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Abstract: The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegener-
ative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an
attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic
properties in the brain of our recently developed A2AAR–specific antagonist radiotracer [18F]FLUDA.
For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–
treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of
mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental
analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model
(SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer
distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of
[18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist
istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis
showed a 20% lower A2AAR availability in the rotenone–treated mice compared to the control–aged
group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g−1) and BPND values
(1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA
in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non–invasive quantitation of
altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.
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1. Introduction

Besides being a constituent of nucleic acids, the nucleoside adenosine also represents
an important signalling molecule, modulating neurotransmission and physiological pro-
cesses by activating at least four G–protein–coupled adenosine receptor subtypes: A1, A2A,
A2B, and A3 [1–3]. All these adenosine receptor subtypes are present in the brain, among
which the adenosine A2A receptor (A2AAR) has the highest expression in the striatum [1].
In that region, the A2AAR interacts with dopamine signalling by regulating the output
of the extrapyramidal motor system [4]. Striatal A2AARs mainly occur in the medium
spiny neurons of the dopamine D2 receptor expressing indirect striatal output pathways
projecting to the subthalamic nucleus [5]. A2AARs frequently form heterodimers in complex
with other G–protein coupled receptors such as the dopamine D2, metabotropic glutamate
mGluR5, cannabinoid CB1, and adenosine A1 receptors [6]. Hypoxanthine caffeine is an
antagonist of all four adenosine receptor subtypes, with the highest affinity towards the
A2AAR (Ki(human) = 9.5–23.4 mM) [7,8], which is thought to mediate its psychostimulant
and nootropic effects [9].

The A2AARs modulate GABAergic, glutamatergic, and cholinergic responses in the
striatum [10], and an altered receptor expression is implicated in neurodegenerative dis-
orders such as PD [11], as well as HD [12] and Alzheimer’s disease [13]. New treatment
strategies in PD seek to potentiate the efficacy of dopamine–replacement therapy by target-
ing adenosine–dopamine interactions [10], especially in the context of levodopa–induced
dyskinesias [14]. Additionally, A2AAR antagonist treatment had neuroprotective effects
attributed to its anti–inflammatory actions [15–17], in contrast to the first–line PD treatment
with levodopa [18]. The A2AAR antagonist istradefylline (KW–6002, NouriastTM) has
recently received FDA approval for adjunctive treatment in patients with PD [19], while a
phase III trial with preladenant (SCH 420814) was terminated due to a lack of efficacy [20].
The highly selective A2AAR antagonist tozadenant (SYN–115) [21] was well–tolerated in a
phase IIb study as a levodopa adjunct in PD patients [22], but was discontinued at phase
III because of hematological toxicity [20].

Non–invasive receptor occupancy studies by positron emission tomography (PET) can
serve to determine dose–dependent target engagement for optimisation of new medications
and to provide non–invasive biomarkers for assessing neuroreceptor changes in PD and
other progressive neurodegenerative diseases [23]. A number of PET tracers are available
for assessing A2AAR availability in the living brain, e.g., [11C]KF17837 [10], [11C]CSC [11],
[11C]KF21213, and [11C]SCH442416, or the 18F–labeled tracers [18F]MRS5425/[18F]FESCH
and [18F]MNI–444, of which some suffer from a low signal–to–noise ratio or slow kinet-
ics [24]. We have recently reported that deuteration of the alkyl chain in [18F]FLUDA led to
improved metabolic stability and negligible cerebral uptake of radiometabolites compared
to the isotopologue [18F]FESCH in CD–1 mice [25,26].

In the present study, we evaluate the non–displaceable binding potential (BPND) of
[18F]FLUDA in healthy CD–1 mice and investigate its suitability for detecting striatal
A2AAR changes in a rotenone–induced murine PD model. Aiming towards clinical transla-
tion, we also characterise the binding of [18F]FLUDA in pigs–a species with similar brain
development as humans [27], which also offers a much larger brain size than rodents, thus
allowing better quantitation and minimising partial volume effects.



