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A gaze estimation system is one of the communication methods for severely disabled people who cannot perform gestures and
speech.Wepreviously developed an eye trackingmethod using a compact and light electrooculogram (EOG) signal, but its accuracy
is not very high. In the present study, we conducted experiments to investigate the EOG component strongly correlated with the
change of eye movements. The experiments in this study are of two types: experiments to see objects only by eye movements and
experiments to see objects by face and eye movements. The experimental results show the possibility of an eye tracking method
using EOG signals and a Kinect sensor.

1. Introduction

Gaze estimation has been an active research field for the
past few years [1–3], and it is an important technique for
severely handicapped people who cannot move the body
or use speech to communicate [4, 5]. Some studies [6–
11] have been developing various eye gaze interfaces using
different eye movement recording methods. Examples are
infrared oculography (IROG) [6–8], limbus tracking, and
video oculography (VOG) [9–11].

We had proposed an eye tracking method using an
electrooculogram (EOG) signal, which measures the poten-
tial across the cornea and retina [12–14]. With the EOG,
the eyeball can be modeled as a dipole [15]. EOGs are
widely applied in the medical field because they place
a low burden on patients. The literature includes several
EOG-based human-computer interface [12–14, 16, 17]. To
investigate the possibility of using the EOG for a human-
computer interface, the relation between the gaze angle and
the EOG must be determined. However, in-depth studies
[18, 19] have shown that the slowly changing baseline drift
poses a difficulty for estimating continuous EOG signals, and
this drift only appears in direct current (DC) signals in the
circuit. We previously developed an EOG system using the

center parameter update technique, which reduces baseline
drift by segmentation of the signal [12]. The system that we
developed [12–14] can possibly improve the communication
abilities of patients who are able to move their neck and/or
eyes; however, the low resolution of our system is a problem.

In the conventional method, the positions of the elec-
trodes are set as plus channels in the same direction of the
eyemovements (e.g., [20, 21]).Thehorizontal channel records
horizontal EOG signals and the vertical channel records
vertical EOG signals. Table 1 shows the electrodes positions
of our method and the conventional method.

We have already proposed a cross-channel method to
improve the accuracy of the EOG signal [14]. The method
we already proposed [14] can classify four patterns based on
alternating current (AC) and direct current signals and place
the electrodes at locations away from the eyeball (Table 1).
Although this method [14] is superior to the conventional
method, paper [14] is pattern classification (up, bottom, right,
and left) by a simple threshold method, and the direction of
the face was not taken into consideration.

We previously developed an eye input application for
a desktop PC with highly accurate gaze estimation [12].
Furthermore, we carried out large-space experiments (range:
−60 degrees to 60 degrees) and estimated the gaze by
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Figure 1: EOG measurement system.

Table 1: The electrodes positions of our method and the conven-
tional method.

Positions of the electrodes

Conventional
method

Ch2+

Ch2−

Ch1+ Ch1−

Proposed
cross-channel
method

Ch1+ Ch2+

Ch2− Ch1−

multiple regression analysis using the DC integral value
[22]. Although the regression analysis results were good, a
narrower range would be preferable.

In the present study, we analyzed DC, AC, DC difference
value, and DC integral value for regression analyses and we
also checked whether the accuracy was improved over that
in our previous studies [22]. Moreover, we considered the
limiting angle of gaze estimation in a wide space ranging
from −90 degrees to 90 degrees. Experiments were carried
out under the condition that subjects can use only eyeball
movements withoutmoving the face and under the condition
that the face and eyeballs can move freely.

In the experiment of the face moving freely, the position
of the face was measured by two depth sensors and a RGB-D
camera of the Kinect sensor [23, 24].

2. Measurement System

2.1. Using EOG Signals. In this section, the cross-channel
EOG measurement system design [12] is shown. Figure 1
shows the formal scheme for the acquisition and analysis
of the EOG signal for the control and flow of information
through the system. Our proposed system is based on the
following six features: (1) five electrodes, (2) amplifier, (3)
low-pass filter for channels 1 and 2, (4) high-pass filter for
channels 3 and 4, (5)A/D-converter, and (6) PC andmonitor.
In order to effectively filter functions, channel 3 and channel
4 each use two amplifiers. The horizontal signals and the
vertical signals can be recorded by both channels at the same
time.This is an advantage because it is much easier to analyze
data by using double simultaneous signals.

