
J Anim Ecol. 2022;91:1755–1769.	﻿�   | 1755wileyonlinelibrary.com/journal/jane

Received: 3 December 2021  | Accepted: 12 July 2022

DOI: 10.1111/1365-2656.13779  

R E S E A R C H  M E T H O D S  G U I D E

Using piecewise regression to identify biological phenomena in 
biotelemetry datasets

David W. Wolfson1  |   David E. Andersen2 |   John R. Fieberg3

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article has been contributed to 
by U.S. Government employees and their work is in the public domain in the USA.

1Minnesota Cooperative Fish and Wildlife 
Research Unit, University of Minnesota, 
Minneapolis, MN, USA
2U.S. Geological Survey, Minnesota 
Cooperative Fish and Wildlife Research 
Unit, Minneapolis, MN, USA
3University of Minnesota, Minneapolis, 
MN, USA

Correspondence
David W. Wolfson
Email: wolfs064@umn.edu

Funding information
Minnesota Environment and Natural 
Resources Trust Fund, Grant/Award 
Number: Subd. 03d; Minnesota 
Agricultural Experimental Station; U.S. 
Geological Survey, Minnesota Cooperative 
Fish and Wildlife Research Unit

Handling Editor: Francesca Cagnacci

Abstract
1.	 Technological advances in the field of animal tracking have greatly expanded 

the potential to remotely monitor animals, opening the door to exploring how 
animals shift their behaviour over time or respond to external stimuli. A wide 
variety of animal-borne sensors can provide information on an animal's loca-
tion, movement characteristics, external environmental conditions and internal 
physiological status.

2.	 Here, we demonstrate how piecewise regression can be used to identify the 
presence and timing of potential shifts in a variety of biological responses using 
multiple biotelemetry data streams. Different biological latent states can be in-
ferred by partitioning a time-series into multiple segments based on changes in 
modelled responses (e.g. their mean, variance, trend, degree of autocorrelation) 
and specifying a unique model structure for each interval.

3.	 We provide six example applications highlighting a variety of taxonomic species, 
data streams, timescales and biological phenomena. These examples include a 
short-term behavioural response (flee and return) by a trumpeter swan Cygnus 
buccinator following a GPS collar deployment; remote identification of parturi-
tion based on movements by a pregnant moose Alces alces; a physiological re-
sponse (spike in heart-rate) in a black bear Ursus americanus to a stressful stimulus 
(presence of a drone); a mortality event of a trumpeter swan signalled by changes 
in collar temperature and overall dynamic body acceleration; an unsupervised 
method for identifying the onset, return, duration and staging use of sandhill 
crane Antigone canadensis migration; and estimation of the transition between in-
cubation and brood-rearing (i.e. hatching) for a breeding trumpeter swan.

4.	 We implement analyses using the mcp package in R, which provides functional-
ity for specifying and fitting a wide variety of user-defined model structures in 
a Bayesian framework and methods for assessing and comparing models using 
information criteria and cross-validation measures.

[Correction added on 15 August 2022, after first online publication: The formatting of the code and R programs has been corrected.]
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1  |  INTRODUC TION

Recent technological advancements in the field of bioteleme-
try have greatly expanded the potential for remotely monitoring 
animals (Cagnacci et al.,  2010; Hebblewhite & Haydon,  2010; 
Tomkiewicz et al.,  2010). Historically, animals were tracked 
using very-high-frequency (VHF) telemetry, which requires a re-
ceiver in close proximity to an animal to triangulate its location 
(Craighead,  1982). Global positioning system (GPS) transmitters, 
now the standard for many wildlife studies, are small enough to 
be placed on bats and songbirds weighing less than 20 grams 
(Cvikel et al., 2015). In many applications, current GPS technology 
provides copious fine-scale data over long study durations and 
spatial coverages. Other biotelemetry sensors such as accelerom-
eters, temperature-depth recorders, light-level geolocators and 
heart-rate monitors, also produce valuable, high-frequency data 
on physiological and external conditions affecting animals (Cooke 
et al., 2004; Jonsen et al., 2007; Wilmers et al., 2015). Raw mea-
surements (e.g. location, acceleration, body temperature) or de-
rived metrics (e.g. net-squared displacement for distance moved 
over time, overall dynamic body acceleration (ODBA) for energy 
expenditure: Wilson et al., 2006; Bunnefeld et al., 2011) can elu-
cidate behavioural patterns (foraging, migration, predator/prey 
dynamics) and provide information about demographic parameters 
such as fecundity and survival; however, processing high-volume 
data can be complex and time-consuming (Brooks et al.,  2019; 
Hamilton et al., 2017; Kramer et al., 2018). Flexible and widely ac-
cessible tools are necessary to facilitate efficient analysis of animal 
biotelemetry data to examine behaviour over time and response to 
external stimuli (Patterson et al., 2017).