Pharmaceuticals 2022, 15, 516 3 of 18

2. Results

2.1. Non–Compartmental Analysis and Determination of [18F]FLUDA BPND in Healthy
CD–1 Mice

First, we retrospectively calculated the kinetic parameters in the mouse brains by
non–compartmental analysis of the [18F]FLUDA PET time–activity curves (TAC) for vehicle
and blocking conditions (tozadenant or istradefylline pre–treatment) from a published
data set [25]. As previously described, treatment with istradefylline, but not tozadenant,
significantly reduced the area under the curve (AUC) in the murine striatum (Tables 1
and 2). The pre–treatment with tozadenant was without effect on the kinetic parameters
calculated for the target region striatum or for the reference region cerebellum (Table 1).
In contrast, the pre–treatment with istradefylline tended to shorten the time–to–peak and
to diminish the TAC peak value in the striatum to a level comparable with the values in
the cerebellum. Hence, the mean residence time (MRT) was significantly reduced in the
striatum (MRTveh: 20 ± 2 min vs. MRTistra: 14 ± 0 min, p < 0.001) (Table 2). In accordance
with the observed AUC0–60 min values, pre–administration of istradefylline did not alter the
MRTs in the cerebellum, validating its use as a reference region (Tables 1 and 2).

Table 1. Non–compartmental pharmaokinetic parameters derived from the time–activity curves
of [18F]FLUDA in target and reference regions in healthy CD–1 mice with vehicle (veh, n = 8) or
tozadenant (toz, n = 4) pre–treatment.

Brain Region Time–to–Peak
(min)

TAC Peak Value
(SUV)

AUC0–60 min
a

(SUV · min)
MRT
(min)

Veh Toz p–Value Veh Toz p–Value Veh Toz p–Value Veh Toz p–Value

Striatum 3.0 ± 0.8 3.6 ± 2.0 0.22 1.0 ± 0.2 0.8 ± 0.1 0.18 23 ± 8 18 ± 4 0.12 20 ± 2 18 ± 8 0.30
Cerebellum 0.9 ± 0.2 1.0 ± 0.3 0.22 0.7 ± 0.3 0.7 ± 0.1 0.49 6 ± 3 5 ± 1 0.44 16 ± 1 15 ± 1 0.35

p–value
(Striatum vs. Cerebellum) <0.01 0.02 – 0.05 0.14 – <0.01 <0.01 – <0.01 0.24 –

p–value—Student’s t–test, a data adapted from [25].

Table 2. Non–compartmental pharmaokinetic parameters derived from the time–activity curves
of [18F]FLUDA in target and reference regions in healthy CD–1 mice with vehicle (veh, n = 8) or
istradefylline (istra, n = 4) pre–treatment.

Brain Region Time–to–Peak
(min)

TAC Peak Value
(SUV)

AUC0–60 min
(SUV · min)

MRT
(min)

Veh Istra p–Value Veh Istra p–Value Veh Istra p–Value Veh Istra p–Value

Striatum 3.0 ± 0.8 1.0 ± 0.3 <0.01 1.0 ± 0.2 0.7 ± 0.2 0.04 23 ± 8 5 ± 2 <0.01 20 ± 2 14 ± 0 <0.01
Cerebellum 0.9 ± 0.2 0.9 ± 0.3 0.32 0.7 ± 0.3 0.8 ± 0.5 0.31 6 ± 3 6 ± 3 0.36 16 ± 1 17 ± 2 0.47

p–value
(Striatum vs. Cerebellum) <0.01 0.50 – 0.05 0.28 – <0.01 0.21 – <0.01 0.02 –

p–value—Student’s t–test.

Second, we estimated the BPND of [18F]FLUDA in the mice by simplified reference
tissue modelling (SRTM), which does not require arterial input function. The low affinity
of tozadenant towards the murine A2AAR (Ki = 246 nM, [25]) is reflected by the kinetic
parameters derived from the brain TACs (Table 1). Therefore, we used the A2AAR an-
tagonist istradefylline (Ki = 58 nM, [25]) as a blocking agent to determine the A2AAR–
specificity of [18F]FLUDA. The mean parametric BPND maps showed high total binding of
[18F]FLUDA (Figure 1A) in the mouse striatum and a complete blocking by pre–treatment
with istradefylline (Figure 1B); the striatal BPND declined from 3.9 ± 1.2 to zero (Table 3).
Additionally, the parametric maps did not suggest any displaceable binding in regions
other than the striatum.

