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1  | INTRODUC TION

The pressure of the human population on wildlife habitats results in 
habitat loss and fragmentation (Almasieh et al., 2019; Bennett, 2003; 
Berger et al., 2008). Habitat fragmentation is a process in which a 
large natural habitat is converted into several smaller and spatially 

separated habitat patches (Bennett, 2003; Ewers & Didham, 2006). 
This process has significant adverse effects on wildlife populations 
(Almasieh et al., 2019; Morrison & Mathewson, 2015). The feasible 
solution for this issue is connectivity, which maintains or facilitates 
the movement of individuals among habitat patches. The connectiv-
ity could lead to gene flow among patches and persistence of species 
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Abstract
Habitat fragmentation has major negative impacts on wildlife populations, and the 
connectivity could reduce these negative impacts. This study was conducted to as-
sess habitat suitability and structural connectivity of the Persian leopard along the 
Iran– Iraq border (i.e., the Zagros Mountains) and compare the situation of identified 
core habitats and connectivity with existing conservation areas (CAs). An ensemble 
modeling approach resulting from five models was used to predict habitat suitability. 
To identify core habitats and corridors along the Iran– Iraq border, factorial least- 
cost path analyses were applied. The results revealed that topographic roughness, 
distance to CAs, annual precipitation, vegetation/cropland density, and distance to 
rivers were the most influential variables for predicting the occurrence of the Persian 
leopard in the study area. By an estimated dispersal distance of 82 km (suggested by 
previous studies), three core habitats were identified (two cores in Iran and one core 
in Iraq). The largest cores were located in the south and the center of the study area, 
which had the highest connectivity priorities. The connectivity from these cores was 
maintained to the core within the Iraqi side. Only about one- fifth of detected core 
habitats and relative corridors were protected by CAs in the study area. Detected 
core habitats and connectivity areas in this study could be an appropriate road map 
to accomplish the CAs network along the Iran– Iraq border regarding Persian leop-
ard conservation. Establishing transboundary CAs, particularly in the core habitat 
located in the center of the study area, is strongly recommended to conserve existing 
large carnivores, including the Persian leopard.
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surviving against the occurrence of mass extinction (i.e., sixth mass 
extinction) (Beier et al., 2007; McRae & Beier, 2007; Soulé, 1986). 
Least- cost path modeling (Adriaensen et al., 2003), circuit theory 
(McRae et al., 2008), centrality analyses (Estrada & Bodin, 2008), 
factorial least- cost path density (Cushman et al., 2009), and resis-
tant kernel (Compton et al., 2007) methods have been frequently 
used to assess landscape connectivity. Furthermore, combining the 
factorial least- cost path and cumulative resistant kernel approaches 
has been used to design core areas and corridors for large carnivores 
(Cushman et al., 2013; Khosravi et al., 2018; Shahnaseri et al., 2019).

Large carnivores are sensitive to habitat fragmentation due to 
their vast home range and often low population density (Calvignac 
et al., 2009; Mohammadi et al., 2021; Noss et al., 1996). Therefore, 
they could be considered the focal species in the landscape (Almasieh 
et al., 2016; Beier et al., 2008). Large carnivores are top predators 
and play an important role as keystone species on top of the natu-
ral food chains (Crooks, 2002). Therefore, reduction in their popu-
lation size and extinction of these species will dramatically lead to 
change in ecosystems’ structural and ecological processes and their 
dependent biotic communities (Crooks, 2002; Estes et al., 2011). 
By conserving the large carnivores as umbrella species, other spe-
cies (i.e., small carnivores, mammals, other vertebrates, inverte-
brates, and plants) will be covered and protected (Beier et al., 2008; 
Sampson, 2013).