Baseline drift is the slow change of the EOG signals,
in which the potential difference varies even if the eyeball
position is constant. This drift only appears in DC signals
and affects the EOG signal only slightly during fast eye
movements (saccade). However, all othermovements, such as
fixations (when the eyes are still) and pursuit (when following
a moving target), are affected by baseline drift.

Since the amount of change in the gaze direction directly
corresponds to the amount of change in the DC signal
of the EOG, the DC amplifier is generally used for EOG
measurement. Therefore, the drift in the DC component is
a big problem.

2.1.1. The Differences betweenThis Proposal Method and Paper
[14]. The EOG system used in this paper is the same device
as the EOG-EMG system of paper [14], but the following two
points are different.

(1) Paper [14] and the proposed method differ in EOG
data handled and identification pattern. In paper [14],
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Figure 2: Images of the face tracking system and device.

only four patterns (up, bottom, right, and left) are
identified by theDCdifference and theACdepending
on whether they exceed the threshold (on/off). How-
ever, the eyeballs angle is not mentioned.

In the proposal method, multiple regression analysis
and logistic-regression analysis using the DC integral
values are performed using the continuous data.
Then, discrimination between right and left 30, 60,
and 90 degrees and examination of utilization of
feature quantity of EOG are carried out.

(2) In contrast to paper [14], this proposal method pro-
poses to estimate gaze in a wide space and estimate
gaze by using Kinect sensor even if face moves.

2.2. Kinect Sensor. In this section, we describe the Kinect
sensor used for face position estimation. Several studies have
researched the position estimation of faces by using Kinect
sensors, but many of these studies have been done in narrow
spaces, such as TV screens and PCs [23–25]. In this paper, we
used the Kinect sensor to estimate the position of the face in
a large space.

We chose the Kinect sensor as the RGB-D camera and
depth sensors because Kinect sensor is an easy-to-use and
low-cost device. The Microsoft Kinect SDK supports face
tracking system and its inputs, the color and depth images
of the Kinect sensor.The face tracking systemwas built based
onKinect forWindows SDKandworks underC++programs.
An image of the face tracking system is shown in Figure 2(a).

The SDK engine for face tracking analyzes input from the
Kinect camera, calculates the face pose and facial expressions,
and makes that information available to an application in
real time. The face of the target can be projected into 327
feature points, and each part of the face can be reformed as
a combination of multiple feature points.

The face tracking SDK uses the Kinect coordinate system
to output its 3D tracking results. The origin is located at
the camera’s optical center, the 𝑧-axis is pointing towards
the user, and the 𝑦-axis is pointing up and down, as shown
in Figure 2(b). The angles are expressed in values ranging
from −180 degrees to +180 degrees. The angles of the face
are denoted as Rotation 𝑋, Rotation 𝑌, and Rotation 𝑍.
For example, the angle of the 𝑋-direction is referred to as
Rotation 𝑋. In this paper, because the face moves sideways,

we use Rotation 𝑋, which outputs 𝑥-axis data for the face
angle.

In order to acquire data simultaneously using Kinect
sensor and EOG device, the Kinect sensor is synchronized
with the EOG device. The frequency of Kinect sensor is
30Hz and the EOG device is 500Hz, so the data of Kinect
is synchronized with EOG signal at 30Hz.

3. Method

We carried out experiments with our proposed EOG system
to study calculation methods to obtain EOG elements having
a strong correlation to the change of eyeball movements. The
experiments are carried out by two types: (1) move the eyes
only and (2)move the eyes and face.

3.1. Extraction Method of Feature Values

3.1.1. EOG Signals. In the experiments using our EOG sys-
tem, the feature values were (1)AC, (2)DC, (3)DCdifference
value, and (4) DC integral value.

(1) Feature Value of AC. The feature value of AC is assumed to
be the maximum value when AC is more than the threshold
in the right direction, and it is the minimum value when AC
is less than the threshold in the left direction (Figure 3(a)).

(2) Feature Values of DC and DC Difference. The feature
value of DC is the maximum value and the minimum
value (Figure 3(b)); however, it is necessary to take the
difference (DC difference) between the baseline DC value
and the DC value because drift occurs in the DC signals. The
changing baseline drift makes it difficult to estimate the EOG
signals. The baseline (DCbase) is shown by the dashed line in
Figure 3(b).

