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ABSTRACT
The Flos Lonicerae Japonicae (FLJ), Lonicera japonica Thunb, belonging to the
Caprifoliaceae family, is an economically important plant that is highly utilized in
traditional Chinese medicine as well as in Japanese medicine. The flowers of these
plants are rich in chlorogenic acid (CGA) and luteoloside. Our previous study
revealed that tetraploid L. japonica has higher fresh/dry weight, phenolic acids and
flavonoids contents than those of diploid plants. However, why tetraploid L. japonica
can yield higher CGA and luteolosides than that in diploid and what is the
difference in the molecular regulatory mechanism of these pathways between diploid
and tetraploids remained unclear. Therefore, in the present study, we performed
comprehensive transcriptome analyses of different flowering stages of diploid and
tetraploid L. japonica. The CGA content of tetraploid was found higher than that of
diploid at all the growth stages. While the luteoloside content of diploid was higher
than that of tetraploid at S4 and S6 growth stages. We obtained a high-quality
transcriptome assembly (N50 = 2,055 bp; Average length = 1,331 bp) compared
to earlier studies. Differential expression analysis revealed that several important
genes involving in plant hormone signal transduction, carbon metabolism,
starch/sucrose metabolism and plant-pathogen interaction were upregulated in
tetraploid compared with the diploid L. japonica, reflecting the higher adaptability
and resistance of tetraploid species. Furthermore, by associating the phenotypic data
and gene expression profiles, we were able to characterize the potential molecular
regulatory mechanism of important biosynthetic pathways at different flowering
stages. Overall, our work provides a foundation for further research on these
important secondary metabolite pathways and their implications in traditional
Chinese/Japanese medicine.
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INTRODUCTION
Lonicera japonica Thunb, belonging to the Caprifoliaceae family, is a stolon shrub featured
with perennial, evergreen and twining vine, which has been used as an important raw
material in Chinese traditional medicine (TCM) as a treatment various diseases such as to
clean away the heat-evil or heal the swelling for over thousands of years (Shang et al.,
2011; Rai et al., 2017). The flowers and floral buds are the most important medicinal tissues
that have been recorded in the classical pharmacopeia of TCM “Ming Yi Bie Lu” and
“Shen Nong Ben Cao Jing” (Rai et al., 2017). L. japonica is also known as Flos Lonicerae
Japonicae (FLJ) since the young flower is white primitively and it gradually fades to
yellow later with its maturity (Rai et al., 2017). L. japonica possesses highly commercial
value since it is widely used in healthy food, healthy beverages such as “Jin Yin Hua”
tea and wine production (Wang, Clifford & Sharp, 2008; Yuan et al., 2014). Modern
pharmacological studies suggested that the pharmacological effects of L. japonica are
diverse and a wide range of bioactive properties, including anti-bacterial, anti-inflammatory,
anti-oxidant, anti-viral, anti-angiogenic, antipyretic, hepatoprotective and anti-tumor
effects (Lee et al., 2010; Shang et al., 2011; Kong et al., 2017a). Recent studies indicated
these functions are mainly attributed to the complex and diverse chemical composition
of L. japonica (Li, Kong & Wu, 2018). Most recently, Wang et al. (2019) provided a
comprehensive characterization of the expression profiles of transcription factors (TFs)
during the developmental stages of L. japonica.

