
1Scientific RepoRts |          (2019) 9:5750  | https://doi.org/10.1038/s41598-019-42019-x

www.nature.com/scientificreports

Inheritance patterns of the 
transcriptome in hybrid chickens 
and their parents revealed by 
expression analysis
Hongchang Gu  1, Xin Qi1, Yaxiong Jia2, Zebin Zhang3, Changsheng Nie1, Xinghua Li1, 
Junying Li1, Zhihua Jiang  4, Qiong Wang5 & Lujiang Qu1

Although many phenotypic traits of chickens have been well documented, the genetic patterns of gene 
expression levels in chickens remain to be determined. In the present study, we crossed two chicken 
breeds, White Leghorn (WL) and Cornish (Cor), which have been selected for egg and meat production, 
respectively, for a few hundred years. We evaluated transcriptome abundance in the brain, muscle, 
and liver from the day-old progenies of pure-bred WL and Cor, and the hybrids of these two breeds, 
by RNA-seq in order to determine the inheritance patterns of gene expression. Comparison among 
expression levels in the different groups revealed that most of the genes showed conserved expression 
patterns in all three examined tissues and that brain had the highest number of conserved genes, 
which indicates that conserved genes are predominantly important compared to others. on the basis 
of allelic expression analysis, in addition to the conserved genes, we identified the extensive presence 
of additive, dominant (Cor dominant and WL dominant), over-dominant, and under-dominant genes in 
all three tissues in hybrids. Our study is the first to provide an overview of inheritance patterns of the 
transcriptome in layers and broilers, and we also provide insights into the genetics of chickens at the 
gene expression level.

In recent animal genetic studies, a certain phenotype has been used as a starting point to study its mechanism, 
based on the laws of separation and combination proposed by Mendel1. The associated genes, genetic laws, and 
applications in breeding have become mainstream in genetic research. Similarly, for poultry, and particularly 
chickens, the genetic factors underlying many phenotypic traits have been studied in detail. For example, at the 
DNA level, phenotype traits of chicken, such as earlobe colour2 and polydactyly3, have been investigated using 
different approaches such as genome-wide association studies and re-sequencing analysis. Genes and their allelic 
relationships that affect eggshell4,5 and feather colour6 have also been characterised at the RNA level. In most 
cases, phenotypic differences between species are caused by genetic changes, these genetic differences are closely 
related to the expression and function of gene products7. We can thus determine such genetic differences accord-
ing to differences in abundance at the transcriptome level. RNA-Seq technology has provided researchers with 
a powerful tool for the characterization and quantification of the transcriptome8. The abundance of target tran-
scripts can be determined from an analysis of RNA-Seq data and is linearly related to the read count data obtained 
from RNA-Seq9.

In animals, hybridization events are widespread and may result in heterosis, phenotypic novelty, and certain 
changes in production performance in F1 hybrids10. These phenomena can be attributed to different magnitudes 
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and directions of gene expression. Accordingly, the hybrid effect can be understood from a novel perspective by 
measuring the inheritance patterns of transcript abundance in hybrids compared with their parents. Conserved 
genes generally show kinship similarity in terms of inheritance patterns. According to the polygenic hypothesis, 
quantitative traits are determined by many genes with minor effect and the gene effects are additive11. However, 
at the molecular level, there has been little research data to verify or refute this assumption. Therefore, examining 
additive effects in genetic studies is important for gaining an understanding multi-gene effects and exploring 
heredity, and some studies have indicated that most key genes are characterised by additive expression12. Many 
plant-based studies have shown that dominance patterns are closely related to novel or the non-mid-parental phe-
notype of offspring, as even subtle changes can lead to significant phenotypic effects13–16. Moreover, mis-expressed 
(over- and under-dominant) genes contribute to heterosis and hybrid weakness in the hybridization process. 
Studying the extent of all inheritance patterns in hybrids can provide insights into the characteristics of genes 
in the hybridization between layer and broiler chickens. Although there have been many studies on inheritance 
pattern, most have focussed on plants and the model insect Drosophila. Furthermore, at present, there has been 
relatively little analysis of the effects of hybridization on gene expression in chickens and other commercially bred 
animals.

