f .003

Influenza type .14

 Influenza A (%) 19 (63.3) 48 (78.7) 60 (76.0) .29

  Influenza A H3N2 (%) 9 (30.0) 14 (23.0) 12 (15.2)

  Influenza A 2009 H1N1 (%) 9 (30.0) 29 (47.5) 45 (57.0)

  Influenza A Seasonal H1N1 (%) 1 (3.3) 5 (8.2) 3 (3.8)

 Influenza B (%) 11 (36.7) 13 (21.3) 19 (24.1) .29

Received oseltamivir (%) 30 (100.0) 55 (90.2) 76 (96.2) .11

Illness severity and outcomes

  Pediatric risk of mortality score (median, IQR) 22.0 (9.0, 28.0) 9.0 (3.0, 17.0)c 6.0 (3.0, 11.0)c <.0001

 Duration mechanical ventilation in survivors, days (median, IQR) 10.1 (5.9, 15.9) 5.1 (2.6, 9.2)f 5.8 (2.7, 9.3)e .01

 Duration pediatric intensive care unit stay, days (median, IQR) 15.6 (10.7, 28.0) 7.2 (4.7, 17.9)c 9.1 (5.0, 14.0)c <.0001

 Mortality (%) 12 (40.0) 2 (3.3)c 4 (5.1)c <.0001

Abbreviation: IQR, interquartile range. 
aBy Fisher exact test for categorical variables and Kruskal-Wallis test for continuous variables.
bP < .001 compared to influenza– methicillin-resistant Staphylococcus aureus. 
cP ≤ .0001, compared to influenza– methicillin-resistant Staphylococcus aureus.
dSome patients identified with more than 1 in this category.
eP < .01 compared to influenza– methicillin-resistant Staphylococcus aureus. 
fP < .05. 
gP < .01, compared to influenza–no bacteria.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciy495#supplementary-data
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DISCUSSION

Children with influenza-related acute respiratory failure in this 
multicenter PICU cohort who had MRSA coinfection were more 
severely ill than children coinfected with other bacteria or with 
no bacterial coinfection and they were 9 times more likely to die. 
Anti-MRSA antibiotics given within 24 hours of PICU admission 
were associated with hospital outcomes. Children who received 
early vancomycin as their sole anti-MRSA agent had a 5.5 times 
higher risk of mortality than children who received early van-
comycin plus the early addition of another anti-MRSA agent. 
Choice of antimicrobial therapy was mostly empiric, as bacterial 
diagnosis usually takes longer than 24 hours. Some factors dis-
tinguished influenza–MRSA-coinfected children. The majority 
of them were in adolescence and were previously healthy. They 
usually developed leukopenia on their first PICU day, frequently 
had neutropenia (despite a higher GCSF serum level), and most 
often were cannulated for ECMO support. Early recognition of 
this patient profile could guide choice of empiric therapy.

Difficulty in reaching therapeutic levels of vancomycin in 
pediatric patients with good renal clearance is common [31, 32] 

and not consistently improved by the addition of a vancomycin 
loading dose [33]. The area-under-the-curve (AUC):MIC ratio 
has been posited as a potentially better predictor of vancomy-
cin efficacy than vancomycin trough levels [34, 35]. However, 
clinical outcomes are not reported to be improved even with 
adequate AUC:MIC early in invasive MRSA infections [35]. 
Investigators who systematically reviewed available studies con-
cluded that vancomycin poorly penetrates lung tissue. Compared 
to simultaneous plasma levels, concentrations in lung epithelial 
lining fluid ranged from 5% to 25%, and concentrations in whole 
homogenized lung tissues ranged from 24% to 41% [36].

MRSA susceptibility to clindamycin, the second most com-
monly prescribed anti-MRSA agent, was near universal in this 
cohort. Unfortunately, the susceptibility of S. aureus to clinda-
mycin may be declining in US children [37]. Via a mechanism 
of protein synthesis inhibition not present in vancomycin, clin-
damycin has antitoxin effects in vitro [18]. Although data from 
in vitro models also suggest antagonism exists when vancomy-
cin is combined with clindamycin or linezolid [7], there is poor 
agreement between animal and human models of antibiotic 

Figure 1. Clinical course and outcomes of critically ill children with influenza virus–methicillin-resistant Staphylococcus aureus (N = 30) compared to influenza with other 
bacteria identified (N = 61) and influenza with no bacteria identified (N = 79). Abbreviations: ECMO, extracorporeal membrane oxygenation; MRSA, methicillin-resistant 
Staphylococcus aureus.*P ≤ .05, **P ≤ .001, ***P < .0001. Comparisons were made using Mann-Whitney U test with the ends of the bars showing the groups compared.