Analyses of biotelemetry data collected at a high frequency often 
begin by partitioning datasets into homogeneous segments that cor-
respond to different behavioural states (Edelhoff et al., 2016). Some 
common segmentation methods include (1) clustering algorithms 
that minimize a cost function associated with statistical properties 
of a time series (e.g. the pruned exact linear time algorithm or the 
penalized contrasts method; Lavielle, 2005; Killick et al., 2012), (2) 
model-based approaches that use moving windows to identify shifts 
in behavioural responses (e.g. behavioural change point analysis 
[BCPA]; Gurarie et al., 2009; or correlated velocity models; Gurarie 
et al., 2017) or (3) parametric state-space or hidden Markov models 
(HMMs) that explicitly model transitions between latent behavioural 
states (Glennie et al.,  2022; Patterson et al.,  2008). Often, these 
methods require restrictive assumptions (e.g. data are Normally dis-
tributed or error and correlation structures are fixed), are computa-
tionally intensive, or are restricted to a single data type, such as GPS 
telemetry (Morelle et al., 2017). Here, we demonstrate how piece-
wise regression can be used to analyse a wide range of biotelemetry 

datasets, offering a flexible and user-friendly approach with easily 
interpretable results.

1.1  |  Overview of piecewise regression and 
applications with the mcp package

Piecewise regression is a statistical method used to model ecological 
thresholds (Toms & Lesperance, 2003) and can be used to identify 
change points that signify potential shifts in the relationship be-
tween response and explanatory variables (Muggeo, 2003; Toms & 
Villard, 2015). Piecewise regression is an extremely flexible model-
ling framework due to the ability to specify unique model structures 
for each segment between change points. Transitions between seg-
ments can be smooth, if segments are joined (meaning segments 
share a common endpoint), or abrupt, if segments are disjoint (not 
sharing a common endpoint).

Herein, we focus on a Bayesian formulation of piecewise regres-
sion following the formulation of Stephens (1994). Let y =

(
y1, … ,yn

)
 

be the realization of a sequence of random variables Y =
(
Y1, … ,Yn

)
 

of length n, with a change point at r(1 ≤ r ≤ n). We can write the 
distribution of Y1, … ,Yn as

where �1 and �2 are parameter vectors describing the data-generating 
process before and after the change point, respectively. Values of � can 
describe various characteristics of the response distributions, includ-
ing their means, variances or correlation structures.

Inference is made via the posterior distribution of r , �1 and �2, 
denoted by 

[
r,�1,�2|Y

]
:

where 
[
�1
]
, 
[
�2
]
 and [r] are prior distributions for the parameters de-

scribing the data-generating process. This approach easily extends to 
multiple change points, r1, r2, … , rk with unique parameter vectors, 
�1, … , �k, describing the likelihood of Y within each segment.

Consider a simple example represented by separate intercepts 
before and after a single change point. Let r be the location of the 
change point along the x-axis, where the expected value of yi, �i, 
changes from f1

(
x,�1

)
, to f2

(
x,�2

)
:

Y1, … ,Yr ∼
[
Yi|�1

]
1
,

Yr+1, … ,Yn ∼
[
Yi|�2

]
2
,

[
r, �1, �2 |Y

]
∝
[
Y | r, �1, �2][r]

[
�1
]
[�2

]
,

𝜇i =

⎧
⎪⎨⎪⎩

f1
�
xi ,𝛽1

�
if xi < r

f2
�
xi ,𝛽2

�
if xi ≥ r

,

5.	 These simple modelling approaches are accessible to a wide audience and offer 
a straightforward means of assessing a variety of biologically relevant changes 
in animal behaviour.
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f1
(
x,�1

)
 and f2

(
x,�2

)
 can represent combinations of additive or 

multiplicative effects of covariates. The R package mcp, developed by 
Lindeløv (2020), implements piecewise regression as described thus 
far and has broad applicability beyond ecological data.

The mcp package uses indicator functions to map elements of a 
dataset (i.e. segments) to statistical models specific to each segment. 
For a dataset with y as the response variable and x as the predictor 
variable, a two-intercept case is written as:

model=list(
y~1, # first intercept, slope = 0 for this segment 
~1 # second intercept, slope = 0 for this segment

)

Specifying a model structure with a joined segment is also 
straightforward:

model=list( 
y~1, # intercept, slope = 0 for this segment
~0+x # joined slope sharing the same intercept

)
The ‘~0’ term specifies that the second segment shares the same 

intercept, whereas the ‘+ x’ term assigns a slope term associated 
with the variable x such that the slope is 0 before the change point 
and � ⋅ x afterwards.

The mcp package allows custom model structures for each segment 
and provides a wide range of statistical distributions and link func-
tions. Model parameters are given suitable vague prior distributions, 
although these can easily be altered (Lindeløv,  2020). Hierarchical 
models with random effects can be specified by allowing change 
points to covary within a group, thereby allowing the estimation of 
individual-specific and population-level change point parameters.