In this study, we examined the divergence in transcriptome expression of the hybrid progeny of broilers and 
layers, compared gene expression levels in the parents and their hybrids, and classified inheritance patterns 
according to a uniform standard. By altering gene expression during hybridization, different modes of gene action 
play different roles in the adaptation and evolution of species. Understanding the inheritance patterns of chicken 
transcriptome are crucial for finding key genes and understanding the molecular mechanisms of heterosis. By 
comparing with previous studies on plants or Drosophila, White Leghorn and Cornish are more able to accurately 
reflect the characteristics of hybridization occurs in domesticated animals.

Materials and Methods
sample preparation. We used White Leghorn (WL) and Cornish (Cor) as representative breeds of layers 
and broilers respectively, to obtain pure-bred and hybrid progeny (Fig. 1). Six offspring (three males and three 
females) were selected from the progeny of each mating, with the exception of the Cor male × WL female cross, 
for which only two female offspring (CL) were obtained. In order to ensure consistency in the number of samples 
and the sampling time, thereby minimizing differences due to distant kinship between Cor males and females, 

Figure 1. Samples and experiment design. CC and CW represent the offspring of Cornish (Cor) and White 
Leghorn (WL) respectively. LC represents the F1 hybrids of WL males and Cor females, whereas CL represents 
the F1 hybrids of Cor males and WL females. Samples of three tissues (brain, liver, and muscle) were collected 
from all chicks one day after hatching for transcriptome sequencing, and parental DNA extracted from blood 
samples was used for whole-genome re-sequencing.
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we used two groups of three males and three females obtained from Cor male × Cor female and WL male × WL 
female matings, designated CC and CW, respectively, to represent the parents of the hybrid offspring.

For samples of three tissues (brain, liver, and muscle) collected from 23 one-day-old chicks, we extracted total 
RNA using Trizol reagent. And the total RNA was sequenced using 100-bp paired-end reads and 300-bp insert 
size. Finally, we obtained a total of 246.3 Gb of RNA-Seq data, corresponding to an average of 3.6 million mappa-
ble reads per sample.

All experiments were approved by the Animal Care and Use Committee of China Agricultural University 
(Approval ID: XXCB-20090209). All animals were fed and handled according to the regulations and guidelines 
established by this committee, and all efforts were made to minimize suffering and protect animal welfare.

parental genome reconstruction. To ensure accuracy of the RNA-Seq data mapping, it was initially nec-
essary to reconstruct the four parental genomes instead of using the reference genome of chicken. We accordingly 
mapped re-sequencing parental data to the reference genome of chicken (Gallus_gallus-4.0, http://hgdownload.
soe.ucsc.edu/goldenPath/galGal4/bigZips/) using the Burrows Wheeler Aligner (BWA)17. We then used Picard 
tools (http://broadinstitute.github.io/picard/) to sort the resulting bam file according to the order of chromo-
some coordinates, and Picard MarkDuplicates was used to remove duplicate reads. Finally, the Genome Analysis 
Toolkit (GAKT)18 was used to filter the original results and then complete SNP calling. If a sufficient number of 
reads appeared as variant types, the mutation site could be used to replace the corresponding site in the reference 
genome, and this operation was based on output results from Vcftools19. We then filtered SNPs in the two parental 
breeds, and SNPs supported by >10 reads in each parental breed were retained.

However, when the SNP sites were located on the Z chromosome, the threshold was lowered to >4 reads. 
These thresholds were set in order to eliminate potential sources of bias20,21.

