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Background
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, also known as DTI) [1] is a 
magnetic resonance imaging technique. DTI measures the diffusion properties of water 
molecules in tissue and creates images showing physiological information such as neural 
bundles, which cannot be obtained by other imaging methods. DTI can be used to infer 
some microscopic features and organizational information regarding the structural anat-
omy of tissues, especially the orientation of fibrous tissues, which has been used exten-
sively to study white matter fiber tracts [2–4]. DTI plays an important role in the in vivo 
study of anatomical structures and functional connectivity throughout the brain.
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Background:  Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, also known 
as DTI) measures the diffusion properties of water molecules in tissues and to date is 
one of the main techniques that can effectively study the microstructures of the brain 
in vivo. Presently, evaluation of DTI registration techniques is still in an initial stage of 
development.

Methods and results:  In this paper, six well-known open source DTI registration 
algorithms: Elastic, Rigid, Affine, DTI-TK, FSL and SyN were applied on 11 subjects from 
an open-access dataset, among which one was randomly chosen as the template. 
Eight different fiber bundles of 10 subjects and the template were obtained by draw-
ing regions of interest (ROIs) around various structures using deterministic streamline 
tractography. The performances of the registration algorithms were evaluated by 
computing the distances and intersection angles between fiber tracts, as well as the 
fractional anisotropy (FA) profiles along the fiber tracts. Also, the mean squared error 
(MSE) and the residual MSE (RMSE) of fibers originating from the registered subjects 
and the template were calculated to assess the registration algorithm. Twenty-seven 
different fiber bundles of the 10 subjects and template were obtained by drawing ROIs 
around various structures using probabilistic tractography. The performances of regis-
tration algorithms on this second tractography method were evaluated by computing 
the spatial correlation similarity of the fibers between subjects as well as between each 
subject and the template.

Conclusion:  All experimental results indicated that DTI-TK performed the best under 
the study conditions, and SyN ranked just behind it.
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Many DTI registration algorithms have been proposed. With respect to data process-
ing, registration methods can be divided into three categories: scalar image-based regis-
tration algorithms, tensor image-based registration algorithms, and fiber bundle-based 
registration algorithms. Scalar image-based registration algorithms use scalar images 
derived from DTI images, which are mainly fractional anisotropy (FA) images, to per-
form registrations [2]. Voxels in tensor images are displaced according to the displace-
ment field obtained with scalar registration and then tensor reorientation is performed. 
Different from scalar image-based registration algorithms, tensor image-based registra-
tion algorithms use the tensor instead of the scalar to perform registrations [5]. Mean-
while, fiber bundle-based registrations use fiber bundles tracked from the DTI images to 
perform registration directly [6, 7], but it spends more time on fiber tractography from 
DTI images according to regions of interest (ROIs).

Currently, there is no standard method for evaluating the performance of DTI regis-
trations. As such, it is necessary to develop evaluation strategies on the topic. However, 
development of DTI registration evaluation strategies is challenging because each DTI 
registration algorithm has advantages and disadvantages for different ROIs, and a single 
evaluation strategy cannot be broadly applied to all algorithms.

Previous studies have utilized evaluation criteria based on regional matching. In 2000, 
Basser et al. [3] proposed the use of two diffusion tensor eigenvalues-eigenvectors over-
lapping rates (Overlap of Eigenvalue–eigenvectors Pairs). In 2002, Jones et  al. [4] pro-
posed the use of a tensor-normalized standard deviation (Normalized Standard Deviation 
of Tensors) and Dyadic Coherence to assess matching performance. Both evaluation cri-
teria take advantage of the direction of the diffusion anisotropy value and principal eigen-
vector. In 2006, Zhang et al. [5] used the tensor Euclidean distance (Euclidean Distance) 
and the tensor deviation Euclidean distance (Euclidean Distance of the Deviatoric Ten-
sor) to evaluate the spatial normalization accuracy. In 2007, Van Hecke et al. [8] proposed 
using the angles of diffusion tensor eigenvalues-eigenvectors as evaluation criteria. How-
ever, the most direct way to evaluate the performance of registration algorithms is with a 
similarity metric of tensor. In 2007, Klein [9, 10] proposed the use of voxels and surface 
overlaying rate (Volume and Surface Overlap), and registration accuracy was assessed by 
computing the overlap of segmented edges. Precision and convergence properties were 
studied by comparing deformation fields. In 2011, Wang et al. [2] proposed a partial area 
matching quality criterion (Regional Matching Quality Criterion). In 2012, Adluru et al. 
[11] used the Euclidean distance, Euclidean norm, cross-correlation, and eigenvalue-
eigenvector pair of overlapping rate assessment criteria. In 2013, de Groot et al. [12] used 
the spatial similarity metric as the assessment criteria.