Another advantage of the mcp package is the combination of a 
user-friendly interface connected to a robust Bayesian modelling 
backend. The model structure for each segment uses the familiar 
syntax of the lme4 and brms packages, then is converted ‘on-the-fly’ 
to JAGS code, (Bates et al., 2014; Bürkner, 2017) and future versions 
of mcp will have the option of using Stan as a backend. The mcp pack-
age returns samples from the marginal posterior distributions for all 
change points and model parameters, which can be used to visualize 
model output and produce credible intervals (Gabry et al., 2019).

The mcp package provides robust options for model assessment 
and comparison, hypothesis testing and data simulation. Markov-
chain Monte Carlo (MCMC) sampler performance can be checked 
via the Gelman–Rubin statistic, effective sample size and MCMC 
trace plots. Posterior predictive checks ensure that the fitted model 
is consistent with the data-generating process (i.e. simulations from 
the fitted model resemble the original data; Gelman et al.,  1996; 
Gelman & Shalizi,  2013), and the influence of the priors can be 
evaluated by comparing prior-posterior overlap (Youngflesh, 2018). 
The predictive performance of multiple models can be compared 
with leave-one-out cross-validation (LOO-CV), either using WAIC 
(Widely Applicable Information Criterion) or ELPD (Expected 

Log Predictive Density), as estimated by the loo package (Gelman 
et al., 2014; Vehtari et al., 2017). If the ideal number of change points 
is not known a priori, LOO-CV allows comparison of the predictive 
performance of multiple models to determine an optimal number 
or to compare different model structures and prior distributions. 
Additionally, hypothesis testing can be performed using point Bayes 
factors (i.e. the prior-to-posterior ratios associated with specific 
parameter values; Verdinelli & Wasserman,  1995; Wagenmakers 
et al., 2010); Bayes factors can also be used to compare models that 
represent alternative hypotheses and for model averaging (Hooten 
& Hobbs, 2015; Kass & Raftery, 1995).

2  |  E X AMPLE APPLIC ATIONS

We demonstrate the use of piecewise regression using the mcp pack-
age with six example applications highlighting a variety of taxonomic 
species, data streams, timescales and biological phenomena. All of 
our R code is publicly available at the Data Repository for University 
of Minnesota (https://doi.org/10.13020/​qbha-bs48).

2.1  |  Identification of altered behaviour  
post-capture

Effects of capture, handling and transmitter deployment are not well 
understood for many species, especially in the period immediately 
post-capture. Efforts to quantify animal response have predomi-
nantly focused on effects of the transmitter itself (i.e. the weight 
and aerodynamics of the unit, usually in birds: Evans et al., 2020) or 
on the physiological effects from chemical immobilization (typically 
in large mammals: Barron et al., 2010; Brivio et al., 2015; Thompson 
et al.,  2020). Most researchers have sought to quantify effects 
on vital rates, such as survival and fecundity (Casas et al.,  2015; 
DelGiudice et al.,  2005; Lameris & Kleyheeg,  2017) or short-term 
ethological responses such as changes in the time spent grooming 
(Kölzsch et al.,  2016; Rachlow et al.,  2014). Because capture and 
handling may result in a short-term period of altered movement be-
haviour (Picardi et al., 2021), it is common to remove data from the 
first week or two post-capture, although often without biological or 
empirical justification for the threshold used to filter the data.

Arbitrarily filtering data without knowledge of the existence and 
duration of capture effects presents issues for movement-related 
analyses. Removing data potentially discards useful information, 
which may already be scarce in studies using VHF telemetry or with 
small sample sizes (Girard et al.,  2002). Alternatively, quantifying 
behavioural responses post-capture can provide useful species-
specific information on altered behaviour and inform future stud-
ies (Dechen Quinn et al.,  2012; Picardi et al.,  2022). For example, 
Stabach et al. (2020) examined effects of GPS collar deployment on 
scimitar-horned oryx Oryx dammah to quantify the short-term re-
sponses in activity, behaviour, stress levels and the length of time 
before these effects subsided.

https://doi.org/10.13020/qbha-bs48
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The effects of capture and handling on movement may also pro-
vide insights into how individuals respond to risky situations (e.g. 
capture, predation). For example, animals may exhibit a ‘flee and re-
turn’ response, the strength of which may be indicative of their toler-
ance of risk as it relates to a fecundity-survival trade-off (Ghalambor 
& Martin,  2001; Montgomerie & Weatherhead,  1988). DelGiudice 
et al.  (2015) documented that capture of moose Alces alces neo-
nates caused some mothers to abandon their calves, and Obermoller 
et al. (2019) found that adult female moose frequently fled when their 
calves were depredated and then returned after the risk had subsided. 
These responses suggest that many adult female moose favour individ-
ual survival over protection of their young. Other studies have found 
similar ‘flee and return’ responses to human activity such as hunting 
or helicopter-based capture (Jung et al., 2019; Thurfjell et al., 2013).