TheDC difference value (DCdif ) is expressed by (1) where
𝑖 is number of EOG data. When DCdif exceeds a certain
threshold value, DC𝑅max is the maximum values at the time
of EOG activity looking to the right direction and DC𝐿max
is taken as the minimum value at the time of EOG activity
looking to the left direction. DC𝑅max and DC𝐿max are expressed
as (2) and (3).

DCdif (𝑖) = DC (𝑖) − DCbase. (1)
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(c) Feature value of DC difference value and DC integral value

Figure 3: Four types of feature values of EOG signals that were recorded in this study. In (a), AC is the EOG signal recorded in CH3-CH4.
In (b) and (c), DC is the EOG signal recorded in CH1-CH2.

DCbase is the baseline DC value, if DCdif (𝑖) exceeds a certain
threshold.

DC𝑅max = maxDCdif (𝑖) , (2)

where maxDCdif (𝑖) is the maximum value of DCdif (𝑖) at the
time of EOG activity looking to the right direction.

DC𝐿max = min𝐷dif (𝑖) , (3)

where minDCdif (𝑖) is the minimum value of DCdif (𝑖) at
the time of EOG activity looking to the left direction
(𝑖: 1, 2, 3, . . . , number of EOG data).

(3) Feature Value of DC Integral Value. DC integral value
(DCint) is the linear weighted sum of the DC difference
value (DCdif ) with the baseline subtracted. By taking the
maximum/minimum of DC integral value (𝑋𝑅max, 𝑋

𝐿

max), we
can obtain the stable eyes feature value.TheDC integral value
(DCint) is expressed by (4) where 𝑖 is number of EOG data.
When DCint exceeds a certain threshold value, 𝑋𝑅max is the
maximum values at the time of EOG activity looking to the
right direction and𝑋𝐿max is taken as theminimumvalue at the
time of EOG activity looking to the left direction. 𝑋𝑅max and

𝑋𝐿max are expressed as (5) and (6).The dashed line is the value
of DC different value and the solid line is the DC integral
value (Figure 3(c)).

DCint (𝑖) =
𝑁

∑
𝑖=1

DCdif (𝑖) , 𝑁 = 200 (4)

(𝑖: 1, 2, 3, . . . , number of EOG data,𝑁: 1, 2, 3, . . . , 200).

𝑋𝑅max = maxDCint (𝑖) , (5)

where maxDCint(𝑖) is the maximum value of DCint(𝑖) at the
time of EOG activity looking to the right direction.

𝑋𝐿max = minDCint (𝑖) , (6)

where minDCint(𝑖) is the minimum value of DCint(𝑖) at the
time of EOG activity looking to the left direction.

3.1.2. Kinect Sensor. The feature value of RGB-D data
obtained from Kinect sensor was set to the maximum values
of Rotation 𝑋 for 30, 60, and 90 degrees and the minimum
values of Rotation𝑋 for−30,−60, and−90 degrees (Figure 4).
For example, the maximum values in the right direction are
max𝑅

1
, max𝑅

2
, and max𝑅

3
and the minimum values in the

left direction are min𝑅
1
, min𝑅

2
, and min𝑅

3
.
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Figure 4: Feature values of data obtained from RGB-D sensor
(Rotation𝑋).

3.1.3.The SynchronizationAlgorithmbetween EOGDevice and
Kinect Sensor. We introduce the synchronization algorithm
between EOGdevice andKinect sensor.The steps of synchro-
nization algorithm between EOG device and Kinect sensor
are as follows.

Step 1. TheEOG element (DC difference, DC integral, or AC)
exceeds the reference threshold value.

Step 2. Our system gets the maximum value (or minimum
value) of the EOG element at the time of EOG element being
active.

Step 3. Themaximumvalues (orminimumvalue) of Rotation
𝑋 from Kinect sensor before 15 data pieces (0.5 seconds)
and after 15 data pieces (0.5 seconds) at the time of Step 2
are synchronized with the EOG element maximum value (or
minimum value).

Also, when the EOG element falls below the reference
threshold for discrimination, gaze information uses the value
of the Kinect sensor only. In this algorithm, we do not
synchronize when the values of EOG and Kinect sensor are
changing by 20% from before data.

3.2. DataAnalysis. In our previous studies [12, 22], we carried
out gaze estimation in the range from −60 degrees to 60
degrees. In this paper, we estimated the gaze from−90 degrees
to 90 degrees.