Currently, other scholars are studying evaluation criteria based on fiber bundles. 
However, this technique requires that the fiber information be extracted prior to eval-
uation. Tract extraction techniques are mostly semi-automatic, although small or thin 
fiber tracts are difficult to track and extract, so application of this technique is relatively 
limited. In 2006, Zhang et al. [5] calculated the average distance of points in two corre-
sponding tracts as an evaluation parameter. In 2007, Mayer et al. [6] calculated the mean 
squared error (MSE) between model and target fibers before and after image registration 
to validate their registration algorithm. In 2010, Shadmi et al. [7] calculated the MSE and 
the residual MSE (RMSE) between the warped model and the target fiber sets to assess 
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their registration algorithm. In 2011, Wang et al. [2] proposed a fiber property profile 
approach to perform evaluation. In 2013, de Groot et al. [12] proposed the fiber-based 
spatial similarity metric to assess the registration algorithms.

However, there are some problems with the existing evaluation techniques. In 2009, 
Klein et  al. [13] evaluated performances of registrations for anatomic regions and the 
whole voxels of brain using the overlap rates on voxels and surfaces, the similarity of 
voxels and measuring distances. They evaluated 14 registration algorithms, but com-
pared the scalar image-based registration algorithms without tensor-based registration 
algorithms. In 2011, Wang et  al. [2] evaluated eight registration algorithms, including 
registration algorithms based on scalar images and tensor images. However, the Wang 
et al. study only used two evaluation criteria on infantile data which had lower FA value 
and signal-to-noise ratio compared to adult datasets. Since results differ between regis-
tration of infantile and adult images using the same technique, adult data was selected 
for this study and is easily accessed in several open sources. In 2013, de Groot et al. [12] 
proposed use of the spatial similarity metric based on the fibers accessed through the 
registration algorithms, however only two algorithms were compared.

The performance metrics based on similarity of tractography are independent of any 
particular similarity matrix derived from scalar or higher order images, and are adopted 
in most registration approaches. It should also be noted that optimal white matter tract 
alignment is most closely linked to the eventual registration goal of obtaining anatomical 
correspondence in white matter [8]. In this study, the data from healthy individuals was 
used to evaluate the DTI registration algorithm based on white matter fiber tracts.

Six well-known open source DTI registration algorithms (Elastic, Rigid, Affine, DTI-
TK, FSL and SyN) were investigated. The performance of each registration algorithm 
was evaluated by computing the distances and intersection angles between fiber tracts, 
as well as with the FA profiles along the fiber tracts using deterministic streamline trac-
tography. Also, the mean squared error (MSE) and the residual MSE (RMSE) of fibers 
originating from registered subjects and the template were calculated to assess the regis-
tration algorithm. The performance of each registration algorithm was also evaluated by 
computing the spatial correlation similarity of the fibers between the subjects as well as 
between each subject and the template using probabilistic tractography.

Methods
Materials

Diffusion MRI Data: The open-access IXI dataset from the Hammersmith Hospital of 
London was used (http://www.brain-development.org). A 3 Tesla Philips MRI scan-
ner was used to scan the healthy subjects. The spatial resolution of the images was 
1.7409 × 1.7355 × 1.9806 mm, resulting in volume data for the head of 128 × 128 × 64 
voxels. Diffusion-weighted images were acquired along 15 unique gradient directions 
with b = 1000 s/mm2 (repetition time = 11,894.44 ms; echo time = 51 ms). Additional 
imaging parameters can be found at the image library website.