The leopard (Panthera pardus Linnaeus, 1758) is widely distributed 
in the continents of Asia and Africa and is known as the most wide-
spread distribution among felids (Family: Felidae) (Gavashelishvili 
& Lukarevskiy, 2008; Nowell & Jackson, 1996). However, its pop-
ulation has been reduced and is being isolated because of human 
population pressure and the impact of their related activities (Thorn 
et al., 2013), habitat fragmentation (Selvan et al., 2014), illegal hunt-
ing (Datta et al., 2008), and prey decline (Hatton et al., 2001). By 
decreasing population size, the leopard has been categorized as 
a vulnerable (VU) species according to the IUCN Red List (Stein 
et al., 2020). Nine subspecies have been identified for the leopard 
so far (Uphyrkina et al., 2001), one of them is the Persian leopard 
(P. pardus saxicolor Pocock, 1927), distributed in southwestern Asia 
(Appendix S1: Figure S1). The most significant distribution and pop-
ulation of the Persian leopard have been reported in Iran (Kiabi 
et al., 2002). Although the Persian leopard has been categorized as 
an endangered (EN) species in the IUCN Red List (Khorozyan, 2016), 
more recently the assessment does not appear any longer on the 
IUCN Red List due to data contradictory and lack of up- to- date in-
formation (Stein et al., 2020). The Zagros Mountains forming from 
the mountain ranges in Iran to the northeast of Iraq (Kurdistan re-
gion) has been reported as one of the cross- border habitats of the 
Persian leopard (Avgan et al., 2016; Breitenmoser et al., 2010), but 
our knowledge about the Persian leopard habitat suitability and its 
existing core habitats in the region is so little.

Habitat suitability models (HSMs) (Guisan & Zimmermann, 2000) 
were frequently used by wildlife researchers to predict core habitats 
and corridors, especially for the cryptic nocturnal animals such as 
large carnivores (Beier et al., 2007). Several studies have been done 

on the habitat modeling of the Persian leopard in Iran (e.g., Ahmadi 
et al., 2020; Ashrafzadeh et al., 2018, 2020; Farhadinia et al., 2015; 
Hosseini et al., 2019; Khosravi et al., 2018, 2019, 2021). However, 
none of them have focused on the west of Iran with sufficient occur-
rence points, particularly near borders. Thus, the west of Iran could 
be assumed to be the unknown habitat of the Persian leopard in Iran. 
In addition to the brown bear (Ursus arctos), the Persian leopard is 
the top predator along the mountainous areas of Iran– Iraq border 
(Almasieh et al., 2019; Karami et al., 2015), which could be identified 
as focal species in the mentioned region. The Persian leopard is a 
mobile species and therefore, its survival chance is highly dependent 
on the rate of conservation management in its natural habitats, par-
ticularly along the political borders (Hosseini et al., 2019). In addition, 
the conservation of the Persian leopard depends on the accurate 
detection of the core habitats and their connectivity (Mohammadi 
et al., 2021). Due to special conditions of political borders, with 
proper use of HSMs and even by the limited extensive field surveys, 
the prediction of core habitats and corridors of the Persian leopard 
could be conducted. This study focused on (a) habitat suitability of 
the Persian leopard along the Iran– Iraq border, (b) detecting possible 
connectivity between core habitats, (c) determination of connec-
tivity priority of core habitats, and (d) the comparison of identified 
core habitats and their connectivity with existing conservation areas 
(CAs) along the Iran– Iraq border.

2  | MATERIAL S AND METHODS

2.1 | Study area

There is a 1,450- km common border between Iran and Iraq. The 
southern part (approximately 300 km) includes arid plains en-
tirely with no records of the occurrence of the Persian leopard. 
Therefore, this part was excluded and the remaining 1,050 km 
was considered. Moreover, due to the Persian leopard's presence 
in northwestern Iran and the probability of habitat connectivity 
with the Iraqi section, an additional 100- km border up to Urmia 
Lake was considered as well. Based on six tracked Persian leop-
ards in the northeast of Iran with a maximum cruising radius of 
81.6 km (Farhadinia et al., 2018), a 100 km buffer zone was se-
lected around each occurrence point of the Persian leopard, and 
a minimum convex polygon formed the study area (Figure 1). The 
study area, an area of approximately 195,000 km2 situated in the 
central and northern Zagros Mountains, is a part of the Irano- 
Anatolian global biodiversity hotspot (Mittermeier et al., 2005). 
CAs in the study area include two National Parks (NPs), four 
Wildlife Refuges (WRs), 19 Protected Areas (PAs), and 11 No- 
Hunting Areas (NHAs). In addition, the width of seven kilometers 
on the border of the Iranian side is considered NHA (Appendix S1: 
Figure S2 and Table S1). NPs have the highest conservation rank, 
and WRs and NPs have the second and third ranks, respectively. 
NHAs have the lowest conservation rank and were established 
to control animals’ poaching (Ahmadi et al., 2020). CAs, including 
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NPs, WRs, Pas, and NHAs, are close to the II, III, IV, and IV– VI of 
the IUCN categories, respectively (Ahmadi et al., 2020; Lausche & 
Burhenne- Guilmin, 2011).

