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Evidence has shown that certain methylation markers derived from blood can

mirror corresponding methylation signatures in internal tissues. In the current

study, we aimed to investigate two strong epigenetic predictors for life span,

derived from blood DNA methylation data, in tissue samples of solid cancer

patients. Using data from the Cancer Genome Atlas (TCGA) and the German

DACHS study, we compared a mortality risk score (MRscore) and DNAm-

PhenoAge in paired tumor and adjacent normal tissue samples of patients with

lung (N = 69), colorectal (n = 299), breast (n = 90), head/neck (n = 50),

prostate (n = 50), and liver (n = 50) cancer. To explore the concordance

across tissue and blood, we additionally assessed the two markers in blood

samples of colorectal cancer (CRC) cases and matched controls (n = 93) in

the DACHS+ study. TheMRscore was significantly elevated in tumor tissues

compared to normal tissues of all cancers except prostate cancer, for which an

opposite pattern was observed. DNAmPhenoAge was consistently higher in

all tumor tissues. The MRscore discriminated lung, colorectal, and prostate

tumor tissues from normal tissues with very high accuracy [AUCs of 0.87, 0.99

(TCGA) /0.94 (DACHS), and 0.92, respectively]. DNAmPhenoAge accu-

rately discriminated five types of tumor tissues from normal tissues (except

prostate cancer), with AUCs of 0.82–0.93. TheMRscore was also significantly

higher in blood samples of CRC cases than in controls, with areas under the

curve (AUC) of 0.74, whereas DNAmPhenoAge did not distinguish cases

from controls, with AUC of 0.54. This study provides compelling evidence

that blood-derived DNAm markers could reflect methylation changes in less

accessible tissues. Further research should explore the potential use of these

findings for cancer diagnosis and early detection.
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1. Introduction

DNA methylation (DNAm), one of the key epigenetic

processes, plays a critical role in tissue and cellular dif-

ferentiation such that different tissues are characterized

by distinct DNAm patterns [1,2]. Studies, however, via

either direct comparing DNAm profiles across tissues

[2,3] or exploring phenotype-related DNAm alterations

across tissues (such as adipose or brain tissues vs.

blood, and buccal cells vs. blood), have shown concor-

dance or correlation of a subset of methylation signa-

tures between tissues [4–8], suggesting the potential of

blood DNAm as a surrogate measure of methylation

at less accessible internal tissues. In the field of aging

research, Teschendorff et al. identified an age-depen-

dent signature based on 69 CpGs mapping to pro-

moter of polycomb group proteins, which is common

not only to multiple tissues including blood and

epithelial tissues, but also to the process of carcinogen-

esis [9]. Horvath developed a 353-CpG-based multitis-

sue age predictor, known as ‘Epigenetic clock’, which

can accurately predict age across a variety of tissues

(e.g., whole blood, blood mononuclear cells, colon,

adipose, liver, and lung) [10]. These findings support

the hypothesis that robust DNAm markers derived

from blood are able to mirror those in solid tissues.

Recently, two strong predictors for life span (time-

to-death due to all-cause mortality) have been devel-

oped using blood DNAm profiles [11,12]. We first

derived a 10-CpG-based mortality risk score

(MRscore) from a whole blood epigenome-wide associ-

ation study (EWAS) of mortality [12]. The MRscore

was shown to strongly predict all-cause and cause-

specific mortality, and to strongly correlate with other

well-established aging indicators (such as telomere

length, oxidative stress, frailty index, and the epige-

netic clock), while outperforming these indicators in

survival prediction [13–15]. The MRscore was first

derived and validated in two large German cohorts,

and its strong association with mortality has subse-

quently been confirmed in multiple large cohort studies

from the United States, such as the Framingham

Heart Study, the Women’s Health Initiative, and the

Normative Aging Study [11,16,17]. Later, Levine et al.