Subject and template

In this paper, 10 subjects were chosen at random from the dataset (mean 
age = 51.549 years, min age = 30.89 years, max age = 74.01 years, including: 5 males, 

http://www.brain-development.org
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mean age = 51.586 years, min age = 30.89 years, max age = 63.68 years; and 5 females, 
mean age = 51.512 years, min age = 33.76 years, max = 74.01 years). For the template, 
although DTI-TK (http://www.nitrc.org/projects/dtitk/) could produce a good template 
with sufficient DTI information to perform tractography, using DTI-TK would bias the 
analysis since it is compared here. So another subject with quality inspection was chosen 
from the same dataset at random to serve as the template (male, age = 37.83 years).

Pre‑processing

The Brain Extraction Tool (BET) within the FMRIB software Library (FSL) was used to 
extract brain tissue for each subject and template. The mask used for skull stripping was 
generated from each subject or template individually and checked manually. Before ten-
sor estimation, diffusion-weighted images (DWIs) from 15 diffusion gradient directions 
were eddy-current corrected with eddy tool in FSL, which is a tool to correct eddy cur-
rent-induced distortions and subject movements in diffusion data [14].

Registration methods

In accordance with the work of Wang et  al. [2], we chose six relatively mature open 
source registration algorithms to evaluate. All of the subjects were normalized at first. 
The six DTI registration algorithms investigated in this paper are described in detail 
below.

In 2000, Alexander et  al. [15] applied Elastic Registration Algorithm (referred to as 
Elastic in this paper) to diffusion tensor image. It can be performed with Advanced 
Normalization Tools (ANTs) (http://www.nitrc.org/projects/ants). In 1999, Studholme 
et al. [16] proposed Rigid body registration algorithm (referred to as Rigid in this paper). 
It also can be performed with ANTs, and it is one of the simplest algorithms of image 
registration.

In 2005, Leemans et  al. [17] rendered an algorithm based on multi-channel affine 
registration, and the mutual information was used for similarity criteria (referred to as 
Affine in this paper). It is often performed before most deformation registrations and 
available through ANTs.

In 2006, Zhang et  al. [5] developed a diffeomorphic deformable tensor registration 
technique (termed DTI-TK) (http://www.nitrc.org/projects/dtitk/). It is the only open 
source and nonlinear tensor-based registration algorithm (referred to as DTI-TK in this 
paper).

In 2008, Andersson et  al. [18] developed a B-spline registration algorithm based on 
the sum-of-squared differences performed by FSL (http://www.nitrc.org/projects/fsl) 
(referred to as FSL in this paper).

In 2008, Avants et al. [19] developed a symmetric image normalization method based 
on mutual correlation (referred to as SyN in this paper) again with ANTs.

The registration algorithms discussed above were mainly applied using FA scalars 
except DTI-TK. For FA-based registrations, the tensor reorientation was completed 
through the preservation of principal directions (PPD) [8]. The results of each registra-
tion algorithm are shown in Fig. 1.

http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/ants
http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/fsl
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Evaluation methods

In this paper, deterministic streamline tractography [20, 21, 22] and probabilistic trac-
tography [12, 23, 24, 25] were used to track fibers separately. Deterministic stream-
line tractography is used to evaluate the DTI registration based on the distances and 
intersection angles between fiber tracts as well as the fiber property profiles, MSE, and 
RMSE. Probabilistic tractography is used to evaluate DTI registration based on the spa-
tial similarity metric.

To perform deterministic streamline tractography with FACT (Fiber Assessment by 
Continuous Tracking) [21, 22], eight different ROIs [2, 26–29] were manually drawn on 
FA maps according to the work of Zhang et  al. [5]. The corresponding fiber tracts of 
interest to this study are: the knee of the Corpus Callosum (Genu of the corpus callo-
sum, namely Genu), the splenium of the Corpus Callosum (the Splenium of the corpus 
callosum, namely Splenium), the left and right Thalamic radiations (Anterior Thalamic 
Radiations, namely ATR), the left and right fronto-occipital fasciculus (Inferior Fronto-
occipital Fasciculi, namely IFO) and the left and right cortical/corticospinal tracts of 
the medulla oblongata (Corticospinal/Corticobulbar tracts, namely CST). In evaluation 
methods based on distance between fiber tracts, as well as MSE and RMSE of fibers, 
the fibers of each subject and the template are tracked individually with the same ROIs 
drawn on the template FA image [2, 9, 11, 26]. In evaluation methods based on the FA 
profiles along the fiber tracts and intersection angles between fiber bundles, fibers of the 
template are tracked first, and then fibers of each subject were obtained by directly map-
ping the template fibers onto the same positions [2]. ROIs on the template FA image are 
shown in Fig. 2 and the fibers of eight ROIs on the template are shown in Fig. 3. 