2.2 | Data collection

Occurrence points of the Persian leopard were collected from three 
different sources: (1) the reports of the guards and external offic-
ers of the Department of Environment (DoE) and previous studies 
during 2000– 2020, (2) random field surveys on the northern part 
of the study area with a high probability of the species occurrence 
during 2017– 2020 and recording the occurrence points by using the 
Global Positioning System with error <10 and (3) study by Avgan 
et al. (2016) with occurrence points from 2008 to 2014. Seventy- 
four (74) occurrence points of the Persian leopard were recorded 
in the sources as mentioned earlier (16, 50, and 8, respectively). To 
minimize spatial autocorrelation, a radius of 5 km (according to the 
mean maximum distance moved by the Persian leopard per day, 
i.e., 5 km [Ahmadi et al., 2020; Farhadinia et al., 2015; Ghoddousi 
et al., 2010]) was considered around each occurrence point to spa-
tial filtering by using the Spatially Rarify Occurrence Data tool in 
the SDMtoolbox (Brown, 2014). Finally, 31 occurrence points have 

remained for habitat modeling of the Persian leopard in the study 
area (Appendix S1: Table S2).

2.3 | Environmental variables

According to previous studies, environmental variables, including 
topographic and climatic variables, land cover, water resources, 
prey availability, and anthropogenic variables, were used for habi-
tat modeling of the Persian leopard (Appendix S1: Table S3). Digital 
Elevation Model (DEM) from the 30- m Shuttle Radar Topography 
Mission (SRTM, downloaded from http://earth explo rer.usgs.gov) 
was used to calculate the topographic roughness index (variance 
of elevation value of DEM᾽s cells in the 5- km neighborhood) by 
utilizing Geomorphometry and Gradient Metrics Extension (Evans 
et al., 2014) in ArcGIS version 10.3. Two climatic variables, fre-
quently used by previous studies (Appendix S1: Table S3), selected 
to predict the distribution of the Persian leopard are annual mean 
temperature (BIO1) and annual precipitation (BIO12), (http://world 
clim.org; Fick & Hijmans, 2017).

A global land- cover map (GlobCover version 2.3) with 23 cover 
types was used for habitat modeling (ESA, 2009). Two out of 14 
cover types in the study area, with the highest probability of the 

F I G U R E  1   Study area along the Iran– Iraq border, conservation areas, and occurrence points of the Persian leopard
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species occurrence, were chosen for habitat modeling: (1) mo-
saic vegetation (grasslands, shrublands, and forests) (20%– 50%)/
cropland (50%– 70%) and (2) mosaic grassland (50%– 70%)/forest- 
shrubland (20%– 50%). In addition, these two cover types were used 
by previous research for habitat modeling of the Persian leopard in 
the transboundary area (i.e., Farhadinia et al., 2015). A circle- moving 
window with a 5- km radius was used to create density maps of these 
two cover types. The 16- day composite MODIS data (MOD13A1 V6 
map at 500- m cell size; http://earth explo rer.usgs.gov) was used to 
calculate the Normalized Difference Vegetation Index (NDVI) ac-
cording to the mean values of the year 2019. Given the importance 
of water resources for animals (Almasieh et al., 2019), distance to 
rivers (DoE, 2018; OCHA, 2018) was also included in habitat mod-
eling of the Persian leopard by using Euclidean Distance tool in 
ArcGIS. Prey availability should be considered in habitat modeling 
of the Persian leopard as a biotic factor for the power of prediction 
(Khosravi et al., 2021). As CAs support the three main prey species 
of the Persian leopard in the study area, including bezoar goat (Capra 
aegagrus), mouflon (Ovis gmelini), and roe deer (Capreolus capreo-
lus), distance to CAs was created as a surrogate of prey availability. 
Due to the acute adverse effects of roads on felids (Mohammadi 
et al., 2018), distance to roads (DoE, 2018; OCHA, 2018) and also 
distance to villages (DoE, 2018; OCHA, 2018) as anthropogenic vari-
ables were used for habitat modeling of the Persian leopard in the 
study area.