PET estimates of radiotracer uptake in structures are inherently vulnerable to under-
estimation due the size of mouse striatum and net spillover of signal. Indeed, the mean
BPND values derived from a mouse brain atlas volume of interest (VOI) encompassing the
entire mouse striatum (3.9 ± 1.2) were significantly lower compared to findings for a 1
mm spherical VOI (5.9 ± 1.7, p < 0.0001), placed within the striatum, centered on the peak
activity (Table 3). The R2 and Akaike Information Criterion (AIC) provided similar values
for the SRTM analyses using either the atlas–based or 1 mm spherical VOIs.
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Figure 1. Mean BPND maps derived from simplified reference tissue modelling (SRTM) of
[18F]FLUDA in the brain of healthy CD–1 mice pre–treated with (A) vehicle (n = 8) or (B) the
A2AR antagonist istradefylline (1 mg/kg bodyweight, IV, n = 4).

Table 3. Striatal [18F]FLUDA BPND (SRTM, using the Ma–Benveniste–Mirrione–T2 Atlas whole
striatum template, or 1 mm diameter spherical VOI placed in the centroid of the target and reference
region of vehicle (veh, n = 8) and istradefylline pre–treated (istra, n = 4) healthy CD–1 mice.

Brain region BPND R2 AIC
Veh Istra p–Value Veh Istra Veh Istra

Striatum
T2–Atlas VOI 3.9 ± 1.2 0.0 ± 0.0 <0.0001 0.8 ± 0.1 0.8 ± 0.1 100 ± 16 142 ± 22

1 mm sphere VOI 5.9 ± 1.7 0.1 ± 0.2 <0.0001 0.8 ± 0.1 0.7 ± 0.1 106 ± 16 120 ± 16

p–value—Student’s t–test; R2—Spearman correlations; AIC—Akaike information criterion.

2.2. Non–Compartmental Analysis and Determination of the BPND in a C57BL/6JRj Murine
Rotenone–Induced Parkinson Disease Model

The [18F]FLUDA time–activity curves of the control and rotenone–treated mice were
determined retrospectively in the striatum target region and the cerebellum reference
region, using the atlas templates. The rotenone–treatment had no significant impact on
the radiotracer uptake to the striatum and cerebellum (Figure 2, Table 4). The TAC peak
values were observed at an earlier time point in the cerebellum compared to the striatum
(0.8 vs. 2.3 min) with lower magnitude (SUV of 0.8 ± 0.1 vs. 1.1 ± 0.2, p < 0.001), and
lower AUC0–60 min (7 ± 1 vs. 19 ± 2 SUV · min, p < 0.001), for both groups as expected for
a reference region.
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Table 4. Non–compartmental pharmaokinetic parameters derived from the time–activity curves of
[18F]FLUDA in target and reference regions in healthy (ctrl, n = 7) and rotenone–treated (rot, n = 6)
C57BL/6JRj mice.

Brain
Region

Time–to–Peak
(min)

Peak TAC Value
(SUV)

AUC0–60 min
(SUV min)

MRT
(min)

Ctrl Rot Ctrl Rot p–Value Ctrl Rot p–Value Ctrl Rot p–Value

Striatum 2.3 2.3 1.1 ± 0.2 1.1 ± 0.2 0.91 20 ± 3 19 ± 2 0.43 17 ± 1 17 ± 1 0.87
Cerebellum 0.8 0.8 0.7 ± 0.2 0.8 ± 0.1 0.45 6 ± 1 7 ± 1 0.19 17 ± 1 17 ± 1 0.59

p–value–Student’s t–test.

Nonetheless, the mean parametric BPND maps suggested a 20% lower striatal BPND
in the rotenone–treated mice compared to the control group (Figure 3, Table 5). The R2

and AIC were better for the SRTM analysis using the T2–Atlas VOI, although both BPND
evaluation strategies showed good agreement. Furthermore, the BPND was lower in the
rotenone–treated group regardless of the method of VOI delineation, as suggested also by
the TACs (Figure 2, Table 5).
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Figure 3. Mean parametric BPND maps derived from SRTM of (A) control mice (n = 7), and (B)
rotenone—-treated C57BL/6JRj mice (n = 6).

Table 5. Striatal BPND (SRTM) calculated using the Ma–Benveniste–Mirrione–T2 Atlas or use of a
1 mm spherical VOI within the target or reference region and R2 for control (n = 7) and rotenone–
treated (n = 6) C57BL/6JRj mice.

Brain Region BPND R2 AIC
Ctrl Rot p–Value Ctrl Rot Ctrl Rot

Striatum
T2–Atlas VOI 2.5 ± 0.4 2.0 ± 0.4 <0.001 0.9 ± 0.1 0.9 ± 0.0 91 ± 16 89 ± 11

1 mm sphere VOI 3.5 ± 0.7 3.2 ± 0.5 <0.001 0.8 ± 0.1 0.8 ± 0.1 121 ± 9 120 ± 13

p–value—Student’s t–test; R2—Spearman correlations; AIC—Akaike information criterion.