[11] developed another survival predictor by regressing

a phenotypic measure of mortality risk on 513 CpGs,

that is, DNAmPhenoAge, which showed an associa-

tion with mortality as strongly as that for the

MRscore. Although it was also developed based on

whole blood samples, the DNAmPhenoAge correlated

to various extents with chronological age in multiple

tissues (r = 0.47–0.92). A question of potential high

clinical interest is to what extent methylation changes

identified in blood to be predictive of major health

outcomes would reflect methylation changes on tissue

levels in the pathogenesis of major diseases, such as

various cancers. The aim of the current study was to

evaluate whether and to what extent the MRscore and

DNAmPhenoAge would differ between cancer tissue

and adjacent normal tissue for six common cancers,

including lung, colorectal, breast, head/neck, prostate,

and liver cancer. In parallel, we comparatively evalu-

ated the epigenetic clock-derived age acceleration, that

is, DNAmAge acceleration, a well-studied epigenetic

marker derived from multitissue analysis, which has

been shown to correlate with a wide spectrum of

health conditions [18–20]. To assess the concordance

from solid tissue to peripheral blood, we additionally

analyzed the three markers in blood samples of col-

orectal cancer (CRC) cases and matched controls.

2. Materials and methods

2.1. Study population

The analysis of paired tumor-normal tissues of six types

of cancers was based on the Cancer Genome Atlas

(TCGA) data, where DNAm data for tumor/adjacent

normal tissues were extracted from patients with lung

(n = 833/69), colorectal (n = 367/45), breast (n = 789/

90), head/neck (n = 528/50), prostate (n = 498/50), and

liver (n = 377/50) cancer. To preclude the impact of

interindividual variation in DNAm, our analyses

focused only on corresponding matched tumor and nor-

mal tissues from the same patients.

In addition, DNAm data of paired tumor and adja-

cent normal tissues of CRC patients were also drawn

from the German DACHS study, an ongoing large

population-based case–control study on CRC. The

DACHS study enrolls patients with histologically con-

firmed CRC from 22 hospitals in the Rhine–Neckar–
Odenwald region in southwestern Germany [21,22].

For 254 patients diagnosed between 2003 and 2007,

genome-wide DNAm assessment in paired tumor-nor-

mal tissues was available and included in the current

study. The study was approved by the ethical commit-

tees of the University of Heidelberg and of the Medi-

cal Chambers of Baden-W€urttemberg and Rhineland-

Palatinate. Written informed consent was obtained

from each participant.

The analysis in blood samples was carried out in the

German DACHS+ study, a satellite substudy to the

DACHS study. In brief, the DACHS+ study recruited
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819 CRC patients (age 55–75 years) referred by gen-

eral practitioners or gastroenterologists for surgery to

four hospitals in and around Heidelberg after diagno-

sis but before initiation of treatment between October

2006 and December 2014 [23]. Blood samples were

obtained before surgery. Epigenome-wide DNAm

analysis using the Infinium HumanMethylation450K

platform was conducted in blood samples of 93 ran-

domly selected DACHS+ CRC cases and 94 age- and

sex-matched controls randomly selected from the Blitz

Study, an ongoing epidemiological study recruiting

participants (age 55–75 years) of screening colono-

scopy in southwestern Germany [23]. The DACHS+
study was approved by the ethics committee of the

University of Heidelberg.

Methodologies in the current study conformed to

the standards set by the Declaration of Helsinki.

2.2. DNA methylation profiling and data

preprocessing

For the TCGA samples, IDAT format files of the Infi-

nium 450K methylation data were extracted from the

TCGA website (https://portal.gdc.cancer.gov/legacy-

archive/search/f). DNAm of paired tissue samples of

the DACHS and DACHS+ study was measured using

the Infinium Methylation450K BeadChip (Illumina

Inc., San Diego, CA, USA) at the Genomics and Pro-

teomics Core Facility of the German Cancer Research

Center, Heidelberg, Germany, according to the manu-

facturer’s instructions. Details of DNA isolation from

the tissue samples were described in a previous study

[22]. All methylation data were preprocessed following

the CPACOR pipeline [24]. Probes with detection P-

value > 0.01 and missing values > 5% were removed.

Quantile normalization was applied following separat-

ing the probe type into six categories, based on probe

type and color channel, using the ‘limma’ R package

included in the Bioconductor [25]. Methylation beta

values of the 10 CpGs and 513 CpGs, respectively,

included in the MRscore and DNAmPhenoAge calcu-

lation were extracted. Horvath’s DNAmAge was cal-

culated using the online tool available at https://

dnamage.genetics.ucla.edu/.