The main chemical constituents of L. japonica extracts include phenolic acids,
flavonoids, volatile oils and saponins (Rai et al., 2017). Phenolics and flavonoids have high
anti-oxidant activities and pharmacological studies have proven their important role in
removing harmful free radicals and in the prevention of diseases, such as inflammation,
cardiovascular disease, rheumatoid arthritis and neurodegenerative disease (Kong et al.,
2017a; Huyut, Beydemir & Gülçin, 2017). Chlorogenic acid (CGA) and luteolosides are the
leading secondary metabolites in L. japonica; besides CGA and luteolosides, secoiridoids
such as loganin, secologanin, sweroside and kingiside have also been identified from
the extracts of L. japonica (Rai et al., 2017). CGA is a primary phenylpropanoid generated
from the shikimic acid pathways with high anti-oxidant activities. Therefore, it is often
used in the form of medicines (Rai et al., 2017). Luteolin, its sugar conjugated derivative
lutein, was also derived from the phenylpropanoid metabolic pathway and it is also the
major component of L. japonica extracts (Lee et al., 2010; Rai et al., 2017). Studies
have shown that luteolin, lutein and luteolosides have antioxidant, anti-inflammatory,
anti-tumor and anti-5-lipoxygenase activity (Chen et al., 2007). Recent studies have shown
that these biological activities of L. japonica were mainly attributed to the CGA and
luteolosides (Kong et al., 2017a). Therefore, they are now treated as the standard
compounds to assess the quality of L. japonica.
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The polyploidization commonly results in the genome duplication and increasing gene
number (Comai, 2005; Soltis et al., 2015). Many previous studies have shown that this
process brings significant changes in morphology and physiology and also enhances the
growth rates and the level of secondary metabolites. De Weathers & Jesus-Gonzalez (2003)
showed tetraploid Artemisia annua hairy roots produce more artemisinin than diploids.
The tetraploid clone of Egyptian henbane could produce more scopolamine than the
diploid counterpart under similar growth conditions (Dehghan et al., 2012). Tetraploid
Matricaria chamomilla displayed higher productivity of phenolic glucosides than the
diploid plants (Repčák & Krausová, 2009). Therefore, polyploid plants usually exhibit
increased biological activity than diploid plants. Tetraploid L. japonica also has excellent
characteristics (e.g., high yield, excellent quality, strong resistance) compared to its diploid
plant (Kong et al., 2017a; Li, Kong & Wu, 2018). Our previous study provided the key
information that tetraploid L. japonica has higher fresh weight, dry weight and phenolic
acids and flavonoids contents than those of diploid plants (Kong et al., 2017a).
However, why tetraploid L. japonica can yield high CGA and luteolosides and what is
the difference of molecular regulatory mechanism of CGA and luteolosides biosynthesis
pathways between diploid and tetraploid L. japonica is also still unclear. In the present
study, we performed deep RNA sequencing and gene expression analysis for diploid and
tetraploid L. japonica. Homologs for all enzymes from CGA, luteolin and other metabolic
pathways were identified. We compared the differentially expressed genes (DEGs) at
different growth stages between diploid and tetraploid L. japonica, associating the gene
expression analysis with the phenotypic results to study the molecular regulatory
mechanism of CGA and luteolosides biosynthesis pathways between diploid and tetraploid
L. japonica.

MATERIALS AND METHODS
Plant materials, sample collection and RNA extraction
Fresh buds and flowers were collected from 3-year-old diploid and tetraploid L. japonica
plants cultured in the medicinal garden of South China Agricultural University in
Guangzhou, Guangdong province, China, from 25 March 2015 to 20 April 2015 as
described in our previous article (Kong et al., 2017a). Briefly, the juvenile upper branches
of the plants were selected for the collection of fresh buds or flowers at six different
growth stages, including young alabastrum (S1), green alabastrum (S2), slightly white
alabastrum (S3), whole white alabastrum (S4), silvery flower (S5) and golden flower (S6).
Plants were identified and validated by Prof. Yue-Shen Yang of South China Agricultural
University. Samples were pretreated by collecting individual samples (buds or flowers)
from healthy plants of L. japonica at different growth stages. Total RNA was extracted
from flower samples by using the Concert Plant RNA Reagent (Cat. 12322–012;
Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The purity,
concentration and integrity of RNA samples were measured by Nanodrop, Qubit 2.0 and
Agilent 2100 methods (Simbolo et al., 2013), respectively, to ensure the use of qualified
samples for transcriptome sequencing.
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High-performance liquid chromatography determination
Samples were pretreated by collecting individual samples (buds or flowers) from healthy
plants of L. japonica at different growth stages. The desiccation of the sample was
performed according to the method Kong et al. (2017a). An accurately weighed powder
sample (0.10 g) was suspended in 25 ml 50% methanol v/v, ultrasonically extracted for
40 min and then cooled to room temperature; 50% methanol was added to compensate for
lost weight. Each sample was ultrasonically extracted three times and the methanol
solution was filtered through a 0.22 µm membrane before HPLC analysis. HPLC
determination and analysis was performed according to the methods of Kong et al. (2017a).

Library preparation, Illumina sequencing and pre-processing of raw
reads
RNA samples with RNA integrity number (RIN) value over eight was selected for mRNA
preparation, fragmentation, cDNA synthesis and library preparation. The mRNA was
broken into short fragments as a template. The first strand of cDNA was then linked to the
buffer, RNase H, dNTPs and DNA Polymerase I made into the second chain synthesis
reaction system. cDNA was purified using a QiaQuick PCR kit. The samples were purified
and the cDNA ends were repaired. The repaired cDNA 3′ end was added with the base “A”
and connected to the joint. The size of the fragment was then selected. Finally, PCR
was performed to construct the sequencing library. The established library was sequenced
by the Illumina HiSeqTM 4,000 platform. The raw data were pre-processed and filtered to
exclude the low-quality sequence by using the SOAP filter software.

De novo transcriptome assembly and unigenes
Trinity software was used to de novo transcriptome assembly in this study and then
TGICL software was used to remove the reluctances. The overlapped reads were assembled
to contigs. The contigs were joined into scaffolds and the scaffolds were further assembled
to unigenes by clustering and removing redundancy. We used the k-mer size of 25
(default size) to set the de novo transcriptome assembly. The detailed pipeline is shown
in Fig. S1.