Probabilistic tractography was performed with PROBTRACKX [10, 24, 25] available 
in FSL. The masks used were based on the protocols described by Mori [26, 27], Stieltjes 

Fig. 1  Template, a subject and the results of 6 different registration algorithms
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et al. [28], and Wakana et al. [30, 31], and 27 different ROIs of DTI were used to track 
fiber bundles. The various ROIs are shown in Table  1 and the results of probabilistic 
tractography are shown in Fig. 4. All of the tracking parameters were set to the default 
values available in FSL [10].

Evaluation method based on distance between fiber tracts

In most cases, the objective function of registration is the registration for anatomical 
structures. So performances of registration assessment also should be the measurement 
of anatomical structures.

Fig. 2  ROIs on template’s FA image
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In 2006, distances between fiber tracts were proposed by Zhang et al. [5] to evaluate 
registration performance:

(1)f =
1

F+ G
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min
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d
�

Fi,Gj
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�


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Fig. 3  Fibers of the template

Table 1  The seeds used in this paper, tracts with left/right homologues are listed [23, 26, 
29, 24, 31]

‘+’ shows that the ROI is different across the left and the right

ROI Left/right

Acoustic radiation (Ar) +
Anterior thalamic radiation (Atr) +
Superior thalamic radiation (Str) +
Posterior thalamic radiation (Ptr) +
Superior longitudinal fasciculus (Slf ) +
Inferior longitudinal fasciculus (Ilf ) +
Inferior fronto-occipital fasciculus (Ifo) +
Uncinate fasciculus (Unc) +
Cingulate gyrus part of cingulum (Cgc) +
Parahippocampal part of cingulum (Cgh) +
Forceps minor (Fmi) −
Forceps major (Fma) −
Middle cerebellar peduncle (Mcp) −
Medial lemniscus (Ml) +
Corticospinal tract (Cst) +
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where f is the Hausdorff distance, d is a pairwise distance between two fibers, F and G 
are two fiber bundles, min

Gj∈G
d
(

Fi,Gj

)

 is the distance between the fiber Fi and the fiber in 

G that is closest to Fi, and similarly, min
Fi∈G

d
(

Fi,Gj

)

 is the distance between the fiber Gj and 

the fiber in F that is closest to Gj. Equation (1) is symmetric with respect to the two fibers 
involved, and when two identical fiber bundles are perfectly aligned, it evaluates to zero. 
The lower the f value is, the better the registration performance is.

Evaluation method based on the MSE and RMSE of fibers

In 2007, Mayer et al. [6] calculated the MSE between model and target fibers before and 
after registration to verify the validity of their registration algorithm. In 2010, Shadmi 
et al. [7] calculated the MSE and the RMSE between a warped model and a target fiber 
sets to assess the registration algorithm.

Fig. 4  Results of probabilistic tractography on the template
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In this study, subjecti (i = 1, 2,…,n) represent registered fibers using different registra-
tion algorithms, and template is the corresponding fiber of the template. Table 2 shows 
the evaluation results of registration based on distances between fibers. Table 3 shows 
the MSE between each subject and template pair for each ROI. Table 4 shows the RMSE 
between each subject and template for each ROI. 

Evaluation method based on the FA profiles along the fiber tracts

In 2011, Wang et  al. [2] proposed a fiber property profile-based metric using norma-
tive correlation. Along each fiber bundle, FA profiles were calculated. For each registered 
subject, each fiber was recaptured with the same location as the fiber of the template. 
With the defined fiber bundles, FA curves of each fiber bundle were redefined, and then 
the corresponding mean FA curves were derived from the fiber bundles of the same ROI 
for all subjects.