2.3. Statistical analysis

The MRscore was computed in a continuous form as

in our previous study [12], that is, as the sum of

weighted methylation beta values of 10 CpGs:

cg01612140*(�0.38253) + cg05575921*(�0.92224) + cg

06126421*(�1.70129) + cg08362785*(2.71749) + cg10321156*

(�0.02073) + cg14975410* (�0.04156) + cg19572487*

(�0.28069) + cg23665802*(�0.89440) + cg24704287*

(�2.98637) + cg25983901*(�1.80325). The weights

were taken from the original study [12]. DNAmPheno-

Age was calculated according to the formula reported

by Levine et al. [11]. The DNAmAge acceleration was

calculated as residuals of Horvath’s DNAmAge

regressed on chronological age.

The levels of MRscore, DNAmPhenoAge, and

DNAmAge acceleration were first described by box-

plots and compared between tumor and normal tissues

among each type of cancer patients and among cancer

stage-stratified patients by nonparametric Wilcoxon

signed-rank test. The performance of the three epige-

netic markers for discriminating tumor tissues from

normal tissues was evaluated using receiver operating

characteristic (ROC) curves, and areas under the curve

(AUCs) and confidence interval (CI) derived from

logistic regression. All analyses were repeated in blood

samples of CRC cases and controls.

Methylation data were preprocessed and normalized

in R (version 3.2.3). All statistical analyses were con-

ducted in SAS 9.4 (SAS Institute, Cary, NC, USA).

3. Results

The analyses on paired tumor-normal tissues were

based on 612 cancer patients. Characteristics of those

patients are presented in Table 1. The average age of

each type of cancer patients (except for breast cancer

[BC]) was above 60 years. Most patients had tumor

diagnosed at stage I or stage II (except head-and-neck

cancer).

3.1. Mortality risk score (MRscore)

Figure 1 shows the levels of MRscore among tumor and

normal tissues of all six types of cancer patients. Higher

levels of MRscore in tumor tissue than in adjacent nor-

mal tissue were observed for five types of cancers (except

prostate cancer), and the differences are most remark-

able for CRC patients in both TCGA and the DACHS

study (Fig. 1B). Consistently elevated MRscore in

tumor tissues was also seen across stage I to stage IV

tumors of each type of these cancers (Fig. S1). Among

prostate cancer patients, tumor tissue showed signifi-

cantly lower levels of the MRscore than normal tissues

(Fig. 1E). This resulted from several CpGs that consti-

tute the major components of the MRscore, which were

hypermethylated in prostate tumor tissues (Fig. S2),

such as cg06126421, cg24704287, and cg25983901, and

have large absolute values of weights in the MRscore

calculation, whereas these CpGs were hypomethylated

in other tumor tissues, particularly for lung and CRC.
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3.2. DNAmPhenoAge

Tumor tissues of all six types of cancers exhibited sig-

nificantly higher levels of DNAmPhenoAge than the

corresponding adjacent normal tissues (Fig. 2). Consis-

tent increases of DNAmPhenoAge across all stages of

tumor tissues were also observed for all six types of

cancers (Fig. S3).

3.3. DNAmAge acceleration

Unlike the pattern of the MRscore and DNAmPheno-

Age, DNAmAge acceleration was lower among tumor

tissues of lung, colorectal, head-and-neck, and prostate

cancer patients, compared to the corresponding adja-

cent normal tissues (Fig. 3). No difference in DNA-

mAge acceleration between tumor and normal tissues

of breast and liver cancer patients was seen (Fig. 3C,

F). These patterns were also observed when stratifying

patients by cancer stages (Fig. S4).

3.4. Discriminative performance of MRscore,

DNAmPhenoAge, and DNAmAge acceleration

Figure 4A shows that the MRscore can discriminate

lung, colorectal, and prostate tumor tissues from nor-

mal tissues with very high accuracy (AUCs of 0.87–
0.99). DNAmPhenoAge can accurately discriminate

five of six types of tumor tissues (except prostate

tumor) from normal tissues, with AUCs of 0.82–0.93
(Fig. 4B). Compared to the MRscore and DNAmPhe-

noAge, DNAmAge acceleration showed relatively

lower and limited accuracy for discriminating five of

six types of tumor tissues (except head-and-neck

tumor) from normal tissues (Fig. 4C). Overall, the

MRscore outperformed DNAmPhenoAge for colorec-

tal and prostate cancer tissue discrimination, and

DNAmPhenoAge outperformed the MRscore for

breast and liver cancer tissue discrimination. Both

MRscore and DNAmPhenoAge showed similarly high

accuracy for lung cancer (LC) tissue discrimination.

