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In this study, we attempted to establish a culture system for in vitro spermatogenesis from spermatogonial stem cells (SSCs) of Bama mini-pig. 
Dissociated testicular cells from 1-month-old pigs were co-cultured to mimic in vivo spermatogenesis. The testicular cells were seeded in 
minimum essential medium alpha (-MEM) supplemented with Knockout serum replacement (KSR). Three-dimensional colonies formed 
after 10 days of culture. The colonies showed positive staining for SSC-associated markers such as UCHL1, PLZF, THY1, OCT4, Dolichos 
biflorus agglutinin, and alkaline phosphatase. Induction of SSCs was performed in -MEM + KSR supplemented with retinoic acid, bone 
morphogenetic protein 4, activin A, follicle-stimulating hormone, or testosterone. The results showed that STRA8, DMC1, PRM1, and TNP1 
were upregulated significantly in the colonies after induction compared to that in testis from 1-month-old pigs, while expression levels of 
those genes were significantly low compared to those in 2-month-old testis. However, upregulation of ACROSIN was not significant. 
Replacement of -MEM and KSR with Iscove’s modified Dulbecco’s medium and fetal bovine serum did not upregulate expression of these 
genes significantly. These results indicate that SSCs of Bama mini-pig could undergo differentiation and develop to a post-meiotic stage in 
α-MEM supplemented with KSR and induction factors.

Keywords: mini pig, spermatogenesis, stem cell, testicular

Introduction

Cultivation of spermatogonial stem cells (SSCs) and induction 
of spermatogenesis in vitro is a potential strategy for the 
generation of transgenic animals and the treatment of male 
infertility. In addition, induction of SSCs in vitro provides a 
strategy for use when exploring the factors controlling SSC 
differentiation. The potential usage value has provoked a 
number of researchers to focus on in vitro generation of sperm 
from male germline stem cells.

Initially, it was reported that spermatocytes and spermatids 
were derived from an immortalized cell line derived between 
spermatogonia B cells and primary spermatocytes in cultures 
supplemented with stem cell factors [9]. Subsequent studies 
showed that rat germ cells could proliferate and complete 
meiosis in a three-dimensional (3D) culture system, while 
murine male germ cells underwent differentiation and formed 
spermatozoa in soft agar, and functional sperm was produced in 

neonatal mouse testis tissue cultured in vitro [1,18,20]. 
Recently, it was reported that haploid cells were generated from 
embryonic stem cell-derived germ cells with the presence of 
retinoic acid (RA), bone morphogenetic protein (BMP), activin 
A, follicle-stimulating hormone (FSH), and testosterone (T) 
[30]. Additionally, in vitro differentiation of human SSCs has 
also been attempted and haploid spermatids were derived from 
human SSCs [26]. However, in vitro spermatogenesis in 
domestic animals has been rarely reported. Previous study has 
shown that spermatids can be generated from bovine type A 
spermatogonia during long-term cultivation; however, markers 
related to meiosis were not detected [15]. A recent study 
reported that functional haploid cells were generated from male 
germ cells of goat [7]. At present, studies on in vitro 
spermatogenesis from pig SSCs are progressing slowly.

To date, the spermatogenesis mechanism has been 
incompletely described. A previous study demonstrated that RA 
was a key factor in the initiation of meiosis [5]. The addition of 
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FSH and T into culture medium can prevent male germ cells 
from undergoing apoptosis and can promote SSC differentiation 
[8, 22]. In addition, activin A was reported to have an important 
role in spermatogenesis [19], and a previous study reported that 
BMP4 was required for self-renewal of germ cells [14].

In the present study, testicular cells of Bama mini-pig were 
co-cultured in medium along with added growth factors and 
hormones in order to initiate spermatogenesis and explore the 
differentiation capability of testicular cells into late-stage male 
germ cells.