To check multicollinearity among variables, pairwise Pearson 
correlation was used to exclude variables with correlation coeffi-
cient of >70%. Ten variables were chosen for the Persian leopard 
habitat modeling with a lower correlation coefficient of 70%. The 
second method to reduce multicollinearity among variables was the 
Variance Inflation Factor (VIF) of the dataset, which was checked 
by using the usdm package (Naimi et al., 2014) in the R (R Core 
Team, 2019) to exclude variables (selected in the previous step) with 
VIF >3 (threshold suggested by Zuur et al., 2010). VIF for the 10 vari-
ables was lower than three (Appendix S1: Table S4). Therefore, all of 
these variables were included in the habitat modeling.

2.4 | Habitat modeling

An ensemble modeling approach was used to predict habitat suitabil-
ity of the Persian leopard by using the R package biomod2 (Thuiller 
et al., 2016). The ensemble model increases the model's accuracy by 
combining predictions of different models and fitting several suit-
ability models rather than a single model with an uncertain prog-
nosis (Araújo & New, 2007; Shahnaseri et al., 2019). This approach 
has also been considered in other studies related to the habitat 
suitability of the Persian leopard (Ahmadi et al., 2020; Ashrafzadeh 
et al., 2018; Farhadinia et al., 2015; Khosravi et al., 2018). Ten pre-
diction models were implemented, including four regression- based 
models (Generalized Linear Model [GLM], Generalized Additive 
Model [GAM], Multivariate Adaptive Regression Splines [MARS] 
and Flexible Discriminant Analysis [FDA]), five machine- learning 

models (Random Forest [RF], Maximum Entropy [MaxEnt], 
Generalized Boosting Model [GBM], Classification Tree Analysis 
[CTA], and Artificial Neural Network [ANN]), and one profile model 
(Surface Range Envelop [SRE]). The primary analysis for habitat mod-
eling was carried out by using 10 models, then, five models (i.e., GLM, 
MARS, RF, MaxEnt, and GBM) with AUC and True Statistic Skill (TSS) 
thresholds higher than 0.9 and 0.75 (Eskildsen et al., 2013) were cho-
sen (Appendix S1: Table S5). Barbet- Massin et al. (2012) suggested 
that the best occurrence/pseudo- absence ratio was one- tenth for 
most of the models in biomod2 by applying 20 replicates for each 
model and equal weights of occurrence and pseudo- absence points. 
Regarding the number of occurrence points (i.e., 31), 300 pseudo- 
absence points were randomly created across the whole study area 
and outside of the 5- km radius circle (radius of a circular home range 
of about 80 km2) around each occurrence point. The analyses were 
carried out by applying 20 replicates for each model to obtain con-
servative results. In addition, a prevalence of 0.5 (means the exact 
weights of occurrence and pseudo- absence points) was considered 
(Calambás- Trochez et al., 2021). The variables’ contribution for each 
model was calculated in Biomod2. In addition, response curves of 
occurrence points to the variables for each model were determined 
in the study area.