In an ongoing study of trumpeter swan Cygnus buccinator move-
ment ecology, we observed a swan leaving the capture area and re-
turning a short time later (D. W. Wolfson, unpubl. data). To determine 
the prevalence of this behaviour, we needed an objective method for 
identifying ‘flee and return’ responses immediately post-capture. By 
fitting a model with a single intercept (representing no flee) and an-
other with two intercepts (representing a flee and return), we were 
able to compare these two models with cross-validation. Figure  1 
shows the results of a piecewise regression model for an individ-
ual trumpeter swan fit to the relationship between Net-Squared 
Displacement (NSD) and time since capture:

model=list(
NSD~1, # distance of ‘flee’ response from capture site

~1 # stable return distance from capture site
)

The NSD value of the first intercept quantifies how far the swan 
fled and the change point reveals when a return to the capture 
site occurred. This model, which has two segments with different 

intercepts and a single change point, had a better fit using LOO-CV 
to estimate ELPD, a goodness-of-fit measure that estimates the pre-
dictive accuracy of a model while balancing the trade-offs of bias 
and variance, than an alternative model with a single intercept, sug-
gesting the presence of a flee response (Table 1).

Protocols for capturing and marking trumpeter swans were 
approved by the University of Minnesota Animal Care and Use 
Committee (protocol no. 1905-37072A) and authorized under permits 
from the Minnesota Department of Natural Resources (Special Permit 
no. 19017), the U.S. Fish and Wildlife Service (Research & Monitoring 
Special Use Permit no. K-10-001) and the U.S. Geological Survey Bird 
Banding Laboratory (Federal Bird Banding Permit no. 21631). All other 
example applications use data collected from other studies.

2.2  |  Pre-parturition movement

Accurate estimation of vital rates and their contributions to population 
dynamics is an essential tenet for population management (Coulson 
et al., 2005). Signals in movement data can reveal important biological 
events such as parturition in large ungulates, which relate to fecundity. 
Although fecundity is a key vital rate, detection of the timing and loca-
tion of parturition can be difficult, especially in ‘hider’ species that have 
low parental care of neonates (Lent, 1974; Ralls et al., 1986).

Pregnant ungulates typically make a long-distance movement im-
mediately preceding parturition and then remain sedentary in areas 
that may have lower predation risk while still providing sufficient 
foraging opportunity (Berg, 2019; McGraw et al., 2014). Patterns in 
movement data thus offer a cost-effective means for identifying par-
turition in radio-collared ungulates (DeMars et al., 2013; Nicholson 
et al., 2019; Peterson et al., 2018). Although multiple methods have 
been used to infer parturition events, many are sensitive to parame-
ter choices or involve visual observation of movement metrics, which 
can be time-intensive (Dettki & Ericsson, 2008; Mohr et al., 2022).

To demonstrate remote identification of parturition, we pro-
vide an example of quantifying movements of a pregnant moose 
(Figure 2). Severud et al. (2015) confirmed the parturition period by 
locating the twin calves shortly after their birth. In this case, the first 
segment is modelled with an intercept and slope of zero, represent-
ing typical moose movement, and the second segment is modelled 
with a change in the mean displacement (i.e. a different intercept) 
and also a change in variance (‘sigma’ in code below) that is represen-
tative of a shift to more sedentary movement at time of parturition.

F I G U R E  1  Hourly net-squared displacement measured from 
the point of release of a trumpeter swan Cygnus buccinator after 
collar deployment. Grey lines show 25 draws from the posterior 
distribution, with 95% credible intervals for the mean response 
shown as red dotted lines. The posterior distribution for the change 
point is shown in blue on the x-axis.

TA B L E  1  Leave-one-out cross-validation used to compute the 
estimated log predictive density (ELPD) of two different models; 
one fit with a single intercept and the other with two intercepts 
separated by a change point. The higher ELPD for the model with 
two intercepts indicates that it has a higher predictive accuracy

Model syntax ELPD difference
SE of 
difference

Two intercepts 0.0 0.0

One intercept −213.3 64.2
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model<-list(
NSD~1, # baseline moose NSD
~1+sigma[1] # movement spike and decreased variability

)

LOO-CV of this model versus one without a change in variance 
indicated that this model is a better fit to the data, thus illustrating 
the flexibility in adapting model syntax for each segment that corre-
sponds to the biological situation. Prediction intervals illustrate that 
the addition of a change in variance for the second segment provides 
increased precision, therefore allowing the model syntax to reflect 
the more sedentary behaviour (Figure 2).

Parturition events can be monitored in real time for studies in-
volving the capture of neonates (Figure 2; Obermoller et al., 2019) or 
identified post-hoc for retrospective analyses of ungulate breeding 
and fecundity (Bonar et al., 2018; Long et al., 2009). Previous studies 
have used piecewise regression to identify change points indicative 
of ungulate parturition, but the mcp package can provide additional 
functionality such as informed priors for the change point, cross-
validation and simulation from the fitted model (Berg et al., 2021).