Functional annotation, GO and KEGG classification and analysis of
metabolic pathway
BLAST software was used to compare the unigenes sequences with the databases of NCBI
non-redundant protein (Nr), Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous
Groups (COG), euKaryotic Orthologous Groups (KOG), eggNOG and Kyoto
Encyclopedia of Genes and Genomes (KEGG) to obtain the gene functional annotation
information. Additionally, HMMER software was used to compare our unigenes with
the Protein family (Pfam) database to obtain the domain annotation information
of unigenes. In this study, the BLAST parameter e-value <10-5 and HMMER parameter
e-value <10-10 were considered as the threshold. For the GO function classification,
unigenes were further analyzed and classified using GO based on the Nr results. Finally,
unigenes were classified into three main independent GO categories: molecular function,
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biological process and cellular component. For the KEGG function classification,
unigenes were annotated into five categories of KEGG metabolic pathways: Cellular
processes, Environmental information processing, Organismal systems, Metabolism and
Genetic information processing. Additionally, the five main categories were divided into
20 small classes.

Transcriptome expression and DGE profiling analysis
Fragments Per Kilobase of transcript per Million mapped reads (FPKM) was calculated to
estimate the expression level of unigenes. In this study, the reads obtained by sequencing
were compared with the unigene library by Bowtie and then the expression level was
estimated by combining RSEM. FPKM value was used to represent the expression
abundance of the corresponding unigene. Finally, the DEseq package was used to select the
unigenes with differential expression levels with the parameter of FDR ≤ 0.01 and at least a
2-fold expression change.

SNPs and SSRs detection
The reads of each sample were compared with the unigenes by STAR and the SNP sites
were identified by GATK’s SNP calling process for RNA-seq. There were two main
criteria for SNPs identification: First, no more than three single-base mismatches occur
continuously within the range of 35 bp, and second, the sequencing read depth coverage
for the standardized SNP quality value should be > 2X. According to the above conditions,
the SNP site’s information of each sample was finally obtained.

Statistical analysis
The data are presented as the mean ± SE and there were at least three replicates.
The difference of genes expression between diploid and tetraploid plants at different
growth stages was analyzed by one-way analysis of variance (ANOVA). A p-value of less
than 0.05 was considered statistically significant.

RESULTS
Chlorogenic acid and Luteoloside level at various growth stages
between diploid and tetraploid L. japonica
The floral organ diameter of the tetraploid plants was wider than that in the diploid plants
at corresponding growth stages. Typical phenotypes of a floral organ are shown in Fig. 1A.
The fresh and dry weights of 100 buds or flowers in both diploid and tetraploid plants
at six different growths were reported in our previous study, indicating a higher fresh and
dry weight of buds by tetraploids (Kong et al., 2017a). A similar observation was made
for each growth stage of the tetraploid plants in the present study as well. Our previous
study showed remarkable enhancements of CGA and luteoloside yield in the dry samples
of 100 buds or flowers (the content × the average biomass per 100 buds or flowers).
To further investigate the molecular regulatory mechanism to correlate with gene
expression profile, we also measured the CGA and luteoloside contents in a unit weight of
diploid and tetraploid L. japonica throughout the six growth stages. The CGA content in a
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unit weight of tetraploid was higher than that of diploid L. japonica at all the growth stages
(Fig. 1B). The tetraploid L. japonica showed the highest CGA content in unit weight at
the S2 stage and the CGA content gradually decreased from S2 to S6 stages. The luteoloside
content in a unit weight of diploid and tetraploid L. japonica displayed an almost a similar
trend (Fig. 1C). The accumulation of luteoloside content of unit weight of both diploid
and tetraploid L. japonica continuously increased from S1 to S3. Furthermore, tetraploid
L. japonica indeed exhibited higher luteoloside content than that of diploid L. japonica.
Interestingly, there was a huge fluctuation in the luteoloside contents from S4 to S6 stages,
the luteoloside content of both diploid and tetraploid in unit weight displayed a significant
decrease at S4. Then, we observed a sudden increase in the luteoloside contents of
tetraploid L. japonica but not in diploid L. japonica at S5. While the luteoloside contents of
tetraploid L. japonica showed a significant reduction, the diploid L. japonica exhibited a
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Figure 1 Plant tissues of L. japonica used for de novo transcriptome assembly. (A) Six growth stages
of diploid (2n) and tetraploid (4n) L. japonica buds and flowers were used for the chemical and tran-
scriptome analysis. (B) The changes of chlorogenic acid contents at six growth stages of diploid and
tetraploid L. japonica buds and flowers in unit weight. (C) The changes of luteolosides contents at six
growth stages of diploid and tetraploid L. japonica buds and flowers in unit weight. Letters a–e show
statistical differences. S1: young alabastrum, S2: green alabastrum, S3: slightly white alabastrum; S4:
whole white alabastrum; S5: silvery flower; S6: golden flower. Error bars are ± SE, n ≥ 3.

Full-size DOI: 10.7717/peerj.8690/fig-1
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minor increase at the S6 stage. Interestingly, the luteoloside content of the unit weight
of diploid L. japonica was higher than that of tetraploid L. japonica at S4 and S6
growth stages.