To confirm the accuracy of the EOG system, we per-
formed two types of regression analyses. First is a multiple
regression analysis as a linear regression analysis, and the sec-
ond is a logistic-regression analysis as a nonlinear regression
analysis.

We mention sharing ratio briefly; the sharing ratio is
a parameter for evaluating the role of face movement and
eye movement in gaze movement. Therefore, in multiple
regression analysis using explanatory variables as Rotation𝑋
and EOG elements for gaze estimation, it means estimating
gaze considering sharing ratio.

DC is known to have a linear relation [26–28] to the
eyeball angle, so we performed a multiple regression analysis
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Figure 5: Experimental environment using EOG system and RGB-
D sensor (seven boxes and RGB-D sensor).

with the explanatory variables AC, DC, DC integral value
(DC Int), and DC difference (DC Dif). Experiments in most
previous studies were carried out in a small space, such as a
desktop PC [12]. We assumed that DC elements might not
have linear shape characteristics in a large space, as in the
current experiment. Therefore, we performed a nonlinear
logistic-regression analysis inwhich the explanatory variables
were the same as in the multiple regression analysis. We
computed the predicted gaze degree by two types of regres-
sion analyses for each subject. We compared the explanatory
variables to find the most suitable variable for using EOG in
a large space.

4. Experiment

4.1. Experimental Environment. The experiments were
designed to confirm the effectiveness of the proposed system.
The experimental condition is shown in Figure 5. We placed
seven targets (the targets were the boxes) at 0, 30, 60, 90,
−30, −60, and −90 degrees, and an RGB-D sensor (Kinect)
was placed at 0 degrees. The subject sat on a chair located
1.8m away from the targets.

4.2. Subjects. We collected data from five healthy subjects
(five males) and one patient who participated in this study.
The patient is muscular dystrophy. The age of subjects in the
experiment is between 22 and 24 years old.

4.3. Procedures. We conducted two types of experiments.The
first experiment was conducted under the condition that the
subject watched a target only with their eyes and without
moving his face. The second experiment was conducted
under the condition that the subject freely watched an object
by using their face and eyes. These two types of experiments
as above were conducted on each of the five subjects which
was repeated 10 times. Formuscular dystrophy patients, these
experiments were limited to 3 times, taking into account the
patient’s burden.We asked the subjects to look at these targets
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Table 2: Correlation coefficients of multiple regression analysis for
eye movement only.

AC DC difference DC integral
Subject A 0.835 0.790 0.925
Subject B 0.844 0.908 0.922
Subject C 0.845 0.845 0.906
Subject D 0.841 0.911 0.914
Subject E 0.823 0.927 0.930

in the order of 0, −30, 0, −60, 0, −90, 0, 30, 0, 60, 0, and 90
degrees, shown as the numbers from 1 to 6 in Figure 5. The
time to keep looking at each target was 1 second.

5. Experimental Results

In this section, we describe the gaze estimation results of −30
degrees, −60 degrees, −90 degrees, 30 degrees, 60 degrees,
and 90 degrees. In the experiments, the proposed analysis
method is themajor analysis of the target angle of the subjects’
views in order to clarify the correlation between the target
angle and the error.

To assess the usability of the proposed EOG system, we
evaluated the following two factors: target detection accuracy
using a correlation coefficient and the error rate throughout
the task.

5.1. Eye Movement Only

5.1.1. In Case ofHealthy Subjects. Theresults of calculating the
respective correlation coefficient 𝑅2 for eye movement only
are shown in Table 2. All analysis results with 𝑅2 > 0.835
show a correlation. As shown, DC integral value is highest.

Based on the results of the multiple regression analysis,
we conducted a logistic-regression analysis with DC integral
value. In addition, we calculated the average errors between
the predicted values and the true values obtained by the mul-
tiple regression analysis and the logistic-regression analysis.
The average errors of all data at the same target angle are
shown as a bar graph in Figure 6.

Figure 6 shows that 60 degrees and −60 degrees have
small average errors for each angle and each type of analysis
on average. The gaze estimation by the nonlinear analysis
is better for angles larger than 60 degrees or less than −60
degrees. In the results of all data from −90 degrees to 90
degrees, the error rate of the multiple regression analysis is
19.0 and the error rate of the logistic-regression analysis is 17.4.