The ensemble suitability map was converted into a resistance 
map according to the method of Wan et al. (2019). First, the en-
semble map was rescaled to a 0– 1 map using the linear method in 
Rescale by Function tool in ArcGIS. Then, a negative exponential 
function (R = 1,000(−1×HS), Mateo- Sánchez et al., 2015) was used to 
create the resistance map, where R represents the cost resistance 
value assigned to each pixel and HS represents the predicted habi-
tat suitability derived from the ensemble suitability model described 
above (Wan et al., 2019). Finally, the resistance values were rescaled 
to a range between 1 and 10 by linear interpolation; when HS was 
1, the minimum resistance became 1, and when HS was 0, the maxi-
mum resistance became 10 (Wan et al., 2019).

2.5 | Connectivity modeling

Structural connectivity (hereafter, connectivity) modeling was car-
ried out by using Universal Corridor (UNICOR) software (Landguth 
et al., 2012) and two sets of connectivity predictions consisting of 
(1) resistant kernels and (2) factorial least- cost paths. Resistant ker-
nels are an algorithm that calculates the resistance cost- weighted 
dispersal around each source point up to a dispersal threshold de-
fined by the user (Compton et al., 2007; Mohammadi et al., 2021). An 
incidence function of the rate of organism movement through every 
pixel in the landscape was provided as a function of the density and 
number of source points, the dispersal ability of the species, and the 
resistance of the landscape (Cushman et al., 2013). The second set of 
connectivity prediction was implanted in the UNICOR simulator ap-
plying Dijkstra's algorithm to resolve the single- source shortest path 
issue from every mapped species occurrence point on a landscape to 
every other occurrence points (Landguth et al., 2012). The analysis 

http://earthexplorer.usgs.gov
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produces predicted least- cost path routes from each source point to 
each destination point.

According to the study of Farhadinia et al. (2018), the dis-
tance threshold of 82,000 was used in resistant kernel analy-
ses, which represents movement ability of 82 km. The buffered 
least- cost paths were then combined through summation to 
produce the connectivity map between all pairs of occurrence 
points (Cushman et al., 2009). The connectivity map was used 
to identify core habitats of the Persian leopard with the selected 
scenario. The contiguous map of patches with resistant kernel 
values was converted to a categorical map based on >10% of the 
highest records for the species (Ahmadi et al., 2020; Ashrafzadeh 
et al., 2020; Cushman et al., 2013). Furthermore, this was carried 
out for factorial least- cost paths. The coverage of CAs with core 
habitats and corridors of the Persian leopard was calculated sep-
arately in the study area.

2.6 | Connectivity prioritization of core habitats

The probability of connectivity (dPC; Saura & Pascual- Hortal, 2007) 
was measured to create habitat patches prioritization based on dPC 
including dPCintra, dPCflux, and dPCconnector (Saura & Pascual- 
Hortal, 2007) by using Conefor 2.6 software (Saura & Torné, 2009). 
dPCintra only measures intrapatch connectivity and does not de-
pend on species dispersal distance, while dPCflux measures disper-
sal flux and depends on the patch area and its position within the 
landscape. dPCconnector depends only on the topological position 
of a patch within the landscape (Saura & Rubio, 2010), which quanti-
fies the importance of the node as a stepping stone for dispersal 
and facilitates the dispersal between excessively far nodes (Avon & 
Bergès, 2016; Saura & Rubio, 2010). To prepare the data for Conefor, 
the 10% of the highest resistance kernel recorded for the Persian 
leopard was used as a threshold to create categorical core patches 
(Ahmadi et al., 2020). The dispersal distance scenario of 82 km was 
considered for identified core habitats. Moreover, Conefor Input 
ArcGIS extension (http://www.jenne ssent.com/arcgi s/conef or_in-
puts.htm) was applied to prepare Conefor software inputs (node and 
distance files).