RNA-seq data analysis. We aligned RNA-Seq data of pure-bred Cornish (CC), White Leghorn (CW) off-
spring to the chicken reference genome (Gallus_gallus-4.0) by using STAR22. The data for hybrid offspring (CL, 
LC) were mapped to the parental genomes that had been similarly reconstructed using STAR. Samtools23 was 
used to remove duplicate reads so as to eliminate potential deviations24. After mapping, we were able to obtain the 
resulting bam files. In order to call SNPs, these bam files were converted to vcf files using the mpileup function of 
Samtools. For CC and CW, featureCounts25 was used to estimate transcript abundance. For CL and LC, we used 
the asSeq26. package of R (v 3.4.2) to process these data, and finally obtained the total read counts (TReC) and 
allele-specific expression (ASE) counts of hybrids together.

Normalization and filtering. In many similar studies, a total-count scaling method of normalization has 
been applied to standardise the total number of reads between lanes, such that the average expression level across 
all genes is the same in each library27,28. In the present study, we used a similar normalization method to reduce 
the bias in further steps. The mapped reads of each gene in three repetitions were initially averaged, and total 
expression was normalised by dividing the number of mapped reads at each gene by the total number of mapped 
reads for the entire genome, and multiplying by 100 to yield a percentage expression value. This step eliminated 
the expression divergence due solely to technical differences in sequencing depth between libraries and ensured 
the accuracy and credibility of inheritance classifications.

For all samples and all tissues, we filtered out genes for which the expression level was zero. These genes would 
not be expressed under any condition. In addition, dosage compensation in chicken is incomplete29,30, and thus 
the average expression of males (ZZ) is higher than that in females (ZW). Accordingly, to eliminate the dosage 
compensation effect due to gender, we also excluded genes on the Z chromosome. All genes satisfying the estab-
lished thresholds were retained for further analysis.

Inheritance classifications. The samples were divided into four groups, designated as the Male Cross (MC: 
WL♂, Cor♂, CL♂), Female Cross (FC: WL♀, Cor♀, CL♀), Male Reciprocal Cross (MR: WL♂, Cor♂, LC♂), and 
Female Reciprocal Cross (RF: WL♀, Cor♀, LC♀), in order to investigate differences in the effect between groups.

R (v 3.4.2) was used to sort genes in terms of differences in the expression levels between each parent and 
their hybrid. We converted the expression data of parents and hybrids into a log-transformed percentage, thereby 
enabling directions and fold changes to be viewed directly31. A threshold of 1.25-fold was set so that we could 
determine if there were significant differences in expression level32. Genes for which the expression differed by 
amounts less than this threshold were considered to have similar expression, and these genes were regarded as 
being conserved. In contrast, genes for which the expression differed by amounts greater than 1.25-fold were 
accordingly designated as non-conserved. Non-conserved genes were further divided into additive, dominant, 
under-dominant, and over-dominant. In this study, dominant genes were divided into two types, designated Cor 
dominant and WL dominant, for the purpose of accurate statistical analysis (Fig. 2).

Differentially expressed gene functional annotation. We used the Functional Annotation tools of 
DAVID Bioinformatics Resources (6.8)33 to annotate the differentially expressed (DE) genes in the brain, liver, 
and muscle. Using this approach, we anticipated discovering certain gene functions related to the traits of broilers 
and layers.

Results
sequencing and mapping. The genomes of a total of 23 individuals were sequenced using cDNA libraries. 
Reads obtained from Illumina runs were initially trimmed in order to remove low-quality reads. After trimming, 
we obtained an average 22.8, 17.8, and 21.3 million mappable reads per individual in the brain, liver and muscle, 
respectively.
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We re-sequenced the parental genomes and then reconstructed the four parental genomes as substitutes for 
the reference genome of chicken. These parental genomes were used for next reads mapping and SNP calling. 
The SNPs were filtered and only those SNPs supported by >10 reads were used to assess ASE. After filtering, we 
obtained reads for 988 autosomal genes covered by 2564 SNPs and 81 Z-linked genes covered by 312 SNPs in the 
brain; 679 autosomal genes covered by 1,758 SNPs and 60 Z-linked genes covered by 235 SNPs in the liver; and 
961 autosomal genes covered by 2,677 SNPs and 76 Z-linked genes covered by 248 SNPs in the muscle.