Materials and Methods

Preparation of testes
Study animals were handled in compliance with the Animal 

Care and Use Committee of the Germplasm Resource Center of 
Chinese Experimental Mini-pig and Animal Care and Use 
Committee of Guangxi University (approval No. 
GXU2016-015). Bama mini-pigs were obtained from the 
Animal Experiment Center of Guangxi University. The pigs 
were bred in an enclosed barn at 20oC and fed according to their 
requirements. To obtain testes, pig scrotum was cleaned with 
water, sterilized with 75% alcohol, and incised with a scalpel. 
To avoid microorganism contamination, the testes were then 
sterilized with 75% alcohol for 10 min and washed three times 
in phosphate buffered saline (PBS, pH 7.2). The testicular cells 
were evaluated for contamination with mycoplasma by using 
Hoechst 33342 staining; the results indicated mycoplasma-free 
cultures.

Histological analysis of testes
The 1-month-old (1-mo) and 2-month-old (2-mo) testis 

tissues were fixed in Bouin’s fixative for 12 h, rinsed in water 
for 2 h, dehydrated, embedded in paraffin, and then sectioned (4 
µm thick). The sections were stained with hematoxylin and 
eosin in sequence, dehydrated, mounted, and finally imaged.

Isolation and cultivation of testicular cells
The 1-mo testis was decapsulated and minced, suspended in 

minimum essential media alpha (-MEM; Life Technologies, 
USA) containing collagenase (1 mg/mL), hyaluronidase 
(1.5 mg/mL) and DNase I (5 g/mL), cultured for 40 min at 
37oC, and filtered sequentially through 70 µm and 40 µm cell 
strainers. Isolated cells were seeded in six kinds of medium as 
follows: -MEM containing 10% Knockout serum replacement 
(KSR, 10828028; Thermo Fisher Scientific, USA); -MEM 
containing 10% fetal bovine serum (FBS; HyClone Laboratories, 
USA); Dulbecco’s modified Eagle medium nutrient mixture 
F-12 (DMEM/F12, 11330032; Thermo Fisher Scientific) 
containing 10% KSR; DMEM/F12 containing 10% FBS; 
Iscove’s modified Dulbecco’s medium (IMDM, 12440-053; 
Life Technologies) containing 10% KSR; and IMDM containing 

10% FBS. The cells were cultured at 37oC in a 5% CO2 
atmosphere, and the medium was changed every 3 days.

In vitro differentiation of SSCs
To induce SSC differentiation, 1-mo testicular cells were 

seeded in two kinds of medium for comparison purposes. 
Medium 1: -MEM supplemented with 10% KSR, 3 ng/mL 
RA, 20 ng/mL BMP4 (R&D Systems, USA), 100 ng/mL activin 
A (R&D Systems), 200 ng/mL FSH (Sigma, USA) and 10 M 
T (Sigma). Medium 2: IMDM supplemented with 10% FBS, 
growth factors, or hormones, 3 ng/mL RA, 20 ng/mL BMP4 
(R&D Systems), 100 ng/mL activin A (R&D Systems), 200 
ng/mL FSH (Sigma) and 10 M T. As controls, the 1-mo and 
2-mo testis tissues and the testicular cells were cultured in 
-MEM + 10% KSR without growth factors or hormones. Cells 
were cultured at 37oC in 5% CO2.

Immunohistochemistry analysis
Immunohistochemical staining was performed for SSC 

characterization in testis tissues, which were fixed in Bouin’s 
fixative for 12 h, rinsed in water for 2 h, dehydrated, embedded 
in paraffin, and then sectioned. Tissue sections were dewaxed, 
rehydrated, boiled in 10 mM sodium citrate (pH 6.0) for 30 min, 
washed in PBS (pH 7.2) three times, cultured with 0.5% Triton 
X-100 for 5 min, blocked with 5% bovine serum albumin (BSA) 
in PBS for 30 min. Dual staining was performed as follow: 
sections were incubated with rhodamine-labeled Dolichos 
biflorus agglutinin (DBA) (1:100 dilution; Vector Laboratories, 
USA) and rabbit anti-human protein gene product 9.5 (UCHL1, 
1:200 dilution; AbD Serotec, UK) for 3 h, rinsed with PBS, and 
cultured in donkey anti-rabbit secondary antibody (1:500 
dilution; Invitrogen Molecular Probes, USA) for 15 min. 
Hoechst 33342 staining was performed to visualize the nuclei. 
Primary antibodies were replaced with 1% BSA in PBS as a 
negative control.