2.3. Plasma Metabolism of [18F]FLUDA in Pigs

We quantified the parent and radiometabolite fractions for [18F]FLUDA in plasma
samples of pigs by radio–HPLC. As shown in Figure 4A, we detected up to four different
radiometabolites (Figure 4A). As shown in Figure 4B, the parent fraction of [18F]FLUDA
had declined to 50% at 15 min post–injection in the control pigs, and to 50% at 22 min in
the tozadenant group, suggesting competitive inhibition of the enzymatic degradation of
the radiotracer by the high plasma concentration of tozadenant. Indeed, the plasma AUC
was higher in the tozadenant group (AUC0–90, tozadenant = 82 SUV · min) than in the control
group (AUC0–90 = 58 SUV · min, vehicle), suggesting a 40% increase in bioavailablility of
[18F]FLUDA.
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Figure 4. Determination of parent and radiometabolite fractions of [18F]FLUDA in plasma sam-
ples of pigs and the metabolite–corrected arterial input function. (A) Representative RP–HPLC
radio–chromatograms of plasma extracts from blood samples collected after IV administration of
[18F]FLUDA in pigs, (B) mean parent fractions in control and tozadenant–treated animals (n = 3,
mean ± SD), and (C) total plasma activity (circles and triangles) and the corresponding metabolite–
corrected, bi–exponentially fitted plasma input functions (lines) from representative pigs with (grey)
or without (black) tozadenant (bolus + infusion) treatment.

2.4. Kinetic Analysis of [18F]FLUDA Uptake into Different Porcine Brain Regions

We used the standard T1 CH. Malbert pig brain atlas [28] integrated into the PMOD
software for the definition of the cerebral subregions. The mean [18F]FLUDA TACs for
striatum (Figure 5A), cerebellum (Figure 5B), cerebral cortex (Figure 5C), and midbrain
(Figure 5D) indicate substantial blockade by pre–treatment with tozadenant only in the
striatum. Notably, the cerebellar [18F]FLUDA uptake was unaffected by blocking, and thus
meets an essential criterion for to serve as a reference region. The same figure also presents
the corresponding area–under–the–moment curves (AUMC) used for the calculation of
the MRT, along with the other non–compartmental kinetic parameters summarized in
Table 6. The TAC peak in the striatum was observed earlier after tozadenant treatment as
compared to the control group (1.6 vs. 5.5 min, p = 0.05), accompanied by a significantly
lower peak TAC value (SUV of 0.9 ± 0.2 vs. 1.3 ± 0.1, p = 0.03), and a significantly
reduced AUC0–90 min and AUMC0–90 min (p = 0.01), all indicating displaceable binding of
[18F]FLUDA in striatum. These parameters were unaffected by blocking in the other three
investigated pig brain regions. Interestingly, the MRT in all brain regions did not differ
under control and blocking conditions, indicating that tozadenant treatment did not alter
the washout kinetics of [18F]FLUDA from the brain.
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Figure 5. [18F]FLUDA mean time–activity curves in standardised uptake values (SUV; black lines)
and corresponding first moment curves (grey lines) in different brain regions of pigs with (solid lines,
circles) and without (dashed lines, triangles) injection of tozadenant. (A) striatum, (B) cerebellum,
(C) cortex, and (D) midbrain; n = 3, mean ± SD.

Table 6. Parameters derived from the non–compartmental analysis of the time–activity curves of
[18F]FLUDA in different brain regions of pigs treated with (toz) and without (veh) the A2AAR specific
antagonist tozadenant.

Brain Region
Time–to–Peak Time

(min)
TAC Peak Value

(SUV)
AUC0–90 min

(SUV min)
MRT
(min)

Veh Toz p–Value Veh Toz p–Value Veh Toz p–Value Veh Toz p–Value

Striatum 5.5 ± 2.8 1.6 ± 1.7 0.05 1.3 ± 0.1 0.9 ± 0.2 0.03 61 ± 9 34 ± 5 0.01 31 ± 2 30 ± 2 0.38
Cerebellum 1.5 ± 0.0 1.0 ± 0.5 0.43 1.0 ± 0.2 0.9 ± 0.3 0.32 30 ± 2 27 ± 5 0.27 31 ± 1 32 ± 2 0.22
Midbrain 2.5 ± 1.0 1.3 ± 1.0 0.11 1.1 ± 0.1 1.0 ± 0.3 0.30 27 ± 2 26 ± 6 0.35 27 ± 1 29 ± 2 0.17

Cortex 1.5 ± 0.0 1.3 ± 1.0 0.40 1.0 ± 0.2 0.9 ± 0.3 0.29 30 ± 2 29 ± 5 0.42 30 ± 1 32 ± 1 0.07

p–value—Student’s t–test.