Divergence in expression between layers and broilers. We compared gene expression levels between 
White Leghorn and Cornish birds using edgeR analysis34, and the results were used to indicate the expression 
divergence between broilers and layers. Finally, we obtained the results of differential expression analysis for each 
of the three examined tissues (Fig. 3). The majority of DE genes had a less than two-fold difference in expression, 
indicating that the parental expression divergence is subtle. After filtering, we obtained 24267 genes detected in 
the brain tissue of both males and females, with the number of up-regulated and down-regulated genes being 104 
(0.43%) and 91 (0.37%), respectively (FDR < 0.05). The number of genes detected in the liver and muscle, were 
20943 and 22705, with 1502 (7.17%) up-regulated and 1704 (8.14%) down-regulated genes in the liver, and 1505 
(6.63%) up-regulated and 1118 (4.92%) down-regulated genes in the muscle (FDR < 0.05). These results indicated 
that there is generally no clear expression divergence in the brain between layers and broilers. In contrast, we 
detected a significant divergence of expression in the muscle and liver, and these patterns can also be seen by the 
degree of dispersion in the expression divergence plot (Fig. 3).

Transcriptome inheritance pattern classifications. After normalization and filtering the data, we 
obtained 15810, 14864, and 15390 genes that satisfied the filtering criteria for the brain, liver, and muscle. It was 
possible that the expression level of a certain gene is zero for all individuals in a group, in which case a classifica-
tion of “0” was assigned in the output results. Because we removed these non-statistical outputs, the number of 
genes in the same tissue in different groups is slightly different in our final classification statistics.

We used Scatterplots to visually represent relationships between the expression levels of F1 hybrids and their 
two parents (Fig. 4). Additive indicates the genes for which expression in the hybrids was between the expression 
levels of the two parents. Genes were classified as Cor dominant or WL dominant when the expression level in 
hybrids was only similar to that of corresponding parent. Genes for which the expression in hybrids was higher 

Figure 2. Hypothetical patterns of gene expression in Cornish (Cor), White Leghorn (WL), and F1 hybrids.

https://doi.org/10.1038/s41598-019-42019-x
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or lower than that in both two parents were regarded as over-dominant and under-dominant, respectively. On the 
basis of the statistical results (Table 1), conserved genes accounted for the largest proportion of those detected. 
This highly conserved pattern was particularly apparent in the brain tissue, in which more than half of all genes, 
8754 (57.2%), 8688 (56.5%), 8389 (54.7%), and 7733 (50.8%), showed conserved expression in groups MC, FC, 
MR, and FR, respectively. The proportion of additive genes was comparatively small, accounting for 5.3%, 9.6%, 
and 7.3% of the total in the brain, liver and muscle, after being averaged among the four groups. We detected a 
significant difference in the number of mis-expressed (over- and under-dominant) genes among the three tissues 
(Kruskal–Wallis test, P-value < 0.05). Dominant genes showed more Cor-like expression than WL-like expression 
in the brain tissue (Mann–Whitney test, P-value < 0.05), whereas there was no difference between the number of 
WL dominant and Cor dominant genes in the liver [Mann–Whitney test, P-value = 0.88 (>0.05)]. Interestingly, 
in the muscle, genes showed more Cor-like expression than WL-like expression in the MC and FC groups (cross 
groups), but the opposite pattern in the MR and FR groups (reciprocal cross groups).

In the brain, there were 5426 genes showed the same inheritance mode in all four groups, among which 5138 
genes (94.7%) were conserved. Similarly, there were 1851 and 1361 genes that showed the same mode of inher-
itance in the liver and muscle, with 1252 (67.6%) and 1054 (77.4%) genes being conserved (Fig. 5). The numbers 
of these genes in the liver and muscle tissues were clearly lower than those in the brain tissue. These results also 
indicated that the majority of genes were consistent expression among the four groups were conserved, and this 
pattern was more prominent for genes in the brain.