Posterior predictive checks can be used to determine if the model 
can provide an adequate representation of the data (Gelman et al., 1995); 
data (yrep) are generated from the fitted model by simulating from the 
posterior predictive distribution and then compared to the observed 
data (y) (Hobbs & Hooten, 2015). We demonstrate this approach using 
the fitted model for moose movement (Figure 3). The two peaks at 3 and 
12 km correspond to the two intercepts fit by the model, and overall, the 
distribution of the simulated and observed data are similar.

2.3  |  Physiological response to drone fly-over

Remotely piloted aircraft (hereafter drones) allow increased op-
portunity for remotely monitoring wildlife populations, and recent 
reductions in their cost have led to widespread adoption as an 

alternative to traditional aerial surveys (Watts et al., 2010). Drones 
equipped with remote sensors are now commonly used to estimate 
animal abundance in remote locations, collect fine-grain aerial im-
agery and monitor poaching activities (Anderson & Gaston,  2013; 
Linchant et al., 2015). The use of drones can decrease costs, reduce 
the need for hazardous fieldwork and be coupled with computer vi-
sion methods to increase the quality and precision of data collection 
(Chabot & Francis, 2016; Hodgson et al., 2018; Seymour et al., 2017).

Despite the advantages of drones, their presence can influence 
behaviour or elicit a physiological response in the study species, es-
pecially when flown at low altitudes (McEvoy et al., 2016; Mulero-
Pázmány et al., 2017). Drones have been shown to have detrimental 
effects on wildlife at both immediate (e.g. increased vigilance and 
decreased foraging behaviour) and long-term scales (e.g. decreased 

F I G U R E  2  Displacement (distance 
from each location to the location at 
the start of the observation period) 
for a pregnant moose Alces alces. The 
green area is the period identified by 
researchers as immediately preceding 
parturition. Grey lines represent 25 
draws from the posterior distribution 
of the mean displacement. Red dotted 
lines depict 95% credible intervals for 
the mean displacement and green dotted 
lines depict 80% prediction intervals. The 
posterior distribution for the change point 
is shown in blue on the x-axis.

F I G U R E  3  A kernel density posterior predictive check compares 
the distribution of observed outcomes (displacement in kilometres 
by a pregnant moose Alces alces), shown in the black line, against 50 
distributions of replicated datasets produced by the fitted model, 
each shown as a light blue line.
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reproduction and population declines: Blickley & Patricelli,  2010; 
Senzaki et al.,  2020; Shannon et al.,  2016). Most studies investi-
gating effects of drones have focused on external responses, such 
as altered movement and behaviour, whereas internal physiologi-
cal responses have been limited to quantifying levels of glucocor-
ticoids (e.g. cortisol and corticosterone: Baker et al., 2013; Bennitt 
et al., 2019; Millspaugh & Washburn, 2004; Vas et al., 2015).

Recently, telemetry data have been paired with physiological 
data, allowing for new insights into the response of animals to 
anthropogenic stimuli. Ditmer et al.  (2015) measured changes in 
movement and heart rate levels of black bears Ursus americanus 
affixed with GPS collars and internally implanted cardiac biolog-
gers during controlled drone flyovers. Although drones rarely elic-
ited an external behavioural response in black bears, heart rate 
levels were strongly correlated with proximity of drones overhead 
(Ditmer et al., 2015).

We used piecewise regression to model the relationship be-
tween drone presence and black bear heart rate. We include two 
segments, the initial segment includes an intercept capturing the 
baseline heart rate of the bear, and the second segment contains a 
separate intercept (representing the spike in heart rate in response 
to the drone) and a disjoined slope term reflecting the heart rate 
gradually decreasing after the initial spike.

model<-list(
HeartRate~1, # intercept for stable background HR
~1+time) # HR spike and slope of recovery rate

Figure 4 shows the relationship between drone presence and 
black bear heart rate in beats per minute (bpm) before and after a 
controlled flight.

The flexibility of piecewise regression to accommodate differ-
ent model structures for each segment allows for identification of 
the timing, magnitude and acclimation rate of the stress response 

caused by the drone presence, thus providing biologically meaning-
ful parameters for each segment.

As shown in Table 2, the change point is estimated to occur ap-
proximately 65 (95% credible interval = 63–66) minutes into the ob-
servation period, after which the heart rate is estimated to increase 
by 116 bpm (Intercept 2–Intercept 1) once the drone appears, and 
then decrease by 0.78 bpm with every minute that passes. If the 
recovery rate is static, the black bear will return to baseline heart 
rate (represented by Intercept 1) in approximately 2.5 hr ((Intercept 
2–Intercept 1)/Time in minutes = 149 minutes). Lastly, the Sigma pa-
rameter captures the variability in heart rate about the overall trend.