Sample preparation, Illumina sequencing and de novo assembly
To compare the characterization of transcriptome between diploid and tetraploid
L. japonica, we designed a paired-end sequencing strategy for the four stages (from the S3
to the S6 stages) of diploid and tetraploid L. japonica. RNA was extracted from the buds of
diploid and tetraploid L. japonica from different stages (S3–S6). After cleaning and
filtering the poor reads by using SOAP, a total of 590,59,615 clean reads with an average
length of 100 bp were obtained (Tables S1 and S2). These reads were further assembled
into 200,382 sequences (contigs) (Table 1). Our assembled data was comparatively better
(N50 = 2,055 bp; Average length = 1,331 bp) than the previous transcriptome assembly
of L. japonica by Rai et al. (2017), indicating a high quality of our transcriptome data.

Functional annotation and GO and KEGG characterization of
L. japonica transcriptome assembly
The L. japonica unigenes were annotated by BLAST searches against several public
databases. A statistical summary of these annotations is listed in Table S3. Among the
87,809 unigenes, 19,651 (22.38%) could be annotated in COG, 24,567 (27.98%) in GO,
33,566 (38.23%) in KEGG, 25,563 (29.11%) in KOG, 30,591 (34.84%) in Pfam, 36,612
(41.70%) in Swiss-Prot and 41,009 (46.70%) in NR databases. 45,633 (51.97%) unigenes
could be assigned at least one putative function from one of these databases. There was
remaining 48.03% of the unigenes had no significant protein matches in any databases.
These non-matched unigenes might be novel or diverse proteins and long non-coding
RNAs in L. japonica, or could be derived from less conserved 3′ or 5′ untranslated regions
of the genes. GO functional annotations were used to classify gene functions; A total of
24,567 unigenes could be assigned to three domains (biological process, molecular
function and cellular component) and 51 functional categories. Within the cellular
component domain, the three most enriched categories were “cell” (11,731/47.75%), “cell
part” (11,730/47.75%), and “organelle” (8,820/35.90%). In the molecular function domain,
the three most matched categories were “catalytic activity” (13,151/53.53%), “binding”
(12,565/51.15%), and “transporter activity” (1,643/6.69%). In the biological process

Table 1 Summary and comparison of assembly statistics for de novo transcriptome assembly.

No. of contigs N50 Average length n > 500 n > 1,000 Total length

Trinity1 200,382 2,055 1,331 153,975 (76.8%) 96,773 (48.3%) 266,774,118

Bridger1 260,647 1,662 899 121,935 (46.8%) 68,033 (26.1%) 234,294,476

CLC2 132,053 975 668 49,831 (37.7%) 22,776 (17.2%) 88,253,035

Trinity2 351,356 1,480 882 175,121 (49.8%) 97,341 (27.7%) 309,874,152

SOAPdenovo2 120,798 1,420 792 52,789 (43.7%) 29,066 (24.1%) 95,718,128

Notes:
1 This study.
2 Rai et al. (2017).
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domain, the three most common categories were “metabolic process” (17,611/71.69%),
“cellular process” (14,952/60.86%), and “single-organism process” (12,345/50.25%).
The most commonly assigned functional categories in each domain were almost consistent
with the results from the previous studies of L. japonica (Rai et al., 2017).

To systematically analyze different cellular components and their interactions within
various metabolic pathways. An analysis of the KEGG database-based functional
characterization of L. japonica was performed (Fig. 2A). In summary, 33,566 unigenes
(38.23%) could be assigned to five main categories: metabolism; genetic information
processing; environmental information processing; cellular process; and organismal
systems with digestive system and environmental adaptation sub-categories (Fig. 2B).
The most representative pathways were related to “Metabolic pathways” (8,013/23.87%),
“Biosynthesis of secondary metabolites” (4,379/13.05%), and “Ribosome” (1,554/4.63%).
Several key metabolic pathways, like phenylpropanoid biosynthesis, flavonoid biosynthesis
and terpenoid backbone biosynthesis, which are involved in synthesizing precursors for
the biosynthesis of CGA and secoiridoids, were assigned to 915, 135 and 164 unigenes,
respectively. Identification and future characterization of transcripts involved in these
different metabolic pathways will help us to better understand their functions in the
biosynthesis of active compounds in L. japonica.