Evaluation method based on intersection angles between fiber bundles

According to Wang’s paper [2], the fiber tracts from a template can be mapped to each 
registered subject to obtain the corresponding tracts with consistent positioning. That 
is, if a better registration is obtained, improved consistency in the anatomical structures 
will subsequently be achieved. Meanwhile, a better registration is indicative of a smaller 

(2)MSE =
1

n

n
∑

i=1

(

subjecti − template
)2

(3)RMSE =
localMSE

globalMSE

Table 2  Evaluation results of registration based on distances between fibers

Genu Splenium L-ATR R-ATR L-CST R-CST L-IFO R-IFO Mean

Elastic 0.5202 0.5509 0.4892 0.5264 0.4953 0.5005 0.4697 0.4533 0.5007

Rigid 0.5275 0.5097 0.4941 0.5693 0.5037 0.4960 0.4822 0.4704 0.5066

Affine 0.5346 0.5244 0.4984 0.5392 0.5000 0.4912 0.4664 0.4773 0.5039

DTI-TK 0.4876 0.4792 0.4872 0.4783 0.4736 0.4904 0.4549 0.4098 0.4701

FSL 0.4971 0.4860 0.4914 0.5023 0.4920 0.4656 0.4427 0.4053 0.4728

SyN 0.4835 0.4958 0.4788 0.5126 0.4748 0.4716 0.4548 0.4153 0.4734

Table 3  Evaluation results of registrations based on MSE of fibers

Genu Splenium L-ATR R-ATR L-CST R-CST L-IFO R-IFO Mean

Elastic 0.0460 0.0505 0.0073 0.0099 0.0188 0.0307 0.0138 0.0088 0.0232

Rigid 0.0362 0.0844 0.0231 0.0174 0.0492 0.0659 0.0193 0.0161 0.0390

Affine 0.0805 0.0816 0.0119 0.0154 0.0264 0.0432 0.0230 0.0122 0.0368

DTI-TK 0.0033 0.0097 0.0033 0.0034 0.0056 0.0069 0.0054 0.0036 0.0052

FSL 0.0460 0.0517 0.0096 0.0127 0.0191 0.0285 0.0117 0.0073 0.0233

SyN 0.0046 0.0140 0.0044 0.0049 0.0061 0.0080 0.0059 0.0058 0.0067
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intersection angle between the tracts and a subsequent increase in the corresponding 
cosine value.

Here, Fi and Gj are fibers of the template and one subject respectively, F and G are two 
fiber bundles, and the value of cosα is between 0 and 1. The higher the value of cosα is, 
the better the performance is. For each ROI, the final result represents an average value 
of cosα across the fibers between all subjects and template.

Evaluation method based on spatial similarity between fiber tracts

The framework developed by de Groot et al. [12] was used to evaluate scalar or higher-
order similarity matrices based on white matter tractography. With this method, the 
fiber tracts are obtained based on probabilistic tractography. A similarity matrix was 
used to assess the spatial correlation similarity matrix:

Equation  (5) provides a measure of the voxel-wise similarity of the tracts density 
images (J and K) for two subjects. It computes over all voxels (i), and is bound on a 0–1 
scale. A similarity matrix is calculated on the tract density images. A higher spatial cor-
relation similarity indicates a better registration.

Results
Evaluation method based on distance between fiber tracts

Table 2 shows the average fiber distances between each subject and template pair of fib-
ers where Genu, Splenium, L-ATR (left ATR), R-ATR (right ATR), L-CST (left CST), 
R-CST (right CST), L-IFO (left IFO), R-IFO (right IFO) are the eight fibers tracked by 
streamline fiber tracking algorithm of Deterministic Fiber Tractography for the template 
and subjects. “Mean” is the average value of each of the eight ROIs across all registration 
algorithms. For each ROI, the final result is the average distance of fibers between all 
subjects and template.

The average distances of each registration algorithm are presented in Table 2 DTI-TK 
had the lowest value and the SyN algorithm had the second lowest value. These results 
indicate that the DTI-TK registration algorithm outperforms all other tested registration 
methods, and the SyN presented as the next most effective method. However, the indi-
vidual performance of registration algorithm across the various ROIs differs. For exam-
ple, for the left ATR, the performance of SyN was slightly improved over DTI-TK.

Evaluation method based on the MSE and RMSE of fibers

From Tables 3 and 4, smaller values of MSE and RMSE indicate a better registration as it 
shows the difference levels between each subject after registration and the template. As 

(4)cosα =
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values for DTI-TK are the lowest, the DTI-TK registration algorithm was shown to be 
the most effective in this study with the SyN method ranking second.