By using the best experimental results, the success rate
in each target angle of −90 degrees is 24%, −60 degrees is
71%, −30 degrees is 66%, +30 degrees is 50%, +60 degrees is
83%, and +90 degrees is 5%. The eyeball angles of 60 degrees
and −60 degrees are the most easy to judge by the EOG, and
consequently the success rate is 77% without considering the
individual differences of the five subjects. For the average
error at ±60 degrees, only one subject is over 15, and it is
considered that the success rate is decreasing due to the
influence. At 90 degrees and −90 degrees, the judgment is
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Figure 6: Average errors of eyes movement only: the horizontal
axis represents the target angle and the vertical axis represents the
average error.

(1) Center

20151050 25 30−10−15−20−25 −5−30
DC integral

−100
−80
−60
−40
−20

0
20
40
60
80

100
Pr

ed
ic

te
d 

va
lu

e

(5) Less than −60 deg (4) To −60 deg (2) To 60 deg (3) Over 60 deg
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value.

difficult because the individual differences are wide and the
value of the EOG tends to be saturated. At about 30 degrees
and −30 degrees, two of the five subjects show 80% success
rates. One of the causes for a low success rate is the influence
of the individual differences.

Figure 7 shows that the existence of a linear relation
of the DC value and eyeball angle depends on the eyeball
angle.Therefore, we established a boundary line (DC integral
value: ±15 V) to separate the linearity and nonlinearity and
combined the results of the logistic-regression analysis and
the multiple regression analysis (Figures 6 and 7). Based on
60 degrees, our linear and nonlinear analysis methods can be
classified as the following patterns as shown in Figure 7: (1)
center, (2) center to 60-degree range, (3) 60 degrees and over,
(4) center to −60-degree range, and (5) −60 degrees and less.
For our linear and nonlinear analysis methods, it can be said
that 5 is the appropriate number of judgment patterns.

5.1.2. In Case of Muscular Dystrophy Patient. We conducted
experiments with muscular dystrophy patients under the
same experimental environment and experimental contents
as healthy subjects.However, taking the burden on the patient
into consideration, the number of experiments was set three
times.
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The results of calculating the respective correlation coef-
ficient 𝑅2 for eye movement only are as follows: AC value is
0.839, DC difference value is 0.894, and DC integral value
is 0.887. Based on the results of the multiple regression
analysis, we conducted a logistic-regression analysis with
DC difference value and DC integral value. In addition, we
calculated the average errors between the predicted values
and the true values obtained by the multiple regression
analysis and the logistic-regression analysis. The average
errors of all data at the same target angle are shown as a bar
graph in Figure 8.

The same as in healthy subjects, the average error of ±60
degrees is under 15 which is the smallest average error in each
target degree, and ±30 degrees and ±90 degrees have larger
average errors in all analysis methods.

5.2. Both Eye and Face Movements. In this section, we show
the experimental results when the face freely moved.

5.2.1. In Case of Healthy Subjects. We show the multiple
regression analysis results in Table 3. AC, DC difference,
DC integral value, and Rotation 𝑋 are the explanatory
variables. We performed a multiple regression analysis with
two explanatory variables, DC integral value and Rotation𝑋.
All results with𝑅2 > 0.804 show a correlation for all analyses.
In the case of one explanatory variable, the DC integral value
is the highest value in 4 out of 5 people, but the result in the
case where the explanatory variable is two of Rotation𝑋 and
DC integral value is the best result in all the analysis results.

We calculated the average errors between the predicted
values and the true values obtained by themultiple regression
analysis and the logistic-regression analysis (Figure 9).

The best average error result of 60 degrees is the result of
logistic-regression analysis with Rotation 𝑋 and DC integral
value as explanatory variable, and the average error of ±60
degrees is both under 15.

By using the best experimental results to compare this
experiment (both eye and head movements) with the exper-
iment of only eye movement, the success rate of this exper-
iment (both eye and head movements) is 81% on average.
This success rate is 39% better than the experiment with

Table 3: Correlation coefficients of multiple regression analysis of
face and eye movements.

AC DC
difference

DC
integral

Rotation
𝑋

DC
integral,

Rotation𝑋
Subject A 0.851 0.910 0.971 0.965 0.975
Subject B 0.848 0.957 0.973 0.984 0.988
Subject C 0.864 0.944 0.944 0.933 0.959
Subject D 0.804 0.864 0.835 0.942 0.964
Subject E 0.845 0.931 0.961 0.942 0.974
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Figure 9: Average errors of both eye and face movements: the
horizontal axis represents the target angle and the vertical axis
represents the average error.

eye movement only. The lowest value is 67% in the cases of
+90 degrees; two of the five subjects had an average error
of 15 or more. The reason of lowing the average error is
considered to be that there are variations in Rotation 𝑋
values. Furthermore, in case of ±60 degrees, it was more
than 90%. All of these results are better than those in the
experiment of eye movement only.