Transcriptome expression analysis and differentially expressed genes
between diploid and tetraploid L. japonica
To relate the changes of phenotypes between diploid and tetraploid L. japonica, we
calculated the expression abundance for unigenes between diploid and tetraploid L. japonica
among various development stages. Here, clean paired-end reads were aligned to the
de novo assembled transcriptome by using the Bowtie 2 program. Finally, the expression
level of unigenes was determined as FPKM. The S4 stage of diploid and tetraploid Lonicera
japonica showed the lowest number of transcriptionally active unigenes (FPKM > 0)
(Table S4). Also, the diploid L. japonica exhibited higher transcriptional activity than the
tetraploid L. japonica among all the development stages, especially the S3 and S5 stages
of diploid L. japonica. The comparative transcriptomic study showed the S3 and S6 growth
stages have 1,923 and 2,078 DEGs respectively (Figs. 3A–3H), which is two folds higher
than that of S4 and S5 growth stages (666 and 888 DEGs respectively) (Table S5)
(Figs. 3A–3H). Compared to the unigenes of diploid L. japonica, more transcripts
displayed down-regulated expression rather than up-regulated expression during the
growth process. For example, 401 transcripts showed up-regulated gene expression levels,
but 1,522 displayed down-regulated gene expression levels at the S3 growth stage.
Similarly, most of DEGs exhibited down-regulation rather than up-regulation at other
growth stages. Also, a Venn diagram showed 163 unigenes showed changes among all
S3–S6 growth stages (Fig. S2). Previous studies suggested the tetraploid L. japonica has
excellent characteristics, such as higher accumulation of polyphenol components, higher
yields of biomass as well as stronger resistance to heat stress than that of diploid
L. japonica. To explore the possible genes regulating the secondary metabolism pathway,
especially for CGA and luteoloside, we further performed KEGG enrichment analyses with
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Figure 3 Differential gene expression analysis. (A–D) Volcano plots of the transcriptome between diploid and tetraploid L. japonica at four
growth stages. (E–H) Heat map of the differentially expressed genes (DEGs) between diploid and tetraploid L. japonica at four growth stages.

Full-size DOI: 10.7717/peerj.8690/fig-3
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Figure 4 KEGG pathway enrichment of DEGs between diploid and tetraploid of L. japonica at four growth stages. KEGG pathway enrichment
of DEGs between diploid and tetraploid of L. japonica at four growth stages. (A) S3 stage; (B) S4 stage; (C) S5 stage; and (D) S6 stage.

Full-size DOI: 10.7717/peerj.8690/fig-4
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the DEGs of tetraploid L. japonica at various growth stages (Figs. 4A–4D). Interestingly,
the most DEGs present at all the growth stages were found to be mainly involved
in the plant-pathogen interaction (Table 2). Additionally, genes participating in the
Flavonoid and Anthocyanin biosynthesis also showed significant change during S3–S5
stages. Plant phenylpropanoids are one kind of anti-inflammatory agents. We observed the
significant differential expression on genes involving in phenylpropanoid biosynthesis
during all plant growth stages (Table 2). Besides the different gene expression on
secondary metabolism, genes involved in plant hormone biosynthesis and signal
transduction also showed remarkable changes between diploid and tetraploid L. japonica
(Table 2), which might also be linked to their different phenotypes and secondary
metabolite production.

Expression profile of unigenes involved in CGA and luteoloside
biosynthesis pathways during the flower development
CGA and luteoloside biosynthesis is proposed to occur through three alternative routes as
shown in Fig. S3. CGA biosynthesis and luteoloside biosynthesis share the same precursor
(p-Coumaroyl-CoA). CGA biosynthesis is proposed to occur through three alternative
routes where either p-coumaroyl quinate, p-coumaroyl shikimate, or caffeoyl-CoA could
convert into CGA (Comino et al., 2007). While only p-Coumaroyl-CoA can be used for
luteoloside biosynthesis (Niggeweg, Michael & Martin, 2004). To identify potential
candidate unigenes from CGA and luteoloside biosynthetic pathways, we screened the
assembled transcriptome of L. japonica and identified homologs for all the known enzymes
involved in these pathways. To narrow down the most potential candidate unigenes
associated with these key metabolic pathways as well as the accuracy of detected potential
candidate unigenes, we further performed sequence filtering by combining the functional
annotation and sequence similarity. Finally, this approach confirmed the identification
of 84 unigenes associated with CGA and luteoloside biosynthesis pathways (Table S6).

We observed unigenes associated with the CGA and luteoloside biosynthesis between
diploid and tetraploid L. japonica did not show a similar expression profile during the
flower development. For the diploid L. japonica, C4H, 4CL, C3H and HQT were the four

Table 2 KEGG pathway enrichment of differential expression genes between diploid and tetraploid of L. japonica.

2n vs 4n (S3) 2n vs 4n (S4) 2n vs 4n (S5) 2n vs 4n (S6)

KEGG pathway
enrichment of
DEG (P < 0.01)

Plant-pathogen interaction Plant-pathogen interaction Plant-pathogen interaction Plant-pathogen interaction

Cyanoamino acid metabolism Tryptophan metabolism Flavonoid biosynthesis Phenylpropanoid
biosynthesis

Indole alkaloid biosynthesis Phenylpropanoid
biosynthesis

Galactose metabolism RNA polymerase

Plant hormone signal
transduction

RNA polymerase Phenylpropanoid
biosynthesis

Starch and sucrose
metabolism

Flavonoid biosynthesis; Galactose metabolism Tryptophan metabolism Galactose metabolism