The testicular cell colonies were characterized with primary 
antibodies including rabbit anti-Oct4 (1:100 dilution; Abcam, 
USA), rabbit anti-human UCHL1 (1:200 dilution), rabbit 
anti-human PLZF (1:50 dilution; Santa Cruz Biotechnology, 
Germany), rabbit anti-rat THY1 (1:100 dilution; Abbiotec, 
USA), and rhodamine-labeled DBA (1:100 dilution). Briefly, 
cell colonies were fixed in 4% paraformaldehyde, rinsed in 
PBS, penetrated with 0.5% Triton X-100 for 5 min, blocked 
with 5% BSA in PBS for 30 min, and incubated with primary 
antibodies for 3 h at room temperature. Primary antibodies were 
replaced with 1% BSA in PBS as a negative control. Sections 
were rinsed in PBS and incubated with donkey anti-rabbit 
secondary antibody (1:500 dilution; Invitrogen Molecular 
Probes) for 15 min. Hoechst 33342 staining was performed to 
visualize the nuclei. As a final step, the slides were washed and 
mounted.

Cells undergoing induction were identified by using 
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Table 1. Primers used in quantitative reverse transcription polymerase chain reaction

Genes Forward primer (5′–3′) Reverse primer (5′–3′) Length (bp)

Acrosin CATCTTGCTGAACTCGCACT CAACAAATCTCTCCTGCAGG 152
DMC1 TCTCTCATACCCTCTGTGTG TTGTCCAGGACTGCATCATG 157
PRM1 TGGCCAGATACAGATGTTGC GTGGTCTTGCTACTGCATGT 172
Stra8 CTCTTCAGCAACCTCAGGAA CATCCTCCAGGTTGAAGGAT 154
TNP1 CAGAAAGTACAATGTCGACC TTGCGATTGGCATCATCGCA 160
GAPDH CTCTGGCAAAGTGGACATTG TCTCGCTCCTGGAAGATGGT 171

Fig. 1. Histology of testis tissues. (A) Image of a 1-month-old 
testis. Spermatogonial stem cells were observed (asterisk), but no
spermatids or sperm were observed. (B) Image of a 2-month 
testis. Round spermatids (arrowhead) and elongated sperm 
(arrow) were observed. Scale bars = 50 m (A and B).

antibodies, including rabbit anti-human SCP3 (1:100 dilution; 
Abcam) and rabbit anti-mouse Stra8 (1:200 dilution; Abcam). 
Immunohistochemistry staining is performed to identify the 
colonies.

Alkaline phosphatase (AP) staining
The level of AP activity in tissue and colonies was determined 

by using the Alkaline Phosphatase Substrate Kit (SK-5300; 
Vector Laboratories) following the steps recommended by the 
manufacturer.

Total RNA extraction and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

Cultured cells and testicular tissues from 1-mo and 2-mo 
Bama mini-pig were used for qRT-PCR analysis. Total RNA 
was extracted by using TRIzol Reagent (Invitrogen Molecular 
Probes) according to the manufacturer’s instructions. The 
concentration and purity of the total RNA were determined by 
using a NanoDrop 1000 spectrophotometer (Thermo Fisher 
Scientific). Subsequently, 1 g of total RNA was 
reverse-transcribed into first strand cDNA by using the 
PrimeScript RT reagent kit along with gDNA Eraser (RR047A; 
Takara, China) following the manufacturer’s instructions.