3.5. MRscore, DNAmPhenoAge, and DNAmAge

acceleration in blood samples of CRC cases and

controls

The characteristics of the CRC cases and controls are

presented in Table S1. Distribution of major risk fac-

tors for CRC, such as age [mean (SD), 65 (8.4)], sex,

smoking, body mass index, and colonoscopy history, is

comparable between cases and controls. MRscore is

significantly higher in cases than in controls (Fig. 5A),

whereas no difference in both DNAmPhenoAge and

DNAmAge acceleration was observed between cases

and controls (Fig. 5B,C). The MRscore showed mod-

est accuracy for discrimination of CRC cases from

controls (AUC of 0.74) and outperformed DNAmPhe-

noAge and DNAmAge acceleration (AUCs of 0.54

and 0.56, respectively).

4. Discussion

Based on both publicly available and local DNAm

data, the current study demonstrated distinct alter-

ations of two strong survival predictors, that is, the

MRscore and DNAmPhenoAge, in tumor tissue com-

pared to adjacent normal tissue samples of patients

with common forms of cancer. The MRscore accu-

rately differentiated lung, colorectal, and prostate

tumor tissues from normal tissues (AUCs of 0.87–
0.99), and DNAmPhenoAge accurately differentiated

lung, colorectal, breast, head/neck, and liver tumor tis-

sues from adjacent normal tissues (AUCs of 0.82–
0.93). Our findings thus further substantiate the evi-

dence that the two predictors are robust epigenetic

markers of health outcomes. The consistent pattern of

MRscore across target tissue and blood samples of

CRC patients strengthens the hypothesis that blood-

Table 1. Characteristics of cancer patients.

Characteristics

LC (n = 69)

TCGA

CRC

BC (n = 90)

TCGA

Head-and-neck

cancer

(n = 50) TCGA

Prostate cancer

(n = 50) TCGA

Liver cancer

(n = 50)

TCGA

(n = 45)

TCGA

(n = 254)

DACHS

Age (mean � SD) 67.6 � 11.0 69.4 � 12.3 69.7 � 10.5 57.9 � 15.3 62.6 � 10.7 62.4 � 6.5 62.7 � 16.1

Men (N/%) 43 (62.3) 24 (53.3) 124 (58.2) 38 (76.0) 50 (100.0) 30 (60.0)

Stages (N/%)

I 40 (58.8) 5 (11.1) 41 (19.2) 13 (14.6) – – 21 (52.5)

II 11 (16.2) 21 (46.7) 79 (37.1) 55 (61.8) 8 (16.0) – 8 (20.0)

III 14 (20.6) 10 (22.2) 65 (30.5) 20 (22.5) 10 (20.0) – 10 (25.0)

IV 3 (4.4) 9 (20.0) 28 (13.2) 1 (1.1) 32 (64.0) – 1 (2.5)
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derived methylation markers could mirror tumori-

genesis-related methylation changes in less accessible

tissues.

The MRscore was computed based on 10 CpGs

derived from direct regression of mortality (time-to-

death) on DNAm levels in a large EWAS, in which

the majority of participants were healthy individuals at

the time of blood collection and the MRscore strongly

predicted their mortality during 14 years of follow-up

[12]. DNAm was quantified among participants with

Fig. 1. MRscore in tumor-normal tissue pairs of patients with LC (n = 69; A), CRC (n = 299; B), BC (n = 90; C), head-and-neck cancer

(n = 50; D), prostate cancer (n = 50; E), and liver cancer (n = 50; F). Difference between tumor and normal tissues was examined using

nonparametric Wilcoxon signed-rank test.
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average age of 62 at baseline (range, 50–75 years), for

whom common chronic diseases, such as malignant

diseases, are the predominant causes of death [26]. The

MRscore in nature thus captures and aggregates the

risk of developing and surviving common chronic dis-

eases including major cancers. The DNAmPhenoAge

was developed through first estimating a phenotypic

age based on clinical biomarkers and chronological

Fig. 2. DNAmPhenoAge in tumor-normal tissue pairs of patients with LC (n = 69; A), CRC (n = 299; B), BC (n = 90; C), head-and-neck

cancer (n = 50; D), prostate cancer (n = 50; E), and liver cancer (n = 50; F). Difference between tumor and normal tissues was examined

using nonparametric Wilcoxon signed-rank test.
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age, followed by regressing this phenotypic age on