Starch and sucrose metabolism ABC transporters Zeatin biosynthesis Glucosinolate biosynthesis

Phenylpropanoid biosynthesis Pyrimidine metabolism

Linoleic acid metabolism Anthocyanin biosynthesis
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genes with remarkable changes (Fig. 4A). The CHS gene in diploid L. japonica displayed a
continuous decreasing trend in its expression, with the major decrease from S3 to S4
and S5 to S6. In contrast, CHS of tetraploid L. japonica only showed a significant reduction
from S3 to S4, but no significant reduction was observed during S4–S6. The expression
profile of the 4CL exhibited a similar trend between diploid and tetraploid L. japonica.
The only difference is that the expression level of the 4CL gene of diploid still kept increasing
at S5–S6 stage, while a reduced trend of 4CL expression was observed in tetraploid
L. japonica (Fig. S4). The expression value of FSII displayed a significant decrease at the S5 to
the S6 development stage of tetraploid L. japonica, while the expression profile of FSII
was almost stable at different stages in diploid L. japonica. The expression value of the HQT
gene of both diploid and tetraploid L. japonica displayed remarkably increasing with the
growth of L. japonica. Interestingly, the increased expression of HQT of diploid L. japonica
was mainly at the S5–S6 stage, while the enhanced expression level of HQT in tetraploid
L. japonica was mainly at the S4–S5 stage. In contrast with the expression profile of FSII, the
C3H and CHI genes also showed significant expression change in diploid, but the most
stable expression was noticed among tetraploid L. japonica (Fig. S4).

Comparing the expression of unigenes involved in secoiridoid
biosynthesis pathways between diploid and tetraploid L. japonica at
various development stages
Apart from the CGA and luteoloside, secoiridoid such as loganin, secologanin, sweroside
and kingiside among others have been identified from the extracts of L. japonica that
might synergistically work with CGA, luteoloside and other effective components of
L. japonica to play a pharmacodynamics (Ghisalberti, 1998; Xiong et al., 2014). Previous
studies also suggested secoiridoids featured with pharmaceutically active and were known
to possess the effects of anti-tumor, anti-inflammatory and antioxidant activities
(Ghisalberti, 1998; Suksamrarn et al., 2002; Viljoen, Mncwangi & Veermak, 2012; Rai et al.,
2017). By a stringent screening of our transcriptome assembly, we identified 81 unigenes
representing all known enzymes from secoiridoid metabolic pathways (Table S6).
Transcript expression analysis for unigenes associated with secoiridoid biosynthesis
pathways between diploid and tetraploid L. japonica at various development stages are
shown in Figs. 5E and 5F. About 31 genes corresponding to secoiridoid biosynthesis
pathways exhibited significant differences between diploid (2n) and tetraploid (4n).
The most significant change of gene expression level appeared at S5 stages, where 18 genes
displayed significant changes in their expression level (15 genes showed remarkable change
at S6, 9 genes at S3, and 8 genes at S4 stage). This is similar to the expression of CGA and
luteoloside biosynthesis, where many genes showed the most significant changes at the
S5 growth stage.

A comprehensive view of the gene expression profile of the main
metabolic pathways
Tetraploid L. japonica generally features bigger flowers or buds compared to that of diploid
(Fig. 1A). We, therefore, analyzed the genes of the phytohormones signaling pathway and
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Figure 5 Cluster analysis of DEGs related to CGA, luteolosides and secoiridoid biosynthesis between diploid and tetraploid L. japonica at
various developmental stages. (A–D) Transcript expression analysis for unigenes associated with CGA, and luteolin biosynthetic pathways.
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many TFs that might participate in the regulation of flower development. We found
several TFs involving in the flower development showed significant changes (Fig. 6).
However, there were no significant changes between diploid and tetraploid. For instance,
MADS genes play a key role in plant body formation and flower growth (Egea-Cortines,
Saedler & Sommer, 1999; Bielenberg et al., 2008). We found that, while few MADS gene
copies showed higher expression levels in 2n, some copies displayed increased gene
expression levels in 4n, and even some genes showed varying expression levels at different
stages of flower development, which might be associated with their specific functions.
Likewise, Auxin is also involved in regulating flower development (Okushima et al., 2005).
A similar trend was observed for this gene as well; there was no consistent change in gene
expression level. Furthermore, we observed that many genes mainly changed at S5 and
S6 stages. Many PIN genes and ABP genes of tetraploid L. japonica displayed reduced gene
expression levels than that of diploid at S5 and S6 stages. However, GH3, AUX1 and ARFs
from the tetraploid L. japonica showed up-regulation than that of diploid. Not only the
TFs, but tetraploid L. japonica also have differential gene expression level in another
crucial metabolism such as phytohormones signaling pathway, anti-oxidant stress, fatty
acid and nitrogen metabolism. Thus, our results displayed a comprehensive view of the
effects of the changed ploidy level of L. japonica (2n vs 4n) on vital gene expression profiles
for the key metabolic pathways.