2.5. Determination of the VT and BPND of [18F]FLUDA in the Pig Brain

The mean voxelwise total distribution volume (VT) maps of [18F]FLUDA were calcu-
lated by Logan plot analysis and the averaged parametric BPND maps by SRTM (Figure 6).
We did not attempt to evaluate the microparameters (K1, k2, k3, and k4) because of biased
plasma input functions in two animals. However, the compartmental analyses clearly
showed complete displacement of the striatal binding of [18F]FLUDA by tozadenant treat-
ment. The VT maps indicate a global non–specific distribution volume (VD) of about 7 mL ·
g−1 throughout the blocked pig brain. Notably, the VT was two to three–fold higher in the
unblocked striatum, while the mean BPND was 1.3 ± 0.4 (1.1 ± 0.3 in nucleus accumbens,
1.4 ± 0.4 in caudate nucleus, and 1.3 ± 0.4 in putamen according to VOI analysis) (Table 7).
Tozadenant pretreatment decreased the striatal BPND to 0.31 ± 0.17, corresponding to 76%
displacement of [18F]FLUDA. The magnitude of BPND was not significantly different from
zero in the other two brain regions examined, nor was there clear evidence for displacement
by tozadenant.
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Table 7. Mean estimates of total distribution volume (VT; Logan plot) and BPND (SRTM, cerebellum
reference region) in pig brain volumes of interest.

Brain
Region

VT (mL · g−1) BPND
Veh (n = 2) Toz (n = 2) Veh (n = 3) Toz (n = 3) p–Value

Striatum 14.6 8.5 1.32 ± 0.37 0.31 ± 0.17 <0.001
Cerebellum 8.7 7.3 reference reference –
Midbrain 6.5 7.0 0.04 ± 0.08 0.05 ± 0.10 0.47

Cortex 7.84 7.90 0.08 ± 0.10 0.1 ± 0.04 0.37
p–value—Student’s t–test.

3. Materials and Methods
3.1. General Information

All chemicals and reagents were purchased from commercial sources. Tozadenant
(toz) was obtained from abcr GmbH (Karlsruhe, Germany), dimethyl sulfoxide (DMSO)
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and Kolliphor® EL from Sigma–Aldrich (Steinheim, Deutschland), Ursotamin® and physio-
logical sodium chloride (saline) from Serumwerk Bernburg AG (Bernburg, Deutschland),
Stresnil® (40 mg/mL) from Elanco Deutschland GmbH (Bad Homburg, Deutschland),
Midazolam–ratiopharm® (5 mg/mL), and Heparin–Natrium–25000–ratiopharm® (25.000
IE/mL) from Ratiopharm GmbH (Ulm, Deutschland).

3.2. Radiosynthesis of [18F]FLUDA

[18F]FLUDA was prepared by a two–step one–pot manual (mice studies) or automated
(pig studies) radiosynthesis using a ethane–1,2–diyl–d4 bis(4–methylbenzenesulfonate and
the corresponding phenol precursor desmethyl SCH442416 (4–(3–(5–amino–2–(furan–2–
yl)–7H–pyrazolo[4,3–e][1,2,4]triazolo[1,5–c]pyrimidin–7–yl)propyl)phenol) as previously
published [25,29]. Quality control of [18F]FLUDA was performed by radio–TLC [silica
gel pre–coated plates (Polygram® SIL G/UV254, Roth, Germany), eluent mixture: ethyl
acetate/petroleum ether 6/1 (v/v)] and analytical (radio–)HPLC [ReproSil–Pur 120 C18–AQ
column (250 × 4.6 mm, particle size: 5 µm), 10–90–10% MeCN/20 mM NH4OAcaq., flow
rate: 1 mL/min]. The radiotracer was obtained with radiochemical yields of 19 ± 3%
(manual synthesis, end of bombardment = EOB) or 9 ± 1% (automated synthesis, EOB)
and radiochemical purities of ≥ 99%. [18F]FLUDA was formulated in an isotonic saline
solution (< 10% EtOH v/v and < 10% DMSO v/v), which was further diluted into 0.15 mL
or 5 mL saline solution for intravenous administration to mice and pigs, respectively.