2.4  |  Mortality signal from acceleration and 
temperature data

Accurate estimates of vital rates such as survival and fecundity 
are necessary for modelling population growth. Survival rates 
can be estimated using mark-recapture methods, but for wide-
ranging migratory species, individuals in subsequent years may 
not be resighted due to three possibilities: mortality, emigration 
or missed detection (Anders & Marshall, 2005). Because it is dif-
ficult to separate these components, biologists are often forced 

F I G U R E  4  Heart rate of a black 
bear Ursus americanus in relation to a 
drone flight. The green box indicates 
the duration of a drone flight. Grey lines 
represent 25 draws from the posterior 
distribution of the mean response. Red 
dotted lines depict the 95% credible 
intervals for the mean response. The 
posterior distribution for the change point 
is shown in blue on the x-axis.

TA B L E  2  A summary of output from the model looking at the 
black bear Ursus americanus heart rate response to a drone flyover

Model parameter
Posterior 
mean

Lower  
CL (2.5%)

Upper  
CL (97.5%)

Change point 1 64.77 62.89 66.00

Intercept 1 43.83 39.86 47.79

Intercept 2 160.14 150.22 169.43

Time (in minutes) −0.78 −1.08 −0.46

Sigma 10.92 8.95 13.07
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to estimate ‘apparent’ survival, as opposed to true survival 
(Lebreton et al., 1992).

Many studies have illustrated the importance of evaluating vital 
rates over the entire annual cycle (Rushing et al.,  2017; Sillett & 
Holmes, 2002). The miniaturization of GPS devices now allows for 
a more direct accounting of survival during the breeding, migration 
and overwintering seasons (Kays et al.,  2015). Increased precision 
in vital rates during different seasons (and of different age and sex 
classes) can better inform ecological studies considering life-history 
trade-offs between survival and fecundity, especially concerning 
survival during migration periods (Buechley et al.,  2021; Cheng 
et al., 2019; Flack et al., 2016).

Despite the advantages that GPS telemetry can offer to sur-
vival rate estimation, mechanical failure of transmitters can obscure 
whether the true fate was mortality or equipment failure. Recovery 
of a GPS transmitter after a mortality event can be logistically difficult 
for species that migrate long distances. Different methods have been 
used to infer mortality versus transmitter failure from transmitter sig-
nals (Buechley et al., 2021; Sergio et al., 2019). A common approach 
is a visual assessment of whether locations appear to be stationary; 
however, this approach may lead to inconsistencies due to subjective 
evaluation (Koczur et al., 2017; Nygård et al., 2016; Rotics et al., 2017).

Sensor data such as battery voltage, temperature and accel-
erometry are increasingly being used to diagnose mortality ver-
sus transmitter failure (Burnside et al., 2016; Ely & Meixell, 2016; 
Hewson et al., 2016). Mortalities often coincide with shifts in the 
trend or variability in transmitter data; therefore, piecewise regres-
sion can be used to identify change points that indicate mortality. 
This approach can also be extended to monitor nest success with 
temperature loggers (Hartman & Oring, 2006; Sutti & Strong, 2014; 
Zangmeister et al., 2009). As part of an ongoing trumpeter swan 
study (D. W. Wolfson, unpubl. data), we evaluated whether we 
could remotely detect mortality using piecewise regression models 
fit separately to ODBA, a proxy for energy expenditure, and tem-
perature data from a confirmed mortality event (Figure 5).

The ODBA model includes a change point separating two seg-
ments with differing means and variances.

model<-list(
ODBA~1, # baseline energy expenditure level
~1+sigma[1]) # activity drop and decreased variability

The temperature model has a change point separating the first 
segment, which is modelled with an intercept and a first-order au-
toregressive residual term, and the second segment, which is mod-
elled with an intercept and a third-order autoregressive residual 
term. A kth order autoregressive term models the correlation in 
residuals from k previous values in the time series and is ideal for 
data such as temperature that is highly temporally correlated. We 
allow for autocorrelation by assuming the residuals of the first seg-
ment are a function of residuals at time t-1, and the residuals of the 
second segment are a function of the residuals at time t − 1, t − 2 
and t − 3 (see the full annotated code and a short tutorial on choos-
ing autoregressive terms in the open-access data repository). Both 
models showed a clear distinction at the change point representing 
mortality of the collared swan.

model<-list(
temp~1+ar(1), # collar temp tracks live swan temperature
~1+ar(3)) # collar temp tracks ambient air temperature

2.5  |  Migration phenology including stopovers

Seasonal migration allows species to optimize energetic budgets and 
undergo reproductive cycles while avoiding harsh environmental 
conditions and low food availability (Newton, 2010). Knowledge of 
migration phenology throughout the annual cycle can inform man-
agement activities such as timing of water drawdowns and annual 
surveys to occur during peak migration, advance understanding of 
disease dynamics based on timing and overlap with other species, 

F I G U R E  5  The x-axis is an index of 
time since the start of the time series for 
overall dynamic body acceleration on the 
top figure and temperature on the bottom 
figure for a trumpeter swan Cygnus 
buccinator. Grey lines show 25 draws 
from the posterior distribution, with 95% 
credible intervals for the mean response 
shown as red dotted lines. The posterior 
distribution for the change point is shown 
in blue on the x-axis.
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and reveal a species' capacity to adapt their migratory timing in re-
sponse to climate change to preserve optimal breeding conditions 
and peak food availability (Donnelly et al., 2019; Moller et al., 2008; 
Newman et al., 2009; Thurber et al., 2020).