5.2.2. In Case of the Face Inclined. The subjects in the
experiments were healthy subjects, but the aim is to use
this system for patients with brain disease and patients with
disabilities such asmuscular dystrophy patients. Patients with
brain disease may not be able to keep their faces straight,
so another experiment was performed with the face tilted to
assume a possible condition of a patient. The subject of this
experiment is Subject B, who tilted his face about 40 degrees
to the right.

Table 4 shows the multiple regression analysis results of
the correlation coefficients in the case of the face inclined.
Since the multiple regression analysis results were better than
the logistic-regression analysis results, the mean error was
calculated for the multiple regression analysis. These results
are shown in Figure 10.

When the face is tilted, the correlation coefficient between
Rotation 𝑋 obtained from Kinect and the true value (the
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Table 4: Correlation coefficients of the face inclined experiment.

DC difference DC integral Rotation𝑋 DC integral, Rotation𝑋 DC difference, Rotation𝑋
Correlation coefficient 0.918 0.887 0.740 0.968 0.963
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Figure 10: Average errors of face inclination: the horizontal axis
represents the target angle and the vertical axis represents the
average error.

Table 5: Correlation coefficients of multiple regression analysis of
face and eye movements (muscular dystrophy patient).

AC DC
difference DC integral Rotation𝑋

DC
difference,
Rotation𝑋

0.874 0.912 0.865 0.915 0.935

targets angle) is lower as compared with the result of the not
inclined face which is mentioned in Section 5.2.1. The result
of the multiple regression analysis with DC integral value
and Rotation𝑋 as explanatory variables is a good result. This
result is similar to the result of the face without an incline in
the basic experiment.

In the mean error, multiple regression analysis with
Rotation 𝑋 and DC difference as the two inputs had the
smallest average error overall.The average error is less than 10
for all degrees of the targets. Because of the inclination of the
face, the correlation between Rotation𝑋 and the true value is
low, and the average error is the largest except for−90 degrees.
Therefore, when using this system for patients with inclined
faces, using the Kinect sensor with the EOG system is better
than using the Kinect sensor alone.

5.2.3. In Case of Muscular Dystrophy Patient. The results of
calculating the respective correlation coefficient 𝑅2 for eye
movement only are as Table 5 and the average error is shown
in Figure 11.

The result of multiple regression analysis with Rotation
𝑋 and DC difference value as explanatory variable was the
higher result.
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Figure 11: Average errors of both eye and face movements in case
of the muscular dystrophy patient: the horizontal axis represents the
target angle and the vertical axis represents the average error.

In each of the left and right directions, the average error
of 60 degrees is the smallest.The average error of ±60 degrees
is under 15, which is the same for the results of healthy
subjects. In the right direction (+30, +60, and +90 degrees),
the error is the smallest error of Rotation 𝑋. On the other
hand, regularity was not observed in the left direction (−30,
−60, and −90 degrees). This is because it is thought that the
error of Rotation 𝑋 increases because the subject can move
the face a little to the left when the subject moves the face.
However, since the error of Rotation𝑋 is small if the angle is
60 degrees to the left and right, this subject can estimate the
gaze with high performance by setting the viewing target at
±60 degrees when moving the face.

6. Discussion

In this section, we discuss the effectiveness of moving the
face versus not moving the face. Figure 12 shows the average
errors between the estimated values and the true values of
the regression analysis results in the experiments of only
eye movement and both eye and face moving. The results in
Figure 12 used the data of all five subjects.

The average error of the face moving condition is smaller,
and even the inclined face (average error: 9) is a better result
than that for subjects using their eyes only to look at the
target objects. A statistically significant difference using the
𝑡-test is observed between the experiment of using only eye
movement and that of moving the face (𝑝 < 0.01). From the
above, we can say that the average error is reduced bymoving
the eyes and the face. Gaze estimation whenmoving both the
face and the eyes is thus possible with stable accuracy.