3  | RESULTS

3.1 | Habitat suitability

Based on the five obtained optimal models, variables of topographic 
roughness, distance to CAs, annual precipitation, vegetation/
cropland density, and distance to rivers were the most influen-
tial variables for predicting the occurrence of the Persian leopard 
(Appendix S1: Table S6). By increasing topographic roughness, the 
probability of the occurrence of the Persian leopard increased. The 
optimal range of mean temperature and annual precipitation for the 

occurrence of the Persian leopard were 10– 25°C and 400– 800 mm, 
respectively. As NDVI in both natural (i.e., grasslands, forests, and 
shrublands) and agricultural vegetation (croplands) increased, the 
likelihood of the occurrence of the Persian leopard increased. As 
distance to rivers and distance to CAs increased, the likelihood of 
the occurrence of the Persian leopard decreased. Finally, by increas-
ing distance to roads and distance to villages, the probability of the 
occurrence of the Persian leopard increased gradually and then sta-
bilized (Figure 2). Ensemble suitability map showed that monotonous 
areas in the southwest, center, and northeast of the study area had 
the highest suitability for the Persian leopard (Figure 3). All HSMs 
had a similar pattern with higher suitable areas (GLM) versus lower 
suitable areas (RF and GBM) (Appendix S1: Figure S3).

3.2 | Core habitats and corridors

The most important core habitats were located in the south and 
central parts of the study area (Figure 4). In the estimated dispersal 
distance of 82 km, three core habitats were identified (Appendix S1: 
Table S7). The largest habitat patch was Core1, located in the south-
ern part of the study area (about 11,500 km2). The second- largest 
habitat patch was Core2, located in the center of the study area 
(about 9,300 km2) (Figure 4, Appendix S1: Table S7). These two im-
portant large patches covered almost 11% of the study area. Seven 
PAs, three NHAs, and the width of seven kilometers on the border 
of the Iranian side were located in Core1 and Core2 (Appendix S1: 
Table S7). Only 19.47% of the predicted core habitats were covered 
by CAs (Appendix S1: Table S8).

The connectivity for the Persian leopard in the study area was 
maintained between core habitats from south to north (Figure 4). 
The highest connectivity was predicted to be between the south and 
center of the study area between Core1 and Core2. This connectiv-
ity had two branches; the one near the Iran– Iraq border had higher 
connectivity. High connectivity was maintained between Core2 and 
Core3 with two branches; one within the Iraqi section with higher 
connectivity and another along the Iran– Iraq border, which con-
nect together along the border before they get to Core3 (Figure 4). 
Overall, 19.92% of corridors were covered by CAs, but the most pre-
dicted corridors were located outside of CAs (Figure 4; Appendix S1: 
Table S8).

3.3 | Connectivity prioritization of core habitats

Based on dPC index, Core1 and Core2 had the highest contribution 
in habitat connectivity (Appendix S1: Figure S4). According to the 
results of dPCintra, Core1 and Core2 had the highest intrapatch con-
nectivity. Based on the results of dPCflux, both Core1 and Core2 
had approximately similar values and had the highest flux according 
to patch area and the position within the landscape. Core2 had the 
highest contribution as a stepping stone (Appendix S1: Figure S4).

http://www.jennessent.com/arcgis/conefor_inputs.htm
http://www.jennessent.com/arcgis/conefor_inputs.htm
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4  | DISCUSSION

This study was carried out in the northern part of the Zagros Mountains in 
adjacent areas of the Iran– Iraq border with the highest diversity of mam-
mals in Iran (Yusefi et al., 2019). By assuming 82 km cruising radius of the 
Persian leopard (Farhadinia et al., 2018), there are three core habitats avail-
able for the species, two of which are located on the Iranian side (Figure 4). 
The optimal connectivity was detected between cores in the south and 
center of the study area. These cores had the highest contribution to habi-
tat connectivity. In addition, connectivity was maintained between two 
cores within Iran and one core in Iraq. This could be due to the reasonably 
developed CAs network (Appendix S1: Figure S2 and Table S1) and the 
larger and closer simulated suitable habitats on the Iranian side (Figure 3).

4.1 | Contribution of variables

The Persian leopard preferred areas with greater roughness and 
density of vegetation and areas with high prey availability and closer 

distance to the rivers with moderate to relatively high annual precip-
itation. Farhadinia et al. (2015) reported that topographic roughness 
was the most important habitat variable out of the 14 used variables 
for habitat modeling of the Persian leopard in the Iranian Caucasus. 
Hosseini et al. (2019) obtained similar results for habitat modeling of 
the Persian leopard in the northeast of Iran. Furthermore, Khosravi 
et al. (2019) mentioned that topographic roughness was a key habi-
tat variable for the Persian leopard in the central mountains of Iran 
since it provides more preys, fewer human footprints and milder 
temperature. Altogether, topographic roughness and prey availabil-
ity are the most interrelated factors for surviving the Persian leopard 
in the study area.