Despite the importance of understanding migration phenol-
ogy, consistent reproducible methods for determining departure 
and arrival dates have not yet become commonplace (Cerritelli 
et al.,  2020; Soriano-Redondo et al.,  2020). A simple repeatable 
approach is to segment phases of the migration cycle based on 
date ranges informed from prior studies (Takekawa et al.,  2010; 
Wolfson et al.,  2017a). Other approaches include using a spatial 
threshold, based on either the absolute distance from the capture 
origin, breeding territory, or last location; a spatiotemporal thresh-
old, based on a certain distance moved within a period; or a cross-
ing of a chosen latitude or landmark (Flack et al.,  2016; Giunchi 
et al., 2019; Rotics et al., 2016). Although these approaches may 
yield useful estimates of migration phenology, they often rely on 
arbitrary criteria or species-specific thresholds, which limits the 
ability to generalize to other study systems.

Model-based methods, including non-linear theoretical move-
ment models fit to NSD, are also commonly used to estimate migra-
tion phenology (Börger & Fryxell,  2012; Bunnefeld et al.,  2011; de 
Grissac et al.,  2016; Spitz et al.,  2017). Using piecewise regression 
to segment an annual cycle based on NSD allows for a model-based 
approach but is more flexible than typical NSD modelling sensu 
Bunnefeld et al.  (2011) and can also provide additional information 
on the timing and duration of stop-overs that is not attainable using 
traditional NSD-based methods.

We demonstrate the utility of piecewise regression in assessing 
movements during the annual cycle of a migratory bird using a NSD 
time-series of sandhill crane Antigone canadensis locations in North 
America (Figure 6; Wolfson et al., 2017b; Wolfson, 2018). Although a 
basic three-intercept model would sufficiently discriminate the sum-
mer and winter periods, adding additional intercepts reveals each 
major staging area that the crane used.

model<-list(
NSD~1, # summer breeding territory in Minnesota
~1, # first fall staging area in Nebraska
~1, # second fall staging area in Oklahoma
~1, # over-wintering area along Texas coast
~1, # spring staging area in Nebraska
~1) # summer breeding territory in Minnesota

The ideal number of stopover sites can be visually examined or 
empirically derived using cross-validation to compare multiple mod-
els with differing number of change points. We demonstrate a data-
driven model selection method by fitting seven separate models 
with increasing numbers of intercepts. Table 3 shows that the model 
with six intercepts (representing two spring staging areas and one 
fall staging area) is the most well supported using ELPD as a model 
comparison metric and that adding additional intercepts does not 
increase the predictive accuracy.

F I G U R E  6  An annual migration cycle 
of a sandhill crane Antigone canadensis. 
Average daily displacement from the 
breeding territory (in kilometres) on the 
y-axis, and an index of time since the 
start of the time series on the x-axis. Grey 
lines show 25 draws from the posterior 
distribution, with 95% credible intervals 
for the mean response shown as red 
dotted lines and 80% prediction intervals 
in green dotted lines. The posterior 
distributions for the change points are 
shown in blue on the x-axis.

TA B L E  3 Leave-one-out cross-validation was used to compute the 
estimated log predictive density (ELPD) for seven models of migration 
phenology of a sandhill crane Antigone canadensis, each with an 
increasing number of intercepts. The highest ELPD for the model with 
six intercepts indicates that it has the highest predictive accuracy

Model syntax ELPD difference SE of difference

Six intercepts 0.00 0.00

Five intercepts −0.48 0.83

Seven intercepts −19.59 32.82

Four intercepts −24.73 9.52

Two intercepts −57.39 14.01

Three intercepts −324.69 16.93

One intercept −336.17 16.73
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2.6  |  Segmentation of nesting stages

The timing of nest creation, incubation and hatching events 
can inform understanding of nest success, juvenile survival and 
local recruitment. Climate change is advancing the onset of 
spring, especially in the Arctic, where earlier snowmelt allows 
some species to adapt their breeding cycles to match changing 
conditions (Lameris et al., 2018; Nolet et al., 2020). Although 
data on the timing of breeding are critical to understanding 
reproduction, locating and regularly monitoring active nests 
is labor-intensive and unfeasible in many remote locations 
(Schreven et al., 2021).

As part of an ongoing trumpeter swan study (D. W. Wolfson, unpubl. 
data), we collected visual observations on a focal sample of collared 
swans several times a week during the breeding season to determine 
nesting status (building a nest, incubation, eggs hatched and cygnets 
present). We also collected fine-scale accelerometry data from each 
observed swan's GPS-GSM collar to evaluate if we could infer nesting 
status from ODBA values, representing activity levels. We used the vi-
sual observation dataset to ground-truth model output from piecewise 
regression applied to a collared swan in the following case study.