Ase analysis of dominant. In order to assess ASE, the RNA-Seq data of progeny were aligned to the 
genomes of the two parents, and a threshold was used to filter unqualified SNPs (normalised reads <10). We 
performed the same normalization and filtering procedures for the ASE data as described above.

To determine the relationship between the expression pattern of specific-expression alleles and the parental 
expression of dominant genes, we applied a test that compared the ratio of expression between parental breeds 
(Cor/WL) and two alleles of F1 hybrids in the three examined tissues of all groups, using log-transformed data. 
According to the expression level of the parental breeds, dominant was divided into two patterns: Cor > WL and 
Cor < WL (Fig. 6). This step could prevent masking of the real expression pattern because of neutralization in 
these two cases. There was a significant correlation between the ratio of Cor/WL alleles in F1 hybrids and their 
parental expression (P-value < 0.05, Pearson’s test, Supplementary Table S1). Furthermore, in the two cases of 
Cor > WL and Cor < WL, the slopes of the regression lines were close to 1 in the offspring and were 0.9874 
(Cor > WL) and 1.0971 (Cor < WL) for the two parental patterns, whereas intercepts were approximately equal 
to 0 in the offspring and 0.1078 (Cor > WL) and 0.0233 (Cor < WL) for the two parental patterns (Fig. 6). These 
results indicated that although the ratio of the two alleles had a tendency similar to the ratio of parental expres-
sion, this tendency became inconspicuous. Moreover, on the basis of these results, it was evident that the two 
alleles had a similar level of expression.

Gene function annotation. In order to ensure accuracy prior to the function annotation of DE genes, if 
any of these genes showed the same mode in two or more groups in a tissue, these genes would be considered 
as showing that inheritance mode in the corresponding tissue. DAVID was used to annotate genes of different 
modes in the three tissues, and we determined the functions of genes with significant enrichment by filtering 
(FDR < 0.05, Fig. 7).

After classification using the aforementioned step, we found that 859, 1673, 1446, and 1992 genes showed 
additive, Cor dominant, WL dominant, and mis-expressed expression in the brain, whereas the corresponding 
numbers in the liver and muscle were 1468, 2931, 2845, and 3038, and 1042, 3138, 2675, and 3421. As shown in 
Fig. 7, the function of significantly enrichment genes from left to right is arranged in ascending order of FDR 
value (significance of enrichment is descending) in each mode.

Figure 3. MA plot summarizing the expression divergence between parental layers and broilers of (A) male 
brain, and (B) female brain, and (C)male liver, and (D) female liver, and (E) male muscle, and (F) female 
muscle. LogFC indicates the fold change using logarithmic-transformed data. A positive logFC indicates that 
the layer parent has higher expression than the broiler parent, whereas negative values show that the broiler 
parent has higher expression than the layer parent. LogCPM represents the logarithmic foldness in counts 
per million. The blue horizontal lines indicate two-fold changes in expression, and red dots represent genes 
significantly up- or down-regulated.

https://doi.org/10.1038/s41598-019-42019-x
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Among the annotation results, we found that more DE genes were enriched in the functions of membrane, 
transmembrane, and signal than any other biological functions. Furthermore, we found that biological functions 
were more significantly enriched (FDR < 0.05) in mis-expressed genes than in the other modes. However, for 
WL dominant expression in the muscle, no DE genes were significantly enriched, and the genes were related to a 
variety of diverse biological functions.

Figure 4. Scatterplots representing different inheritance patterns. The plots compare differences in the 
expression of genes between the F1 hybrid and those of the parental breeds for (A–D) four groups (MC, MR, 
FC, FR) in the brain, and (E–H) four groups in liver, and (I–L) four groups in the muscle. (M) The different 
coloured dots represent the different inheritance categories.
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Discussion
More than 90% of genes in the brain and muscle were retained following the edgeR filtration process, whereas the 
corresponding value for genes in the liver was 84.2%. After filtering, genes were used to identify DE genes in the 
parental breeds. We accordingly, observed very little significant divergence in gene expression, particularly in the 
brain. Divergence was found to affect 15.3% of genes in the liver and 11.6% of genes in the muscle. In the brain, 
only 0.8% of genes showed significant differential expression. And this inconspicuous expression divergence was 
also reflected in the research of Leghorns and Fayoumi chickens, which found 304 DE genes in the brain and 579 