The qRT-PCR was performed by using SYBR Premix Ex Taq 
II (Tli RNaseH Plus, RR820A; Takara) and a LightCycler 96 
instrument (Roche Diagnostics, Switzerland). The total 20 L 
reaction volume was composed of SYBR Premix Ex Taq II (10 L), 
forward primer (1 L, 2 M), reverse primer (1 L, 2 M), 
cDNA (2 L), and double distilled H2O (6 L). The qPCR 
reaction was conducted as follows: 95oC for 30 sec, 40 cycles of 
95oC for 5 sec, and 60oC for 30 sec (acquisition mode: single). 
Melting curve analysis was conducted according to 
instrument-specific procedures. The relative quantitative data 
were calculated by using the 2−ΔΔCt method, all values were 
normalized to the house-keeping gene GAPDH. The primers 
used for qRT-PCR are listed in Table 1.

Flow cytometry analysis
The cells cultured in Medium 1 were dissociated in 0.25% 

trypsin, re-suspended in PBS, fixed in 75% alcohol, 

permeabilized with 0.5% Triton X-100, incubated in 40 g/mL 
RNase A, and analyzed by performing flow cytometry.

Results

Histological analysis of testes
In the prepared histological sections of the testes, the SSCs 

localized on the basement membrane of the seminiferous 
tubules exhibited a high nucleus-to-cytoplasm ratio (panel A in 
Fig. 1; asterisk) in 1-mo testis; no spermatids or sperm were 
observed. These observations indicated that spermatogenesis 
did not initiate in Bama mini-pig tissue at the age of 1 month. 
However, spermatogenesis was initiated in 2-mo testis, because 
spermatid (panel B in Fig. 1; arrowhead) and elongated sperm 
(panel B in Fig. 1; arrow) were observed within the seminiferous 
tubules.

In vitro culture of testicular cells
The cells were seeded in dishes and maintained in different 

culture systems for 10 days without passage, colony formation 
varied among the culture systems (Fig. 2). 3D colonies were 
observed when the testicular cells were cultured in -MEM + 
10% KSR; the cells proliferated robustly and aggregated 
together 3 days after seeding (panel A in Fig. 3); flat colonies 
formed after 4 to 5 days of culture (panel B in Fig. 3), and they 
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Fig. 2. Cultivation of testicular cells in vitro. Three-dimensional
colonies were formed when testicular cells were cultured in 
minimum essential medium alpha (-MEM) and Knockout 
serum replacement (KSR), flat colonies were formed when 
testicular cells were cultured in Dulbecco’s modified Eagle 
medium nutrient mixture F-12 (DMEM/F12) and KSR. IMDM, 
Iscove’s modified Dulbecco’s medium; FBS, fetal bovine serum.
Scale bars = 100 m. 

Fig. 4. Characterization of spermatogonial stem cells (SSCs) in 
1-month-old testis tissue. SSCs were stained with UCHL1 (A) and
double stained with Dolichos biflorus agglutinin (B). (C) 
Counterstaining was carried out with Hoechst 33342. (D) Panels
A–C in Fig. 4 merged. (E) Alkaline phosphatase staining result. 
Scale bars = 50 m (A–E).

Fig. 3. Colony formation process. After 3 days of culture (A), after
4 to 5 days of culture (B), after 6 days of culture (C), and 
morphology of colonies observed as finally formed (D). Scale 
bars = 100 m (A–D).

grew continuously and became compact by 6 days of culture 
(panel C in Fig. 3); finally, 3D colonies were formed and 
individual cells could not be distinguished (panel D in Fig. 3). 
No colony was formed in -MEM + 10% FBS culture. Loosely 
organized colonies with unclear borders were observed when 
the cells were cultured in DMEM/F12 + 10% KSR, and no 

colony formation was observed in DMEM/F12 + 10% FBS 
culture. When the testicular cells were cultured in IMDM 
supplemented with KSR or FBS, they grew as fibroblast-like 
cells, and there was no colony formation.