When trying to see the object by only eye movement, the
error becomes large except for±60 degrees. For 30 degrees, as
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Figure 12: Average errors of two types of experiments: eye move-
ment only and both eye and face movements.

mentioned in Section 5, the average error is large because of
the individual differences.The viewing angle at whichmotion
vision works effectively is about 60 degrees horizontally [29,
30] and looking at an object without moving the face means
capturing an object only with peripheral vision.Therefore, we
think that 90 degrees exceeds the limit of the angle for looking
at an object with only the eyes.

In the case of this patient, when comparing the case
where the face was moved and the case where only the eye
was moved, the average error was improved at ±90 and ±30
degrees: −90 degrees was 65%, −30 degrees was 25%, 30
degrees is 29%, and 90 degrees is 64%. From these facts,
it is considered that gaze estimation is possible with stable
precision by moving the face even for patients who can move
their faces a little.

Furthermore, using regression analysis considering EOG
and Kinect information (sharing ratio), gaze estimation is
superior to only EOG, Kinect only. In addition, we compared
our proposal method using regression analysis with the
nonlinearmodel.We used the adaptive neuro fuzzy inference
system [31]. The correlation coefficient when eye and face
were moved freely was 𝑅2 = 0.942. This result was lower than
the correlation coefficient of the multiple regression analysis
of this paper. Therefore, our proposal method does not need
to use a nonlinear model.

7. Conclusions

In this paper, we conducted experiments to examine EOG
elements that have a strong correlation with eye movement
changes. Furthermore, we examined the accuracy of gaze esti-
mation by using the face and the eyes. From the experiments,
we established the following three points in this study.

(1) With only eyes movement, the position of ±60
degrees is themost accurate. If we set the objects to see
in these two places, we can recognize it without set-
ting the range for each individual. DC integral value is
themost effective EOG signal for gaze estimates using
only the eyes. When a bedridden person whose face
does not move can be used, recognition at this angle
is possible.

(2) In the case of including face motion, estimation is
possible since the average error is less than 15 in 6
patterns of −90 to 90 degrees’ gaze estimation. We
reported [22] that the success rate is 50% when only
EOG is used and 65%when only Kinect is used, so the
estimation is difficult only with Kinect, EOG alone.

(3) The tendency of (1) and (2) is the same in patients
with muscular dystrophy.

When gaze estimation is performed in a large space, we
know that the gaze estimation of 60 degrees in the left and
right directions is themost stable.Therefore, by arranging the
objects at ±60 degrees, 5 patterns can be input when only eye
movement is used, and 7 patterns can be input when using
both face and eye movements for healthy subjects. In the case
of the muscular dystrophy patient this time, it is possible to
input 3 patterns only by movement of eyes and 3 patterns
when considering the movement of the face.

We found that it is difficult to estimate the gaze more
accurately with only eye movement. We thought that moving
the face supplemented the missing movements of the eyes,
and somoving both the face and the eyes improves the success
rate.

In addition, because looking at objects by using only
the eyes leads to overuse of the eyes, we think that using
both face and eye movements is desirable for patients who
can move their faces in a natural state. Also, as can be seen
from the results, the individual differences were large in
past experiments [22]. However, because the average error
could be reduced to 10 degrees or less without considering
individual differences, this system could possibly unify gaze
estimations in the future. Furthermore, it was found that good
discrimination accuracy can be obtained in this muscular
dystrophy patient if it is ±60 degrees. By setting the viewing
target at a location of 60 degrees, it becomes possible to
develop an application that allows the patient himself/herself
to turn on and off the switch by looking at the place by the
patient.

For these reasons, development of a system that can be
easily used without making precise settings for each indi-
vidual patient is a future subject. Then, the gaze estimation
system of this study could be used as a communication tool
for patients with brain disease.
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movements: the MEMREC project, computers helping people
with special needs,” in Proceedings of the Computers Helping
People with Special Needs: 9th International Conference (ICCHP
’04), vol. 3118 of Lecture Notes in Computer Science, pp. 770–773,
2004.

[12] H. Tamura, M. Yan, M. Miyashita, T. Manabe, K. Tanno,
and Y. Fuse, “Development of mouse cursor control system
using DC and AC elements of electrooculogram signals and its
applications,” International Journal of Intelligent Computing in
Medical Sciences and Image Processing, vol. 5, no. 1, pp. 3–15,
2013.