From Tables 3 and 4, smaller values of MSE and RMSE indicate a better registration as 
it shows the difference levels between each subject after registration and the template. 
As values for DTI-TK are the lowest, the DTI-TK registration algorithm was shown to 
be the most effective in this study with the SyN method ranking second.

Evaluation method based on the FA profiles along the fiber tracts

The FA profiles along the fiber tracts are shown in Fig. 5 through Fig. 12.
In these figures, the x-coordinate represents the arc length of the fiber bundles, and 

the y-coordinate is the value of FA. From the Figs. 5, 6, 7, 8, 9, 10, 11, 12, the FA profile 
characteristic curves of each subject obtained with DTI-TK are closest to the template 
(black color) and the mean of subjects (red color). The SyN and FSL algorithms ranked 

Table 4  Evaluation results of registrations based on RMSE of fibers

Genu Splenium L-ATR R-ATR L-CST R-CST L-IFO R-IFO Mean

Elastic 0.1683 0.2049 0.0830 0.0907 0.1257 0.1597 0.1124 0.0929 0.1297

Rigid 0.1739 0.2601 0.1393 0.1214 0.1967 0.2332 0.1297 0.1261 0.1726

Affine 0.2284 0.2584 0.1093 0.1112 0.1491 0.1910 0.1425 0.1087 0.1617

DTI-TK 0.0569 0.0963 0.0546 0.0546 0.0725 0.0800 0.0692 0.0597 0.0680

FSL 0.1645 0.2049 0.0876 0.0891 0.1266 0.1569 0.1149 0.0905 0.1294

SyN 0.0676 0.1173 0.0650 0.0678 0.0777 0.0872 0.0764 0.0755 0.0793

Fig. 5  FA profiles of the Genu for the six registration methods
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Fig. 6  FA profiles of the Splenium for the six registration methods

Fig. 7  FA profiles of the left ATR for the six registration methods
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Fig. 8  FA profiles of the right ATR for the six registration methods

Fig. 9  FA profiles of the left IFO for the six registration methods
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Fig. 10  FA profiles of the right IFO for the six registration methods

Fig. 11  FA profiles of the left CST for the six registration methods
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behind DTI-TK. However, as mentioned, the registration accuracy differs between the 
various ROIs and algorithms. For example, for the Genu structure, the Rigid algorithm 
performed better than the Affine, while for the Splenium structure, the Affine algorithm 
outperformed the Rigid algorithm.

Correlation coefficients between the FA profiles for each registered dataset and the 
template for all of the registration methods are shown in Table 5 for all subjects. Based 
on the correlation coefficients, no one algorithm outperformed the rest for all of the 
tracts. DTI-TK demonstrated the best results across eight ROIs, and performed well 
overall. However, it is difficult to identify one algorithm as the best based on the norma-
tive tract profile correlation evaluation across all fiber tracts.

Additionally, based on the correlation coefficients, we considered the correlation val-
ues of 0.85 [2] as the threshold when fiber tracts were mapped to the template. Correla-
tion coefficients below the threshold were marked as a failure. Table 6 shows the number 
of failures when eight DTI fiber bundles were mapped to the template for the ten sub-
jects. The DTI-TK algorithm resulted in the minimum number of failures and can be 
considered the best algorithm based on this criterion.

Evaluation method based on intersection angles between fiber bundles

In Table  7, average cosine values of the intersection angles between each subject and 
template tracts are shown.

From the average cosα values of six registration algorithms in Table 7 the value of cosα 
in DTI-TK is the largest, which means the angle is the smallest. The cosine value of SyN 

Fig. 12  FA profiles of the right CST for the six registration methods
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is larger than the other registration algorithms except DTI-TK. In conclusion, the DTI-
TK registration algorithm performed the best, and the SyN ranked second as observed 
with other evaluation methods.