3.3. Animals

All procedures involving animals were performed following national regulations
for animal research (Landesdirektion Sachsen, Reg.–Nr.: TVV 18/18; Reference number
DD24.1–5131/446/19).

Twelve female CD–1 mice aged 10–12 weeks and weighing 30–35 g were obtained
from the Medizinisch–Experimentelles Zentrum (MEZ) at University Leipzig (Leipzig,
Germany). Thirteen male mice (control n = 7; rotenone–treated n = 6) C57BL/6JRj (Janvier
Labs, Isle–saint–Genest, France), aged 14 months and weighing 27 to 36 g, were obtained
from Pan–Montojo of the Department of Ludwig–Maximilians–Universität (LMU) Munich.
The mice were housed with free access to water and food under a 12:12 h dark: light cycle
at a constant temperature of 24 ◦C.

Six pigs (three females and three males) aged six to 12 weeks and weighing 13.6 to
22.6 kg (dams: German Landrace x German Large White, sires: Piétran) were obtained
from the Lehr– und Versuchsgut Oberholz (Großpösna, Germany).

3.4. Oral Rotenone Administration

Wild–type C57BL/6JRj mice (12 months) were divided into two groups and treated
five days a week for two months. A 1.2 mm x 60 mm gavage tube (Unimed, Lausanne,
Switzerland) was used to administer 0.01 mL/g bodyweight of rotenone (Sigma–Aldrich,
Munich, Germany) solution corresponding to a 5 mg/kg daily dose to the rotenone–treated
group (n = 6). The control group (n = 7) was treated only with the vehicle solution (2%
carboxymethyl cellulose (Sigma–Aldrich, Munich, Germany) and 1.25% chloroform (Carl
Roth, Karlsruhe, Germany) [26].

3.5. Small Animal PET Imaging

The CD–1 mice were divided into three groups: a baseline group (n = 8) with intra-
venous vehicle injection (DMSO/Kolliphor/NaCL, 1:2:7, v/v) and a pre–treatment group
with a blocking agent administered by intravenous injection (istradefylline, 1.0 mg/kg;
Bio–Techne GmbH; Wiesbaden–Nordenstadt; Germany or tozadenant, 2.5 mg/kg; abcr
GmbH; Karlsruhe; Germany) eight or fifteen minutes prior to radiotracer injection. For the
acquisition of the dynamic PET recordings, mice were positioned prone in a custom–made
mouse holder (warmed to 37 ◦C), with the head fixed to a mouthpiece for the adminis-
tration of 2% isoflurane in 40% air and 60% oxygen (anaesthesia unit: U–410, Agnthos,
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Lidingö, Sweden; gas blender: MCQ, Rome, Italy) over the whole duration of the PET
study. The animals received an injection of [18F]FLUDA into a tail vein (3.1–9.7 MBq in
150 µL, 0.7–2.6 nmol/kg, Am at the timepoint of injection: 72–376 GBq/µmol for CD–1
mice; 3.7–8.2 MBq in 150 µL, 1.2–2.8 nmol/kg, Am: 81–113 GBq/µmol for C57BL/6JRj
mice). We initiated a 60 min PET/MR scan (Mediso nanoScan®, Budapest, Hungary) at
the time of tracer injection. Subsequently, a T1–weighted gradient–echo sequence (GRE,
repetition time = 20 ms, echo time = 6.4 ms) was performed for whole body attenuation
correction and anatomical orientation. Additionally, PET data were corrected for random
coincidences, dead time, and scatter. The list mode data were sorted into sinograms using a
framing scheme of 12 × 10 s, 6 × 30 s, 5 × 60 s, 10 × 300 s. The reconstruction parameters
were the following: 3D–ordered subset expectation maximization (OSEM), four iterations,
six subsets, energy window = 400–600 keV, coincidence mode = 1–5.