Identification of single-nucleotide polymorphisms and simple
sequence repeats
SNP is a variation at a single nucleotide position in DNA sequence among individuals
of the same species and they are the most common DNA polymorphisms in genome
sequences of all the species (Baird et al., 2008; Wagner et al., 2013). They are thought to
play a major role in the induction of phenotypic variations. SNP is usually treated as
available molecular markers to use for analysis of genomic variations in plants, their
association mapping as well as diagnostics, evolutionary studies analysis, fingerprinting
and also widely molecular breeding applications (Filliol et al., 2006). In this study, the SNP
sites were identified by using the GATK SNP calling the process of RNA-seq. Finally,
we obtained the SNP number of diploid and tetraploid L. japonica at different growth
stages (Table S7). SSRs are the tandem iterations of short oligonucleotides ubiquitously
distributed within the genome and it also can serve as an important marker for
determining genetic variations, including paternity determination, population genetics
studies, genetic diversity assessment and for the development of genetic maps. To identify
SSRs for L. japonica, we searched transcriptome assembly for mono- to hexanucleotide
motifs with a minimum of ten repetitions using MISA software. Overall, we identified
16,554 SSRs across 26,173 unigenes, with 1,016 unigenes having more than one SSR
(Table S7). Within the identified SSRs, mono-nucleotide represented the largest fraction
(7,915/47.18%) of all SSRs, followed by and di-nucleotides (5,133/31.01%) and
tri-nucleotides (2,206/13.33%). The number of SSRs identified as tetra-, penta- and
hexanucleotide repeat classes were relatively small. Identified SNPs and SSRs of L. japonica
in this study may provide potential genetic markers, which will be important for
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population genetics, comparative genomic studies and molecular breeding application
across different species or eco-types.

DISCUSSION
Lonicera japonica is an effective traditional Chinese medicine for thousands of years being
used as an anti-inflammatory and anti-nociceptive (Shang et al., 2011). Previous studies
have revealed that the pharmacological property of L. japonica might be attributed to
its bioactive components, including phenolic acids and flavonoids (Cai et al., 2004;
Li, Kong &Wu, 2018). Additionally, the potential molecular mechanisms that produce the
bioactive biosynthesis of CGA and luteoloside are still not comprehensively understood
in L. japonica (Chen et al., 2015; Rai et al., 2017). The majority of previous studies
indicated that chromosome doubling causes significant changes in morphology and
physiology but may also increase the content of secondary metabolites, particularly in
medicinal plants, enhance growth rates and improve the genetic quality. Our previous
study also demonstrated this result that the tetraploid L. japonica showed higher biomass
yields and polyphenol contents and stronger antioxidant activity than those in their
diploid plants (Kong et al., 2017a).

However, the molecular mechanism underlying CGA and luteoloside biosynthesis
between diploid and tetraploid L. japonica remains unclear. Therefore, to investigate the
underlying mechanisms between diploid and tetraploid L. japonica, we used Illumina
HiSeqTM 4,000 platform to understand gene expression profiles and the key pathways
for CGA, luteoloside and secoiridoid biosynthesis in L. japonica. We obtained an excellent
quality of transcriptome assembly with longer contig N50 compared to the previously
published L. japonica transcriptome. Finally, a total of 87,809 unigenes were obtained and
RNA-Seq analysis was performed on DEGs between diploid and tetraploid L. japonica at
different growth stages based on these data.

Apart from the higher yield of bioactive components in autotetraploid L. japonica,
previous studies have also shown its stronger disease resistance compared to the diploid
plant (Kong et al., 2017a, 2017b; Li, Kong & Wu, 2018). Our analysis of KEGG pathway
enrichment of DEGs between diploid and tetraploid of L. japonica at four different
flowering growth stages showed the increased gene expression level of genes involving
in the plant-pathogen interaction, reflecting that tetraploid L. japonica has better
pathogen-resistance than the diploid one. Besides, DEGs between diploid and tetraploid
of L. japonica were also enriched in another important metabolism such as plant
hormone signal transduction, carbon metabolism and starch/sucrose metabolism.
These metabolisms are closely associated with the plant growth and development process.
Therefore, the excellent characteristics of tetraploid L. japonica might have resulted
from the DEGs significant changes in these metabolic pathways. Corresponding to the
higher phenolic acids and flavonoids in tetraploid of L. japonica, many DEGs were also
enriched in the metabolism of Flavonoid biosynthesis and Phenylpropanoid biosynthesis
and most of these genes displayed increased gene expression level compared to diploid.