Characterization of SSCs in testis and cultured colonies
Dual staining was performed for SSC identification in testis 

tissue sections. UCHL1 expression was observed in SSCs 
located at the basement membrane of seminiferous tubules; 
however, the expression level, measured as fluorescence 
intensity, varied (panel A in Fig. 4). DBA-positive staining was 
detected in SSCs in which UCHL1 expression level was high 
(panel B in Fig. 4), whereas SSCs with low-level expression of 
UCHL1 showed DBA-negative staining (panel D in Fig. 4). AP 
staining showed that the SSCs in testis had AP activity (panel E 
in Fig. 4).

Immunocytochemical staining showed that the cultured 
colonies expressed SSC markers including UCHL1, THY1, 
OCT4, and PLZF, and they were positive for DBA staining; the 
cells in the center of the colonies showed AP-positive staining 
(Fig. 5).

In vitro differentiation of SSCs
Bama mini-pig testicular cells were cultured using different 

systems. We observed that cell colonies were formed under 
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Fig. 6. Immunocytochemical staining of the induced cells. (A) 
Stra8 expression was observed in the cytoplasm of cells cultured 
in Medium 1 or Medium 2. (B) Scp3 expression was observed in
cell nuclei. Scale bars = 10 m (A and B).

Fig. 5. Identification of the cultured colonies. The colonies 
expressing UCHL1, PLZF, THY1, and OCT4 showed DBA- and 
alkaline phosphatase (AP)-positive staining results. Scale bars = 
100 m.

-MEM + KSR culture, whereas no colony was formed when 
cells were cultured in IMDM supplemented with FBS or KSR. 
As the optimal culture conditions for Bama mini-pig 

spermatogenesis have not been fully described, we compared 
the induction effects on cells cultured in -MEM + KSR and 
IMDM + FBS supplemented with induction factors.

When the testicular cells were cultured in differentiation 
medium, no colony formation occurred. At 10 days after 
induction, cells were collected for analysis. Immunocytochemical 
staining analysis showed that stimulated by RA gene 8 (Stra8) 
was detected in the cytoplasm of germ cells when testicular 
cells were cultured in Medium 1 and Medium 2. Moreover, 
synaptonemal complex protein 3 (SCP3) was detected in the 
nuclei of germ cells in both media (Fig. 6).

We next compared the mRNA expression levels of 
spermatogenesis-associated genes in the cells cultured in 
differentiation media with testes from 1-mo and 2-mo pigs. The 
qRT-PCR analysis showed that Stra8 expression was 
significantly upregulated (p ＜ 0.01) in cells cultured in 
Medium 1 compared to that in the control 1-mo and 2-mo testes, 
whereas it was downregulated when the cells were cultured in 
Medium 2. Furthermore, expression levels of DMC1, PRM1, 
and TNP1 were significantly upregulated (p ＜ 0.01) in cells 
cultured in Medium 1 and only slightly upregulated when 
cultured in Medium 2 when compared to the control and 1-mo 
testis, while they were significantly downregulated compared 
to the levels in the 2-mo testis. Additionally, the mRNA levels 
of acrosin in cells cultured in Medium 1 and Medium 2 were 
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Fig. 7. Relative expressions of the marker genes involved in spermatogenesis. Relative expression levels of Stra8, DMC1, PRM1, TNP1,
and ACROSIN were quantified by quantitative reverse transcription polymerase chain reaction in differentiated cells that were cultured
in Medium 1 or Medium 2 compared to those in 1-month testis (Testis 1), 2-month testis (Testis 2), and the control cultures. The average
values were from three experiments. The results are shown as mean ± SEM. The data were analyzed by one-way analysis of variance
by using PASW Statistics software (ver.18.0; IBM). Double asterisks indicate p ＜ 0.01.

Fig. 8. DNA content as determined by using flow cytometry.

both downregulated, though not significantly, compared that of 
the control. However, the acrosin levels were significantly (p ＜ 
0.01) low compared to that in the 2-mo testis (Fig. 7). In 
addition, DNA content was determined by using flow 
cytometry. A haploid peak was detected in the analysis with the 
results indicating that haploid cells were formed (Fig. 8).