Tissue Group

Inheritance classification

Conserved Additive
Cor 
dominant

WL 
dominant

Over- 
dominant

Under- 
dominant

Brain

MC 8754 847 2283 1497 1026 910

FC 8688 822 2341 1461 1110 946

MR 8389 882 2033 1969 1091 961

FR 7733 715 2641 1470 1379 1286

Liver

MC 4317 1306 3083 2504 1720 1230

FC 4195 1508 2795 2757 1615 1261

MR 3883 1292 2477 3069 2318 1146

FR 4393 1305 2352 2651 1632 1546

Muscle

MC 3900 961 3926 1775 2264 1946

FC 4015 1066 3626 1946 2211 1889

MR 5185 1169 1742 4136 979 1590

FR 3772 1090 2864 2953 1408 2609

Table 1. Statistical result of inheritance classification in the brain, liver, and muscle.

Figure 5. Four-way Venn diagram illustrating statistical results of inheritance modes in four groups (MC, MR, 
FC, and FR) correspond to (A) brain, and (B) liver, and (C) muscle. The number in each colour block indicates 
the number of genes for different inheritance patterns in single or multiple groups.

Figure 6. Correlation of the expression of Cor and WL in parents and two alleles of hybrid for dominant 
inheritance. The dominant pattern was divided into (A) Cor > WL and (B) Cor < WL according to expression 
of genes. The X axis shows the expression of pure-bred Cor or Cor allele in hybrids. The Y axis shows the 
expression of pure-bred WL or WL allele in hybrids.

https://doi.org/10.1038/s41598-019-42019-x
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DE genes in the liver35. These proportions of gene expression are considerably lower than those which have previ-
ously been reported in Drosophila7 (78%) and Cirsium from natural populations31 (51%). The fact that a majority 
of DE genes had fold-changes of less than two indicates the existence of many subtle differences between popula-
tions. Collectively, these results indicate that a few decades of high-intensity selection for layers and broilers has 
not resulted in any obvious differentiation between the Cornish and White Leghorn breeds at the genetic level, 
and that this continuous selection of specific phenotypes and traits appears to involve fewer genes in the brain 
compared with genes in the liver and muscle.

This study revealed all gene action patterns in hybridization process, including conserved in which genes in 
F1 hybrids were not significantly different with both parents and other modes called nonconserved. Clearly, the 
latter is more meaningful to research because change in genetic levels may give rise to phenotypic or trait change. 
Previous studies on plants had suggested that both additive and non-additive effects are associated with heterosis 
at the molecular level36. Furthermore, recent research on gene expression patterns has shown that non-additive 
patterns are prevalent in inbred lines or different natural populations, and that they may play a certain role in 
heterosis37. In our study, conserved genes were most prevalent in the three tissues of all groups. The finding that 
more than half of the genes in the brains of the two parental chicken breeds showed conserved expression not 
only indicates that the brain of these two breeds have not diverged significantly, but also that genes in the brain 
have remained highly conserved in the process of hybridization. Indeed, this highly conserved pattern has been 
widely observed in other studies10,38. A majority (88% in the brain, 86% in the liver and 90% in the muscle) of 
DE genes showed non-additive (i.e., dominant, over-dominant, and under-dominant) patterns, which does not 
support multi-gene hypotheses because of the rare additive pattern. For the dominant inheritance mode, there 
were more genes (59%) that tended to be Cor dominant in the brain. Interestingly, dominant genes in the muscle 
showed clear gender divergence. In most cases (67%), dominant genes had a Cor-like expression pattern in male 
groups (MC, MR), whereas in contrast, female groups (FC, FR) showed high WL dominance pattern (61%). For 
mis-expressed genes, more showed an over-dominant rather than an under-dominant pattern, indicating that 
hybridization is often associated with the hybrid vigour of offspring instead of hybrid weakness, although some 
studies on interspecific hybrids have observed that the frequency of under-dominant is significantly higher than 
that of over-dominant. In order to distinguish whether there was a significant divergence between expression 
levels, we adopted a threshold of 1.25-fold to classify inheritance categories. However, the threshold determina-
tion criteria were flexible and we could also use the results of significance (binomial) tests in this study, whereby 
an FDR value greater than 0.5% signifies a similar expression. Although different threshold criteria may lead to 
more stringent or more lenient filter results, this would not have a substantial impact on our statistical analyses.