DNAm levels of 513 CpGs [11]. This two-step-pro-

duced DNAmPhenoAge is thus in principle an esti-

mator of biological aging, a major risk factor for

cancer [27]. In line with the previous findings that

high levels of MRscore and DNAmPhenoAge corre-

late with increased risk of adverse outcomes [11,12],

we found elevated levels of the two markers in

Fig. 3. DNAmAge acceleration in tumor-normal tissue pairs of patients with LC (n = 69; A), CRC (n = 299; B), BC (n = 90; C), head-and-neck

cancer (n = 50; D), prostate cancer (n = 50; E), and liver cancer (n = 50; F). Difference between tumor and normal tissues was examined

using nonparametric Wilcoxon signed-rank test.
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tumor tissues rather than in normal tissues. This

suggests that regulation of DNAm patterns in CpGs

included in the MRscore and DNAmPhenoAge

could potentially be relevant for tumorigenesis in

solid tissues.

Solid tumors are constituted of malignant cells as well

as nonmalignant cell populations that largely overnum-

ber tumor cells [28,29]. Tumors are thus abundantly

infiltrated by leukocytes, so-called tumor-infiltrating

leukocytes (TILs), which consist of immune cells (such

Fig. 4. ROC curves for discriminating tumor tissues from normal tissues of common cancer patients by MRscore (A), DNAmPhenoAge (B),

and DNAmAge acceleration (C).

Fig. 5. MRscore, DNAmPhenoAge, and DNAmAge acceleration in blood samples of CRC cases (n = 93) and controls (n = 94) [A-C;

difference between cases and controls was examined using nonparametric Wilcoxon signed-rank test], and in discrimination of cases from

controls in the DACHS+ study (D).
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as T cells, B cells, natural killer cells, macrophages, neu-

trophils, and eosinophils) and play a fundamental role

in cancer immune surveillance [30]. Consistent methyla-

tion changes in the TILs and leukocytes in the periph-

eral blood might explain why the MRscore and

DNAmPhenoAge, which were originally derived from

blood sample analysis, showed such strong discrimina-

tion between tumor and adjacent tissues for most of the

cancers studied. In the current study, we also observed

variations of the performance of the MRscore and

DNAmPhenoAge in tumor/normal tissue discrimina-

tion between different types of tumors, that is, the

MRscore outperformed DNAmPhenoAge for colorectal

and prostate cancer tissue discrimination, whereas

DNAmPhenoAge outperformed the MRscore for breast

and liver cancer tissue discrimination. This, on the one

hand, may result from differential methylation profiles

of the two markers, with a complete lack of overlap

between the 10 CpGs in the MRscore and the 513 CpGs

in DNAmPhenoAge. On the other hand, the differences

may also be explained by heterogeneity of the TILs

across various tumors, as compelling evidence from

tumor immunology has shown that the abundance and

composition of TILs strikingly vary with tumor type

and indicate differential prognostic and predictive value

[28–30]. Furthermore, pathophysiological, immune infil-

trate promoted inflammation in tumor microenviron-

ment is consistent with potential biological functions of

the DNAm markers in the MRscore and DNAmPheno-

Age. For example, in addition to four CpGs in the

MRscore mapped to genes involved in various cancers

(cg23665802 in MIR19A, cg08362785 in MKL1,

cg19572487 in RARA, cg05575921 in AHRR) [31–39],
three CpGs in the MRscore (cg05575921, cg06126421,

and cg08362785) were identified to correlate with C-re-

active protein, a sensitive indicator of chronic inflamma-

tion, in a meta-analysis of EWAS [40]. Six CpGs in the

MRscore are strongly related to tobacco smoking

[12,41,42], a factor with well-established strong effects

on inflammation/immune processes [43,44] and 18 types

of cancer such as lung, colorectal, and liver cancer [45],

[46]. For DNAmPhenoAge, Levine et al. [11] conducted

GO enrichment analysis and observed enrichment for a

number of pro-inflammatory signaling pathways,

including but not limited to regulation of inflammatory

response, tumor necrosis factor-mediated signaling

pathway, and positive regulation of NFkappaB tran-

scription factor activity. Taken together, notwithstand-

ing the need to further unravel a clear picture of how

the MRscore and DNAmPhenoAge are related to can-

cer development and progression, TILs and their

involved inflammatory/immunologic responses may

explain our findings.