Vegetation, including grassland, shrubland, and forest, is also a 
key habitat variable for leopards (Hunter, 2013). Rangelands (mainly 
grasslands) were the second important variable for habitat mod-
eling of the Persian leopard in central Iran (Khosravi et al., 2019). 
Woodland and forest- shrubland mosaic were important cover types 
for the Persian leopard distribution in the studies of Farhadinia 
et al. (2015) and Hosseini et al. (2019), respectively. Cropland could 

F I G U R E  2   Response curves of occurrence points of the Persian leopard to the environmental variables in the study area (the two most 
accurate models of RF [red] and GBM [blue] were considered) (Y- axis represents the probability of the Persian leopard occurrence) (each 0.1 
degrees in the study area is approximately equal to 14.4 km)
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be an important habitat variable indirectly. The Persian leopard has 
a moderate tolerance to human presence (Ahmadi et al., 2020; Soofi 
et al., 2019). They might approach villages and croplands at times 

to chase livestock and domestic dogs, which results in the human– 
leopard conflict (Babrgir et al., 2017; Naderi et al., 2018; Parchizadeh 
& Adibi, 2019). Rivers provide the Persian leopard water and facilitate 
its predation due to the higher prey diversity and abundance around 
riversides. Local guards have reported that Persian leopard hunt roe 
deer near the rivers in Buzin and Marakhil PA. Four recorded Persian 
leopard presence points were located near rivers of mountainous 
areas, particularly in the Shaho- Kosalan PA, during the field survey 
in this study. Moreover, rivers with higher vegetation density and 
consequently more cover and food guarantee the Persian leopard 
and other animals’ chance of survival (Beier et al., 2007).

4.2 | Core habitats, connectivity, and CAs

Three core habitats were spotted for the predicted dispersal of 
82 km of the Persian leopards in the study area. Two cores occur 
on the Iranian side of the border (Core1 and Core2), while Core3 
and a part of Core2 are located on the Iraqi side. Core1 is the most 
significant core habitat in the study area. Ashrafzadeh et al. (2020) 
also introduced Core1 in their study. In this study, this core has been 
extended to the Iran– Iraq border due to the greater number of oc-
currence points along the Iran– Iraq border. Although Core1 spreads 
close to the Iran– Iraq border, it cannot embrace connectivity to the 
Iraqi side due to the relatively vast plain areas next to Core1 on the 
Iraqi side. The second largest core would be Core2, which crosses 
the Iran– Iraq border. Core2 was also introduced by Ashrafzadeh 
et al. (2020) with high similarity. However, Core2 was not limited 
to Iran and included the Iraqi side near the Iran– Iraq border. Core2 
covered three CAs (Buzin and Marakhil PA, and Shaho- Kosalan PA 
on the Iranian side, and Qara- Dagh PA on the Iraqi side). It seems 

F I G U R E  3   Ensemble habitat suitability map for the Persian 
leopard in the study area based on the five optimal models of GLM, 
MARS, RF, MaxEnt, and GBM

F I G U R E  4   Core habitat and corridor 
maps for the Persian leopard in the 
study area (a: categorical core habitats 
and corridor paths, b: contiguous core 
habitats, and c: contiguous corridor paths)
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that the Persian leopard's ability to disperse in this core habitat is 
mainly owed to the permanent monitoring patrol by border guards 
from both sides. High connectivity was detected on the Iranian side 
(south and center of the study area between Core1 and Core2). In 
addition, high connectivity was observed between Core2 and Core3 
on the Iraqi side because of mountainous areas located in the north-
east of Iraq. The core habitat in the islands of Urmia Lake was not 
considered because this area is not a natural habitat for the Persian 
leopard and no population was established. It is unlikely to do such 
a thing in the future as the lake is currently recovering. Ashrafzadeh 
et al. (2020) showed that connectivity was maintained from Core2 
to the northwest of Iran through the Iran– Iraq border. Our corridors 
were near the border, but by extending Core2 to the Iraqi side, the 
connectivity entered Iraq. Our results suggest that limiting the habi-
tat suitability to a political country might not reflect the fact well.