Table 5  Correlation coefficients between  FA profiles of  various fiber tracts on  registered 
subjects and the template for the six registration algorithms

Elastic Rigid Affine DTI-TK FSL SyN Best

Genu

MEAN 0.4317 0.3890 0.4101 0.4331 0.4337 0.4572 DTI-TK

STDEV 0.0974 0.0963 0.0794 0.1324 0.1001 0.1220

p value 0.8721 0.8628 0.7364 0.9854 0.9464 0.9784

Rank 4 5 6 1 3 2

Splenium

MEAN 0.4524 0.4239 0.4312 0.4554 0.4624 0.4935 DTI-TK

STDEV 0.1285 0.1118 0.1140 0.1527 0.1260 0.1393

p value 0.8773 0.7255 0.7794 0.9726 0.9137 0.9488

Rank 4 6 5 1 3 2

Left ATR

MEAN 0.3945 0.3695 0.3876 0.3818 0.3966 0.4056 DTI-TK

STDEV 0.0602 0.0552 0.0559 0.0663 0.0595 0.0654

p value 0.7731 0.5686 0.6687 0.8882 0.8170 0.8785

Rank 4 6 5 1 3 2

Right ATR

MEAN 0.3876 0.3679 0.3793 0.3840 0.3930 0.4068 DTI-TK

STDEV 0.0666 0.0609 0.0586 0.0783 0.0681 0.0806

p value 0.7928 0.6317 0.6886 0.9120 0.8535 0.9091

Rank 4 6 5 1 3 2

Left CST

MEAN 0.4374 0.4071 0.4257 0.4282 0.4435 0.4613 DTI-TK

STDEV 0.1056 0.0965 0.1016 0.1070 0.0982 0.0968

p value 0.9002 0.8189 0.8700 0.9507 0.9259 0.9376

Rank 4 6 5 1 3 2

Right CST

MEAN 0.4634 0.4256 0.4490 0.4633 0.4723 0.4956 DTI-TK

STDEV 0.1105 0.1113 0.1088 0.1154 0.1067 0.1072

p value 0.8509 0.8121 0.8249 0.8249 0.9095 0.9239

Rank 4 6 5 1 3 2

Left IFO

MEAN 0.3890 0.3629 0.3691 0.3843 0.3918 0.4145 DTI-TK

STDEV 0.0609 0.0618 0.0547 0.0638 0.0580 0.0628

p value 0.6879 0.6470 0.5858 0.8446 0.7382 0.8117

Rank 4 5 6 1 3 2

Right IFO

MEAN 0.4110 0.3695 0.3988 0.3958 0.4148 0.4302 DTI-TK

STDEV 0.0549 0.0563 0.0528 0.0687 0.0536 0.0566

p value 0.7669 0.6525 0.6994 0.9072 0.7918 0.8124

Rank 4 6 5 1 3 2
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Evaluation method based on spatial similarity between fiber tracts

Figure  13 shows the spatial similarity metric of fibers between each subject and sub-
ject pairs, along with the similarity metric of fibers between each subject and template 
pairs. From Fig. 13, DTI-TK had the largest average similarity across the six registration 

Table 6  Number of failures in mapping the subject fiber tracts to the template with a cor-
relation value greater than 0.85 for the six registration algorithms

Elastic Rigid Affine DTI-TK FSL SyN

Genu 2 3 3 0 1 0

Splenium 2 4 5 0 1 0

Left ATR 9 10 10 2 7 2

Right ATR 9 9 9 0 4 1

Left CST 1 5 2 0 1 1

Right CST 1 4 2 0 1 0

Left IFO 9 8 10 4 9 5

Right IFO 7 9 8 2 5 5

Table 7  Average cosine values of  intersection angles between each subject and the tem-
plate tracts

Genu Splenium L-ATR R-ATR L-CST R-CST L-IFO R-IFO Mean

Ealstic 0.8601 0.7746 0.8330 0.8428 0.8349 0.8134 0.8484 0.8423 0.8312

Rigid 0.7746 0.7040 0.7889 0.7908 0.7793 0.7606 0.8078 0.7657 0.7715

Affine 0.8276 0.7434 0.8090 0.8209 0.8097 0.7846 0.8178 0.8163 0.8037

DTI-TK 0.9164 0.8491 0.8849 0.8923 0.8956 0.8762 0.9132 0.9010 0.8911

FSL 0.8840 0.8008 0.8753 0.8785 0.8764 0.8152 0.8966 0.8848 0.8220

SyN 0.8850 0.8062 0.8607 0.8576 0.8509 0.8376 0.8786 0.8693 0.8557

Fig. 13  The average similarity metric of six different registration algorithms
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algorithms, and the average similarity from the SyN algorithm is larger than remaining 
registration algorithms. Similar to previous evaluations, the DTI-TK registration algo-
rithm performed the best, and the SyN algorithm ranked second.