Previous EWASs that investigated cancer-related

DNAm signatures across the whole genome through

direct comparison of tumor and adjacent normal tis-

sues have disclosed numerous differentially methylated

CpG sites of tumor tissues relative to normal tissues

[22,47,48]. It is thus not difficult to derive algorithms

with sufficient amount of CpGs, which could reach

high distinction between tumor and normal tissues

when analyzing tissue samples. However, algorithms

derived in such a way usually exhibit completely differ-

ent performance in nontarget tissues and can hardly

be transferred to blood samples for clinical applica-

tion, whereas the MRscore and DNAmPhenoAge bear

potential concordance in blood and target solid tissues,

as illustrated by the MRscore that elevated in both

tumor tissue and blood samples of CRC patients in

the current study. In addition, we in parallel assessed

the well-studied Horvath’s epigenetic clock, which was

derived from multitissue analysis and combined far

more CpGs (n = 353) than the MRscore (n = 10). Our

study did not yield evidence that this epigenetic clock

outperformed the MRscore in terms of tumor-normal

tissue discrimination, even though it has been linked

to various chronic diseases including cancers, such as

LC and BC [18–20]. This finding is also not surprising

given that the effect sizes for the associations of the

epigenetic clock reflected age acceleration with health

conditions are typically small or moderate. Neverthe-

less, it is worthwhile pointing out that the MRscore

and DNAmPhenoAge are indicative of the presence of

multiple cancers rather than of a specific cancer. How-

ever, variations of the MRscore and DNAmPhenoAge

between cancers were also found, including but not

limited to the opposite pattern of MRscore in prostate

cancer tissue vs. normal tissue; thus, their applications

in specific cancers need to be explored by future

research.

In contrast to the MRscore and DNAmPhenoAge

that were developed to capture the risk and physiologi-

cal dysregulation [11,12], Horvath’s epigenetic clock

was built upon methylation markers that are strongly

correlated with chronological age and trained to be an

age estimator [10]. In the current study, we found,

compared to the consistent pattern of the MRscore

and DNAmPhenoAge in tumor vs. normal tissues,

opposite patterns for the DNAmAge acceleration

based on Horvath’s epigenetic clock. This is in line

with findings from previous studies that in many types

of cancer tissues, age-associated DNAm signatures

hardly correlated with chronological age of the cancer

patients and DNAmAge is often predicted to be

younger [49,50]. A plausible explanation is that DNA-

mAge estimated in tumor tissue may partly reflect the
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state of aging in the tumor-initiating cells, the cancer

stem cells, which exhibit young biological age [10].

However, a caveat needs to be considered given the

relatively small sample size of each cancer type in the

current study.

In the current study, although we examined the

DNAm-based algorithms in several common forms of

cancer and yielded basically consistent patterns across

most cancers, the sample size for each cancer type was

rather limited (< 100 pairs of tissue samples except for

CRC). Another major limitation of the current study

is that we assessed the DNAm-based algorithms in

paired tissues and blood samples only for CRC

patients, and were not able to investigate their levels in

both target tissues and blood samples of other cancer

patients and healthy controls. The analyses for CRC

were not conducted in tissues and blood samples from

the same patients, which may bring up additional vari-

ation. Disconcordance of DNAmPhenoAge between

tissue and blood samples based on the current CRC

analyses thus should be interpreted with caution and

should not be extrapolated to other types of cancers.

Future studies with a large number of ‘tripled sam-

ples’, including blood, tumor, and adjacent normal tis-

sues of the same patients, along with blood samples

from tumor-free participants, are needed to confirm

our findings, clarify the relevant biological pathways,

and evaluate the potential use of the blood-based algo-

rithms for cancer diagnosis and early detection.