Only about 19.5% of core habitats are covered by CAs within 
the study area. Ashrafzadeh et al. (2020) reported that 58% of core 
habitats for the Persian leopard are protected in other parts of Iran. 
This means that the conservation action plan for this species must be 
reconsidered in the west of Iran. The Persian leopard is exposed to 
poaching and reduction of prey outside the CAs (Ahmadi et al., 2020; 
Ashrafzadeh et al., 2020; Khosravi et al., 2019). More CAs are needed 
to protect the Persian leopard effectively along the Iran– Iraq border. 
Furthermore, only about 20% of detected corridor habitats are cov-
ered by CAs and the same action is needed. Reconsideration of CAs 
network (particularly between Core1 and Core2) is needed to ensure 
gene flow and individual movement between core habitats (Opdam 
& Wascher, 2004; Ruiz- González et al., 2014) as well as increasing 
the survival rate of the Persian leopard in the study area.

4.3 | Connectivity priority of core habitats

Core1 and Core2 had the highest connectivity priority and the high-
est intrapatch connectivity between patches. Therefore, Core1 and 
Core2, and the corridor habitat between them have to be covered 
by CAs immediately. Core 1 and Core2 are also identified as the core 
habitats with the highest flux because of their position in the study 
area, and therefore, they need special attention. Core2 is the only 
connectivity route between Core1 in the south and Core3 in the 
northeast of the study area. Therefore, Core 2 could be assumed as 
a stepping- stone core in the study area.

4.4 | The implications for the conservation

Nowadays, human footprints are found everywhere. Most natural 
habitats are occupied or converted by humans and only small habi-
tat patches remain (Berger et al., 2008). Large carnivores such as 
the Persian leopard need vast and integrated natural habitats to 
meet their different biological requirements (Calvignac et al., 2009). 
Therefore, large patches are necessary to keep the Persian leopard 

alive and protecting them is an urgent priority (Crooks et al., 2011; 
Hilty et al., 2006). Detected core habitats and connectivity areas in 
this study could be an appropriate road map to accomplish the CAs 
network in the west of Iran regarding the Persian leopard conserva-
tion. This has been suggested for other sympatric large carnivores 
(e.g., the brown bear) in the center of the study area (Core2) (Almasieh 
et al., 2019). Developing new CAs is strongly recommended on the 
Iraqi side in Core2 to cover the whole patch as there are two CAs 
(Buzin and Marakhil PA, and Shaho- Kosalan PA) on the Iranian side 
of the Iran– Iraq border. Political collaboration between countries of 
Iran and Iraq and designing efficient transboundary CAs could pro-
tect the core habitats and help the safe connectivity, which leads to 
the survival of large carnivores along the border of countries. This 
issue was recommended by the previous studies on the habitat mod-
eling and connectivity of the Persian leopard in the country borders 
(i.e., Iran- Armenia- Azerbaijan by Farhadinia et al. (2015) and Iran- 
Turkmenistan- Afghanistan by Hosseini et al. (2019)).

5  | CONCLUSION

This study was conducted in the most unknown habitat for the 
Persian leopard along the Iran– Iraq border. Three core habitats were 
identified with the highest connectivity priorities in the south and 
center of the study area. This confirmed that habitat fragmentation 
occurred and this has to be compensated by detecting and establish-
ing the potential corridor habitats and developing the CAs network. 
Only about one- fifth of detected core habitats and relative corri-
dors are covered by CAs in the study area. Reconsideration and de-
velopment of CAs network in the study area (in both countries) are 
strongly recommended to fill gaps and guarantee the survival of the 
Persian leopard in the region.
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