370 • CID 2019:68 (1 February) • Randolph et al

antagonism or synergy when treating MRSA [38]. Ultimately, 
the choice of a second anti-MRSA agent should be influenced 
by local MRSA antibiograms [34]. Ceftaroline is clinically 
approved for MRSA-CAP and skin and soft tissue infections 

and was used in 4 surviving patients as an adjunct antibiotic 
with vancomycin. Rigorous pharmacokinetic and outcome 
data for ceftaroline treatment in intubated children with MRSA 
pneumonia are lacking [39].

The strengths of this study include prospective enrollment, 
rigorous data collection, and sensitive influenza testing. Clinical 
care was not controlled, revealing high practice variability 
across centers in empiric choice, dosing and timing of vanco-
mycin, and use of additional anti-MRSA antibiotics. 

This study has numerous limitations. The design is observa-
tional and the cohort of MRSA patients is relatively small, includ-
ing only 30 MRSA-coinfected patients and 11 MRSA-related 
deaths, despite involvement of 34 large PICUs for 8 years. Children 
with severe comorbid health conditions that predisposed them 
to influenza infection were excluded, limiting generalizability but 
decreasing potential confounding. Duration of symptoms prior to 
initial presentation was not available early in the study. Our anal-
ysis of the available data on time to presentation and our sensitiv-
ity analysis show that although longer time from symptom onset 
to PICU admission was associated with increased fatality, it was 
unlikely to explain the association between vancomycin mono-
therapy and death. We did not collect data on antimicrobial-related 
adverse events, which would have been difficult given the high rate 
of multiorgan failure on PICU admission in the MRSA-coinfected 
children. It is important to note that MRSA coinfection can occur 
with other viruses. Because our focus was on influenza virus infec-
tion, we could not determine if the clinical course and outcomes 
of MRSA coinfection in noninfluenza viral infection were similar.

Although limited, this “real-world evidence” [20] on anti-
biotic efficacy in pediatric influenza–MRSA coinfection, a 

Figure 3. Comparison of vancomycin only to vancomycin with additional anti-methicillin-resistant Staphylococcus aureus agent(s) within the first 24 hours of pediatric 
intensive care unit admission stratified by survival The relative risk (RR) of mortality in the vancomycin only group was 5.54 (95% confidence interval, 1.4–21.3). Abbreviation: 
MRSA, methicillin-resistant Staphylococcus aureus.

Figure 2. White blood cell (WBC) counts of children with influenza virus infec-
tion within first 24 hours of pediatric intensive care unit admission. WBC counts 
were available for all 30 influenza–methicillin-resistant Staphylococcus aureus 
patients, 56/61 influenza–other bacteria patients, and 78/79 influenza–no bacte-
ria patients. Abbreviation: MRSA, methicillin-resistant Staphylococcus aureus. 
*P ≤ .05, **P ≤ .001, ***P < .0001. Comparisons were made using Mann-Whitney U 
test with the ends of the bars identifying the groups compared.
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sporadic and fulminant disease with high fatality, indicates that 
vancomycin alone is insufficient therapy for children in the 
PICU with acute respiratory failure. Because results of diagnos-
tic tests for MRSA and influenza can be delayed by more than 
24 hours, empiric therapy may be needed to optimize clinical 
outcomes. Older age and prior good health, as well as leuko-
penia and shock requiring vasopressor support on presenta-
tion, were associated with MRSA coinfection. Thus, patients 
who present with acute respiratory distress and similar features 
during influenza season should prompt consideration of an 
additional anti-MRSA antibiotic while further diagnostic stud-
ies are pending. Although addition of clindamycin to vanco-
mycin appears prudent in cases with high clinical suspicion of 
influenza–MRSA coinfection, clindamycin resistance must be 
monitored. A national ongoing registry of these fatal pediatric 
coinfections, with antimicrobial susceptibility, antibiotic man-
agement, and collection of clinical samples, could help guide 
care. Addition of adjunct therapies, such as antibodies targeted 
at S.  aureus toxins, may decrease mortality in children with 
MRSA coinfection.
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