Discussion
In this paper, we used deterministic tractography for fiber tracking and evaluated six 
registration methods with the distance between fibers of subjects and the template, the 
MSE and RMSE, the average FA profiles, and angles between fibers of subjects and the 
template. From Table  2, the average distance of DTI-TK was smallest, which implied 
DTI-TK is the best, but it was not the smallest across all ROIs. For example, in the 
Genu ROI, the distance determined with SyN was smaller than that with DTI-TK. From 
Tables 3 and 4, results of MSE and RMSE show that the average values for DTI-TK were 
the smallest. However across the various ROIs, no single method performed the best for 
all ROIs. From Figs. 5, 6, 7, 8, 9, 10, 11, 12 and Tables 5 and 6, the six registration algo-
rithms were easily ranked and the results are basically the same. Only the results for the 
Affine and Rigid algorithms differed between a few ROIs. The p values in Table 5 show 
that correlation coefficients obtained with DTI-TK are the highest. Further, in Table 6, 
DTI-TK had the minimum number of failures using the selected threshold and can be 
considered as the best algorithm based on that criterion. According to the average FA 
profile evaluation, DTI-TK seemed to show the best registration performance. Based on 
the angles between fibers of subjects and the template (Table 7) evaluation, similar to the 
distances between fibers of subjects and the template evaluation, DTI-TK again showed 
the best registration performance because the value of cosα in DTI-TK is the largest, 
which means the intersection angle is the smallest. However, the registration algorithms 
did not always perform the best for all ROIs in a single subject, and may be due to the 
fact that since subjects and the template were chosen at random for this study, the dif-
ferences in registration performance across the six registration algorithms as observed 
on full tract evaluation. The performance of DTI-TK in correctly mapping the eight fiber 
tracts for all subjects can be attributed to the fact that the algorithm exploits the whole 
tensor orientation information for the registration compared to the scalar FA values.

We also used probabilistic tractography for fiber tracking and evaluated the six reg-
istration methods with a spatial correlation similarity metric. Spatial correlation as a 
similarity measurement provides a precise and reproducible evaluation of registration 
quality when using the appropriate framework [12] which is based on multiple tracts 
identified with probabilistic tractography. From Fig. 13, the spatial similarity metric of 
fibers between subjects shows DTI-TK was the best. To avoid occasional bias observed 
with the comparison of different subjects, we also calculated the spatial similarity metric 
of fibers between each subject and the template, which again indicated that DTI-TK out-
performed the rest of the algorithms. It should be mentioned that the spatial similarity 
values were the average of all the ROIs across all subjects.

Registration performance measurements based on deterministic tractography of dif-
ferent ROIs are not always same as those based on probabilistic tractography. Again 
from Fig. 13, the spatial similarity metric calculated on pairs of subjects and individual 
subjects differed, similarly as in the calculation for pairs of subjects and template. As 
increasing the subjects would reduce the random error, future work would include a 
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larger study cohort, and a template based on all of the subjects. We would also like to 
expand the ROIs chosen for analysis.

At the moment, evaluation methods based on deterministic tractography are gradually 
maturing; however, methods based on probabilistic tractography are still in the primary 
stage of development [12]. When tracking the fibers, probabilistic tractography still 
requires much more calculation time than deterministic tractography [2, 5, 12]. Reduc-
tion of the tracking time in probabilistic tractography and development of new evalua-
tion methods based on probabilistic tractography are areas of ongoing research.

Conclusions
In this paper, six open source registration algorithms were applied with randomly cho-
sen subjects from IXI dataset and evaluated based on fiber tracts obtained through 
deterministic and probabilistic tractography. Results indicated that the DTI-TK and SyN 
registration algorithms outperformed the other registration algorithms overall. In con-
clusion, DTI-TK qualifies as the best registration algorithm, and SyN ranks just behind 
DTI-TK for the evaluation techniques studied. It should be noted that results from crite-
ria based on deterministic tractography are not the same as those based on probabilistic 
tractography. For example, the Affine registration algorithm is generally considered as 
the worst based on deterministic tractography while the Rigid registration algorithm is 
the worst based on probabilistic tractography.
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