[13] M. Yan, H. Tamura, and K. Tanno, “A study on gaze estimation
system using cross-channels electrooculogram signals,” in Pro-
ceedings of the IMECS 2014, pp. 112–116, Hong Kong, 2014.

[14] H. Tamura, M. Yan, K. Sakurai, and K. Tanno, “EOG-sEMG
human interface for communication,” Computational Intelli-
gence and Neuroscience, vol. 2016, Article ID 7354082, 10 pages,
2016.

[15] S. Venkataramanan, P. Prabhat, S. R. Choudhury, H. B. Nemade,
and J. S. Sahambi, “Biomedical instrumentation based on
Electrooculogram (EOG) signal processing and application to
a hospital alarm system,” in Proceedings of the Proceedings of
International Conference on Intelligent Sensing and Information
Processing (ICISIP ’05), pp. 535–540, IEEE, Chennai, India,
January 2005.

[16] J. Gips, C. P. Olivieri, and J. J. Tecce, “Direct control of
the computer through electrodes placed around the eyes,” in

Human-Computer Interaction: Applications and Case Studies,
M. J. Smith and G. Salvendy, Eds., pp. 630–635, Elsevier,
Amsterdam, 1993.

[17] J. Gips and C. P. Olivieri, “EagleEyes: an eye control system for
persons with disabilities,” in Proceedings of the Eleventh Inter-
national Conference on Technology and Persons with Disabilities
(CSUN ’96), 1996.

[18] S. Venkataramanan, H. B. Nemade, and J. S. Sahambi, “Design
and development of a novel EOG bio-potential amplifier,”
International Journal of Bioelectromagnetism, vol. 7, no. 1, pp.
271–274, 2005.

[19] T. Yagi, Y. Kuno, K. Koga, and T. Mukai, “Drifting and blinking
compensation in electro-oculography (EOG) eye-gaze inter-
face,” in Proceedings of the 2006 IEEE International Conference
on Systems, Man and Cybernetics, pp. 3222–3226, October 2006.

[20] A. B. Usakli, S. Gurkan, F. Aloise, G. Vecchiato, and F. Babiloni,
“On the use of electrooculogram for efficient human computer
interfaces,” Computational Intelligence and Neuroscience, vol.
2010, Article ID 135629, 5 pages, 2010.

[21] Z. Lv, X.-P. Wu, andM. Li, “Development of a human computer
Interface system using EOG,” Health, vol. 1, no. 1, pp. 39–46,
2009.

[22] K. Sakurai, M. Yan, H. Tamura, and K. Tanno, “A study on
gaze estimation system using the direction of eyes and face,” in
Proceedings of the 2016 World Automation Congress (WAC ’16),
p. 236, August 2016.

[23] R. Jafari and D. Ziou, “Eye-gaze estimation under various head
positions and iris states,” Expert Systems with Applications, vol.
42, no. 1, pp. 510–518, 2015.

[24] A. Saeed, A. Al-Hamadi, and A. Ghoneim, “Head pose estima-
tion on top of haar-like face detection: a study using the kinect
sensor,” Sensors, vol. 15, no. 9, pp. 20945–20966, 2015.

[25] Y. Li, D. S. Monaghan, and N. E. O’Connor, “Real-time gaze
estimation using a kinect and a HD webcam,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 8325, no. 1,
pp. 506–517, 2014.

[26] S. Jin, K. Lee, and K. Hong, “An implementation of multimodal
gaze direction recognition system using image and EOG,”
in Proceedings of the 6th International Conference on Digital
Content, Multimedia Technology and its Applications (IDC ’10),
pp. 229–235, 2010.

[27] T. Hamada, “A method for calibrating the gain of the electro-
oculogram (EOG) using the optical properties of the eye,”
Journal of Neuroscience Methods, vol. 10, no. 4, pp. 259–265,
1984.

[28] D. V. Finocchio, K. L. Preston, and A. F. Fuchs, “Obtaining a
quantitative measure of eye movements in human infants: a
method of calibrating the electrooculogram,” Vision Research,
vol. 30, no. 8, pp. 1119–1128, 1990.

[29] A. L. Yarbus, Eye Movements and Vision, A Diuision of Plenum
Publishing Corporation, New York, NY, USA, 1967.

[30] E. Kowler, “Eye movements: the past 25 years,” Vision Research,
vol. 51, no. 13, pp. 1457–1483, 2011.

[31] J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference
system,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 23, no. 3, pp. 665–685, 1993.