5. Conclusions

The current study demonstrated that two DNAm-

based algorithms, which were previously shown to be

strongly predictive of mortality when measured in

blood samples, were also indicative of methylation

changes in tissues of various common cancers, suggest-

ing that they might reflect tumor-related methylation

changes. TILs and the underlying inflammatory pro-

cess may explain potential concordance of methylation

changes in both blood and solid tumor tissues, which,

however, needs to be further explored by future studies

with simultaneous collection and analyses of blood

and tissue samples. Given the properties of easy acces-

sibility and processing of whole blood samples, the use

of DNAm-based algorithms for cancer diagnosis and

early detection should be explored in future research.
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Fig. S1. Stage-specific levels of MRscore in paired

tumor and normal tissues of 69 lung cancer (LC)

patients from the TCGA (A), 45 colorectal cancer

(CRC) patients from the TCGA (B), 254 CRC patients

from the DACHS study (C), 90 breast cancer (BC)

patients from the TCGA (D), 50 head-and-neck (HN)

cancer patients from the TCGA (E), and 50 liver can-

cer patients from the TCGA (F).

Fig. S2. Methylation level of the 10 CpGs in MRscore

by tumor and normal tissues of LC (A), CRC (B), BC

(C), head/neck cancer (D), prostate cancer (E), and

liver cancer (F) patients from the TCGA, and of CRC

(G) patients from the DACHS study.

Fig. S3. Stage-specific levels of DNAmPhenoAge in

paired tumor and normal tissues of 69 LC patients

from the TCGA (A), 45 CRC patients from the

TCGA (B), 254 CRC from the DACHS study (C), 90

BC patients from the TCGA (D), 50 HN cancer

patients from the TCGA (E), and 50 liver cancer

patients from the TCGA (F).

Fig. S4. Stage-specific levels of DNAmAge acceleration

in paired tumor and normal tissues of 69 LC patients

from the TCGA (A), 45 CRC patients from the

TCGA (B), 254 CRC from the DACHS study (C), 90

BC patients from the TCGA (D), 50 HN cancer

patients from the TCGA (E), and 50 liver cancer

patients from the TCGA (F).

Table S1. Characteristics of the CRC cases and con-

trols in the DACHS+ study.

2123Molecular Oncology 14 (2020) 2111–2123 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd

Y. Zhang et al. Methylation predictors discriminate tumor tissue


	Outline placeholder
	mol212738-aff-0001
	mol212738-aff-0002
	mol212738-aff-0003
	mol212738-aff-0004
	mol212738-aff-0005
	mol212738-aff-0006
	mol212738-aff-0007
	mol212738-aff-0008
	mol212738-tbl-0001
	mol212738-fig-0001
	mol212738-fig-0002
	mol212738-fig-0003
	mol212738-fig-0004
	mol212738-fig-0005
	mol212738-bib-0001
	mol212738-bib-0002
	mol212738-bib-0003
	mol212738-bib-0004
	mol212738-bib-0005
	mol212738-bib-0006
	mol212738-bib-0007
	mol212738-bib-0008
	mol212738-bib-0009
	mol212738-bib-0010
	mol212738-bib-0011
	mol212738-bib-0012
	mol212738-bib-0013
	mol212738-bib-0014
	mol212738-bib-0015
	mol212738-bib-0016
	mol212738-bib-0017
	mol212738-bib-0018
	mol212738-bib-0019
	mol212738-bib-0020
	mol212738-bib-0021
	mol212738-bib-0022
	mol212738-bib-0023
	mol212738-bib-0024
	mol212738-bib-0025
	mol212738-bib-0026
	mol212738-bib-0027
	mol212738-bib-0028
	mol212738-bib-0029
	mol212738-bib-0030
	mol212738-bib-0031
	mol212738-bib-0032
	mol212738-bib-0033
	mol212738-bib-0034
	mol212738-bib-0035
	mol212738-bib-0036
	mol212738-bib-0037
	mol212738-bib-0038
	mol212738-bib-0039
	mol212738-bib-0040
	mol212738-bib-0041
	mol212738-bib-0042
	mol212738-bib-0043
	mol212738-bib-0044
	mol212738-bib-0045
	mol212738-bib-0046
	mol212738-bib-0047
	mol212738-bib-0048
	mol212738-bib-0049
	mol212738-bib-0050