Our result of CGA and luteoloside contents in unit weight tetraploid L. japonica showed
a significant increase in comparison to those of diploid L. japonica, which almost keep
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a similar trend of our previous results of CGA and luteoloside contents based on
100 flowers of tetraploid L. japonica. Next, we analyzed the genes expression profile of
CGA, luteoloside and secoiridoid biosynthesis pathways at different growth. Only CAMT
and C3H showed significant changes of expression level, relating with the phenotypic results,
hence we hypothesized that the increased CGA and luteoloside contents of tetraploid
L. japonicamight have resulted from the lower expression level of CAMT and C3H, leading
to the lower conversion of Caffeoyl-CoA to Feruoyl-CoA and higher accumulation of the
CGA and luteolin at S3 growth stage (Fig. 7). We observed that luteoloside content in
unit weight among tetraploid L. japonica was lower than that of diploid L. japonica at the
S4 growth stage. This was further corroborated by our transcriptome analysis, where the
gene expression level of the CHS gene was significantly decreased and was lower than that of
diploid L. japonica. Besides the CHS, the CAMT was another gene that also showed
significant changes in expression level at the S4 growth stage. Similar to the S3 growth stage,
the higher yields of CGA might be caused by the reduced usage of the precursor of CGA,
Caffeoyl-CoA, in tetraploid L. japonica. Alternatively, we also observed an enormously
decreased yields of luteoloside both in diploid and tetraploid L. japonica at S3 and S4.
With no surprise, following the phenotypic observation, the expression level of CHS had a
massive reduction from S3 to S4 growth stage in both diploid and tetraploid L. japonica,
which might explain why there was a sudden decrease in the accumulation luteoloside
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during these stages. Besides, the expression level of HQT, 4CL and FSII of tetraploid
L. japonica were higher than those of diploid. By associating the CGA and luteoloside
content between diploid and tetraploid L. japonica, we indeed found some biggest
differences between CGA and luteoloside yield at the S5 growth stage. Additionally, we
also observed a significantly decreased expression level of F3H, which might suggest that
the higher accumulation of luteoloside of tetraploid L. japonica at S5 growth stage was
caused by enhanced gene expression of FSII, not due to the decreased expression of F3H
gene. However, at the S6 stage, we observed both F3H and FSII of tetraploid L. japonica
showed remarkably lower expression levels than those of diploid, which might result
in the lower luteoloside content in a unit weight of tetraploid L. japonica than that of
diploid. Thus, these results highlighted the dynamic changes among different metabolic
pathways between diploid and tetraploid L. japonica. Overall, our work provides a
foundation for further studying these important secondary metabolite pathways and
their implications in traditional Chinese/Japanese medicine.

CONCLUSION
In summary, we sequenced the transcriptome of diploid and tetraploid L. japonica and
provided the best transcriptome assembly of L. japonica thus far. We, therefore,
investigated the metabolic difference between diploid and tetraploid L. japonica through
the DEGs at different growth stages. The KEGG enrichment of DEGs displayed that
tetraploid L. japonicamany genes involved in plant-pathogen interaction, phenylpropanoid
biosynthesis, flavonoid biosynthesis and plant hormone signal transduction etc. which
might endow more excellent characteristics of tetraploid L. japonica than diploid, such as
high yield, excellent quality, strong resistance. By associating with the phenotypic data
and gene expression profile of CGA and luteoloside and related transcription factor
as well as genes participating in the phytohormone signaling pathway between diploid
and tetraploid L. japonica at different growth stages, our results characterize a potential
molecular regulatory mechanism for CGA and luteoloside biosynthesis of tetraploid
L. japonica at different growth stages. However, further experimental validation of these
identified genes, metabolites and their subsequent regulations in future studies will enable
us to gain more detailed insights.

ABBREVIATIONS
GPPS Geranyl diphosphate synthase

GES Geraniol synthase

G10H Geraniol 10-hydroxylase

10HGO 8-Hydroxygeraniol oxidoreductase

IS Iridoid synthase

IO Iridoid oxidase

7DLGT 7-Deoxyloganetic acid glucosyl transferase

DL7H Deoxyloganin 7-hydroxylase

LAMT Loganic acid O-methyltransferase

SLS Secologanin synthase
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PAL Phenylalanine ammonia lyase

C4H Cinnamic acid 4-hydroxylase

C3H p-Coumaric acid 3-hydroxylase

4CL 4-Hydroxycinnamoyl-CoA ligase/4coumarate-CoA ligase

HCT Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase

HQT Hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase

CHS Chalcone synthase

CHI Chalcone isomerase

F3H Flavonoid 3-monooxgenase

FSII Flavonol synthase

CCoAMT Caffeoyl-CoA-O-methyltransferase

CGA Chlorogenic acid

ROS Reactive oxygen species

ABA Abscisic acid

BRs Brassinosteroids

CK Cytokinins

ETH Ethylene

GAs Gibberellins

JA Jasmonic acid

SL Strigolactones

SF Sulfate Fucan

BES BRI1-EMS suppressor

GeBP GL1 enhancer binding protein

GRF1 Growth-Regulating factor1

MADS MADS-box transcription factor

CYP Cytochrome P450

GST Glutathione S-transferase

ALDH Aldehyde dehydrogenase

PER peroxidase

GH3 Glycoside Hydrolase 3

AUX1 Auxin transporter protein 1

ARF Auxin response factor
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