3.6. PET Imaging of Pigs

The pigs were initially anaesthetised with intramuscular injections of Stresnil®

(0.05 mL/kg bodyweight) and Ursotamin® (0.22 mL/kg bodyweight), and maintained
with intravenous administered Ursotamin® and Midazolam–ratiopharm® as required.
Additionally, for blood sampling, pigs received an intraperitoneal injection of 0.5 mL
Heparin–Natrium–25000–ratiopharm® shortly before starting the PET imaging. Pigs were
placed head–first and prone in an ECAT EXACT HR+ system (CTI/Siemens) for dynamic
PET imaging (90 min; frames: 4 × 15, 4 × 60, 5 × 120, 5 × 300 and 6 × 600 sec). Fifteen
minutes before [18F]FLUDA administration (123–229 MBq in 5 mL, 0.1–0.2 nmol/kg; Am
at the timepoint of injection: 52–186 GBq/µmol), we treated pigs with vehicle (DMSO:
Kolliphor® EL: saline in a 1:2:7 composition; n = 3) or tozadenant (2.5 mg/kg, followed by
continuous infusion of 0.9 mg/kg/h for the duration of the study). The radiotracer and the
pharmaceuticals were applied via a catheter placed in the auricular vein.

Reconstruction of the PET scans was done using filtered back projection with a Han-
ning filter, along with attenuation and further corrections as mandatory (scatter, dead time,
decay). A transmission scan with three rotating 68Ge rod sources performed prior to the
emission scan was used for attenuation correction. After completing the dynamic PET
recording, pigs were euthanised with an IV 5 mL dose of T61 (Intervet Deutschland GmbH,
Unterschleißheim, Germany).

3.7. Blood Sampling of Pigs

The hematocrit was measured in an ear vein blood sample collected just prior to imag-
ing. Blood samples of a volume between 0.5 and 1.0 mL were collected in intervals between
15 and 60 s by a peristaltic pump (P–1, Pharmacia Biotech Inc., Uppsala, Sweden) from a
catheter placed in a femoral artery using an autosampler (Fraction Collector FRAC–100,
Pharmacia Biotech Inc., Uppsala, Sweden). At circulation times after 40 min, blood samples
were drawn by hand every ten min. Subsequently, plasma was obtained by centrifugation
(15,000 rpm), and aliquots were counted in a Cobra gamma counter (Packard Instrument
Company, Meriden, CT, USA) cross–calibrated to the scanner, and decay corrected for
the fluorine–18 half–life. We obtained additional plasma samples for HPLC analysis of
radiometabolites at 2, 4, 6, 8, 16, 30, 60 and 90 min post injection (p.i.) of the radiotracer.

3.8. Analysis of Radiometabolites

Blood plasma was mixed with the two–fold volume of acetone/water (4/1; v/v),
precipitated proteins were removed by centrifugation, and the supernatants were con-
centrated and analysed by a semi–preparative RP–HPLC (Reprosil–Pur C18–AQ column
(150 × 10 mm; particle size: 10 µm) from Dr. Maisch HPLC GmbH (Ammerbruch; Ger-
many). Elution was obtained with a MeCN/20 mM NH4OAcaq gradient (pH 6.8) as follows:
0–5 min 18% MeCN, 5–20 min up to 90% MeCN, 20–22 min 90% MeCN, 22–23 min down
to 10% MeCN, 23–30 min isocratic 10% MeCN) at a constant flow rate of 3 mL/min.
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3.9. Data Analysis and Model Description

Image registration and brain volume of interest (VOI) analysis for mouse experiments
were performed with PMOD software (PMOD Technologies LLC, v.4.202, Zurich, Switzer-
land). The time–activity data are expressed as the mean standardised uptake value (SUV)
of the entire VOI. Non–compartmental analysis of achieved time activity curves (TACs)
were performed with Microsoft Excel to determine the time–to–peak, the TAC peak value,
the area under the curve (AUC):

AUC0−t(x) =
∫ t(x)

0
c(radioactivity)× dt

where c (radioactivity) is expressed as standardized uptake value normalized to the body
weight in g (SUV), the area–under–the–moment curve (AUMC):

AUMC0−t(x) =
∫ t(x)

0
t × c(radioactivity)× dt,

and the mean residence time (MRT):

MRT =
AUMC0−t(x)

AUC0−t(x)
.

Voxelwise maps of [18F]FLUDA BPND in the mouse brains were calculated in PMOD by
simplified reference tissue model (SRTM) with cerebellum as reference tissue, as previously
validated for the related radiotracer [18F]FESCH [30] and used as preferred reference region
in A2AAR PET studies [31,32]. For the evaluations, we compared two VOI delineations of
mouse striatum. First, the whole mouse striatum and whole cerebellum VOI from the Ma–
Benveniste–Mirrione–T2 atlas template [33], and second, a 1 mm diameter sphere centred
on the “hottest” voxels of the left and right striatum left and right and one positioned
in the centre of the cerebellum to avoid potential signal spill–in from adjacent structures
(Figure 7).
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the striatum and cerebellum regions.