The expression of genes classified dominant was similar in hybrids and both of the two parents. We are not 
aware of any intrinsic regulatory mechanisms whereby the expression of dominant genes of F1 hybrids is similar 
to that of one parent and significantly different from that of the other parent. However, quantifying the direction 
and magnitude of ASE divergence is an effective approach for determining this type of mechanism. On the basis 
of our results for ASE of the dominant mode, a relative expression relationship of parental alleles also exists 
between two parental alleles in the hybrids. However, it should be noted that Cor/WL in hybrids was approxi-
mately equal to 1 (0.9847 in Cor > WL group, 1.0971 in Cor < WL groups), For dominant expression, the two 
alleles showed equal expression rather than a higher expression of one allele relative to that of the other allele. The 
ASE of heterozygotes is governed at the level of transcription by interactions between cis- and trans-acting reg-
ulatory elements39. cis-regulatory sequences have allele-specific effects on the expression of neighbouring genes, 
whereas trans-regulatory factors affect the expression of both alleles in a diploid hybrid cell. In studies on other 
species, certain associations between cis-regulation, parental expression differences, and inheritance patterns 
have also been found40–44. And recent study in chickens found that trans-regulation is the main cause of differen-
tial gene expression and thus contributes to heterosis effect in the F1 hybrids35.

Given, the low genetic divergence between the two breeds of chicken examined in the present study and the 
fact that we used day-old chicks that may have been too immature to show certain characteristics of layers and 
broilers, it might not be surprising that we were unable to detect large numbers of DE genes significantly enriched 

Figure 7. The significantly enriched biological functions of DE genes in (A) the brain, and (B) muscle, and (C) 
liver.

https://doi.org/10.1038/s41598-019-42019-x
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for particular functions. Indeed, most genes corresponded to a variety of diverse biological functions rather than 
being mostly related to biological functions associated with the production of eggs and meat. However, we still 
identified metabolic pathways, pyrimidine metabolism, and ion transport, these annotated results are consist-
ent with the material metabolism function of the liver. Growth factor, TGFB, and calcium were significantly 
enriched when we annotated the DE genes in the muscle, and growth factors can promote cell proliferation, while 
TGFB can promote cell differentiation and embryo development, these substances play an important role in the 
growth and development of muscles. Interestingly, these gene functions are not enriched in Cor dominant, but 
are enriched in mis-expressed.

Different inheritance modes can provide insight into the genetic mechanisms of hybridization in different 
aspects. The study of these modes and expression divergence in parents also reflects the extent to which artificial 
selection can alter the genetic background of layer and broiler chickens, and this extent of change can be meas-
ured by comparison with studies using naturally selected populations. Because of the technical and software 
limitations of SNP calling and the wide distribution of SNPs in the genome29, it was not possible to detect all SNPs 
in layer and broiler parents. Therefore, we could not obtain or measure the ASE data in genes corresponding to 
undetected SNPs. However, the informative SNPs represented only a small proportion of the total SNPs detected. 
Furthermore, we also used stringent filtering criteria, and the ASE results were not affected and the credibility was 
still high. In the future, technology based on a more advanced platform, greater optimization of analysis methods, 
and a broader range of samples and developmental stages for differential expression analysis will further promote 
our understanding of the characteristics of each inheritance pattern and enable us to predict genes or traits that 
show heterosis and hybrid weakness.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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