Between 1 April and 7 July, 2021, we collected 19 observations 
of nesting status and 735,311 tri-axial accelerometer readings taken 

in 3-s bursts at 10 Hz every 5 min that were converted to average 
hourly ODBA values (Figure 7).

We predicted that a shift to higher activity levels would occur 
once cygnets were present and expected that the change point for a 
model with two segments with varying intercepts would accurately 
predict the time of egg hatching.

model<-list(
�ODBA~1, # intercept for activity levels during incubation
�~1) # intercept for increased activity levels post-incubation

[Correction added on 15 August 2022, after first online publi-
cation: The duplication of 'increased' has been deleted in the code.]

Table 4 shows that the model with two intercepts was the best 
choice at fitting the data based on LOO-CV using ELPD.

The piecewise regression model was able to estimate the transi-
tion based on a shift in mean activity levels using remotely sensed 
data (Figure 8).

3  |  DISCUSSION

As we demonstrated with examples of birth, death, migration 
and behavioural responses (both internal and external), piece-
wise regression is a flexible tool for identifying a wide variety of 
biological phenomena across different taxa and data types. When 
analysing data, we recommend fitting a limited number of mod-
els that attempt to capture specific biological hypotheses in the 
style of Chamberlin's framework of multiple working hypotheses 
(Chamberlin, 1890; Elliott & Brook, 2007). For example, in the first 
case study, we highlight two model syntaxes that represent differ-
ent biological responses (one intercept represents the absence of 
a flee response, two intercepts indicate a flee and return). ELPD or 
WAIC, calculated using cross-validation can then be used to evalu-
ate support for each hypothesis. The mcp package also provides 

F I G U R E  7  The top plot shows the 
accelerometer sensor dataset for a nesting 
trumpeter swan Cygnus buccinator, with 
time on the x-axis expressed in hourly 
time intervals and averaged ODBA values 
on the y-axis. The bottom plot shows the 
19 data points from the visual observation 
dataset with the estimated hatch date 
(the midpoint between the last incubation 
observation and the first cygnet 
observation; purple dotted line).

TA B L E  4  Leave-one-out cross-validation used to compute the 
estimated log predictive density (ELPD) of three different models 
of trumpeter swan Cygnus buccinator activity; one fit with a single 
intercept, one with two intercepts and one with three intercepts. 
The higher ELPD for the model with two intercepts indicates that it 
has a higher predictive accuracy

Model syntax ELPD difference SE of difference

Two intercepts 0.0 0.0

Three intercepts −9.9 7.3

One intercept −188.4 19.0
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functionality for null-hypothesis testing and interval estimation for 
any model parameter within a fitted model object (Lindeløv, 2020).

Piecewise regression, and change point detection in general, is 
most appropriate when the objective is to partition a dataset into 
a limited number of heterogeneous segments that may correspond 
with different biological states. Alternative approaches, such as 
HMMs or BCPA, may be more appropriate when the goal is to iden-
tify recurring behavioural states (e.g. resting and foraging) using 
information derived from movement metrics (e.g. step lengths, 
turning angles). Although piecewise regression could be used in 
these situations, it will often be slower due to the computational 
challenges of estimating a large number of change points. Similar to 
BCPA, piecewise regression would also require a two-step approach 
in which segments are first identified and then later grouped into 
homogeneous categories. Unlike BCPA, however, the response data 
do not have to be Normally distributed when using mcp.

Many R packages can detect change points, although each has 
unique pros and cons. Several require a user-defined threshold to 
detect change points, such as changepoint (Killick & Eckley, 2014), 
bcp (Erdman & Emerson, 2007) and ecp (James & Matteson, 2014), 
but the selection of a threshold value may often be species-
specific and hard to generalize. The changepoint package, which 
only identifies change points based on abrupt changes in the 
mean or variance, may be a good option for a simple segmentation 
analysis, but it does not estimate uncertainty or provide meth-
ods for model evaluation or comparison. Other packages provide 
more flexibility in specifying a regression model, such as struc-
change (Zeileis et al., 2002) and segmented (Muggeo, 2008), but still 
offer limited options relative to mcp.

The mcp package offers rigorous statistical methodology, 
flexibility, ease of use and reproducibility. It allows the user 
to specify a unique model syntax for each segment between 
change points; detect changes in mean, variance and autocor-
relation; and it also allows for robust inference using full poste-
rior distributions for all parameters and change points. Previous 

knowledge of the study system can be directly incorporated 
when specifying parameter ranges and prior distributions. 
Although computational performance may slow with very large 
datasets, mcp includes parallel processing to increase computa-
tional efficiency. We provide a suite of worked examples and 
encourage others to consider using piecewise regression for 
identifying signals in biotelemetry data.
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