Discussion

Spermatogenesis is a complicated multi-step process 
occurring within the seminiferous tubules of testes, and that 
process is regulated by multiple factors associated with germ 
cells and other testicular cells, such as Sertoli cells and Leydig 
cells. In vitro proliferation of SSCs is a prerequisite for the study 
of differentiation, and several attempts have been made to 
establish a culture system for SSCs. It has been reported that 
bovine SSC colonies were formed on extracellular 
matrix-coated plates [2]. Putative SSCs from cat have been 
isolated and then maintained for 57 days in vitro [23], while goat 

SSCs were cultured for only 2 weeks [13]. Porcine testicular 
cells were cultured in vitro and porcine SSC-like colonies could 
be maintained for 9 passages [17]. Previously, we reported that 
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SSCs of Bama mini-pig could be maintained for up to 3 months 
on SIM mouse embryo derived thioguanine- and 
ouabain-resistant (STO) feeder layer [28]. However, the 
cultured SSCs were influenced by unknown factors from serum 
and feeder layer cells, and no previous report has provided 
evidence that long-term-cultured SSCs from pig can maintain 
spermatogenesis potential. Thus, in this study, primary cells 
from pig testis were co-cultured with various factors to mimic 
the environment of spermatogenesis in vivo.

Before the induction study, we investigated the appropriate 
culture medium for SSCs proliferation. DMEM/F12 and FBS 
are commonly used for SSCs expansion [4,11,12], and -MEM 
supplemented with KSR was used for mouse SSC proliferation 
[3]. Recently, a study reported that mouse SSCs could be 
maintained for a long term in a novel culture system containing 
IMDM and KSR [16]. Previous reports did not elucidate what 
culture medium was suitable for pig SSC proliferation. 
Therefore, in this study, six kinds of medium were tested for 
their effects on testicular cells proliferation. The culture results 
showed that colonies containing SSCs were formed in some 
media, while no colonies were formed in others. However, we 
could not determine which culture conditions were optimal for 
in vitro differentiation. Thus, induction studies were performed 
in -MEM and KSR, and IMDM and FBS.

Stra8, the downstream gene regulated by RA, was 
significantly upregulated when testicular cells were cultured in 
-MEM supplemented with KSR and induction factors. This 
result indicated that RA could trigger meiosis in this medium 
[29]. SCP3 and DMC1 are meiosis-specific markers [6,24]. 
During spermatogenesis after meiosis, histones are replaced by 
protamines in the nuclear region of spermatids. Protamine 1 
(PRM1) has been detected in all mammals examined, and 
protamine 2 (PRM2) has been observed in a few domestic 
animals [21]. It has been suggested that transition nuclear 
protein 1 (TNP1), an essential factor present in the condensing 
chromatin of spermatids, participates in nuclear condensation 
[27]. In the present study, mRNA expression levels of DMC1, 
PRM1, and TNP1 were all upregulated significantly. These 
results suggested that SSCs underwent differentiation and 
developed to a post-meiotic stage with the addition of BMPs, 
activin A, FSH, and T. These results confirmed those in a 
previous study [5]. ACROSIN encodes as an enzyme in the head 
of elongated sperm, and its expression level was not 
upregulated in this study [10], indicating that transformation of 
spermatids had not occurred or was incomplete.

Different results were observed when the cells were induced 
in IMDM supplemented with FBS and the tested induction 
factors. Under those induction conditions, Stra8 was 
downregulated. Consistently, the expression levels of genes 
relative to spermatogenesis were not upregulated significantly. 
The results indicated that RA could not trigger spermatogenesis 
under the tested conditions. This result was different from those 

in a previous study, which suggested that FBS could enhance 
meiosis when combined with RA, T, and FSH [25]. Therefore, 
we speculate that unknown factors in IMDM can inhibit the 
function of RA on SSCs.

In summary, through this study, we have established a 
differentiation system suitable for pig SSCs in which the SSCs 
can undergo differentiation and develop to the post-meiotic 
stage.
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