For pig analysis in PMOD, the summed PET brain images were co–registered to the
standard T1 C.H. Malbert pig brain atlas [28] and time–activity curves were extracted from
the striatum, cerebellum, midbrain and cortex VOIs. The non–compartmental analysis of
the pig brain TACs was performed as stated above. Parametric maps of total distribution
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volumes (VT; mL · g−1) from two control and two tozadenant–treated pigs were calculated
by Logan analysis using the metabolite–corrected arterial input function (the plasma curves
from the two other scans were corrupted due to technical difficulties during the blood
sampling). We calculated the BPND with an SRTM using the cerebellum as a reference
region for all six pigs (Table 8). Parametric maps are presented as mean images from two
VT and three BPND analyses for control and blocking groups.

4. Discussion

In the present study, we performed non–compartmental analysis, with additional
compartmental analysis to determine the BPND of [18F]FLUDA (1) in healthy CD–1 mice,
(2) in a rotenone mouse model of PD, and (3) in healthy pigs. We confirmed the A2AAR–
specific striatal uptake of [18F]FLUDA in mice and pigs and the suitability of the cerebellum
as a reliable reference region for SRTM analysis. Non–compartmental analysis in the
A2AAR antagonist–treated animals revealed no impact on the peak time, TAC peak value,
MRT, and accumulated activity over time of [18F]FLUDA in the reference region, or in any
brain regions other than striatum in mice and pigs. In the pig studies, the time–to–peak,
TAC peak value, and accumulated activity in the striatum were significantly lower in the
group with tozadenant pretreatment, whereas no such effects were detectable in mice with
tozadenant pretreatment. However, pre–treatment of mice with istradefylline resulted in
significantly lower values for these pharmacokinetic parameters, including a significantly
decreased MRT of the tracer in the striatum. The SRTM analysis demonstrated mouse strain
and species (mouse vs. pig) differences in the striatal [18F]FLUDA BPND. Interestingly, we
revealed a reduction in BPND in the striatum of the rotenone–treated mice compared to
control mice. In pigs, a receptor blockade with tozadenant evoked significantly decreased
VT and BPND values in the striatum relative to the baseline condition, thus validating the
pharmacokinetic results from the non–compartmental analysis.

Table 8. A2AR receptor affinity (Ki), selectivity, and the striatal binding potential (BPND) derived by
SRTM (or as stated) of different A2AAR-targeting PET radiotracers of different species.

Radiotracer Ki (nM) of ligands Ratio A1/A2A
BPND in Striatum and
Striatal Substructures References

[11C]TMSX
([11C]KF18446)

Rat (forebrain membranes) a:
5.9

Rat:
270

Human:
1.5 (DVR + 1) [34,35]

[11C]KW-6002

Human (CHO cells) a:
12/9.1

Rat (synaptosome
preparations) a:

2.2/1.6
Mouse (synaptosome

preparations) a:
18.9

Human:
>31.5
Rat:
32.4

Mouse:
56

Human:
Caudate 3.4;
Putamen 2.9;

Nucleus accumbens 2.4

[5,36,37]

[11C]SCH442416

Human (CHO cells) b:
0.05

Rat (striatal membranes) b:
0.5

Human:
23145
Rat:
3630

Macaca nemestrina:
0.74

Human:
Caudate 0.53/0.40/0.96 *;
Putamen 0.99/0.97/1.67 *

[14,38,39]

[11C]Preladenant
(SCH 420814)

Human(HEK293 cells) b:
1.1
Rat:
2.5

Human:
343
Rat:
1340

Wistar rat:
5.0 to 6.1 [40–42]

[18F]FPSCH 53.6 Wistar rat:
1.4–2.6 [30]

[18F]MRS5425/[18F]FESCH
Human (HEK293

cells/CHO-K1 cells):
12.4 a/0.6 c

Human:
~ 806/338

Wistar rat:
1.6–3.4

CD-1 mouse:
2.7–3.8

[26,30,43]
Present study
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Table 8. Cont.

Radiotracer Ki (nM) of ligands Ratio A1/A2A
BPND in Striatum and
Striatal Substructures References

[18F]MNI-444
Human (HEK293 cells) a:

2.8

Macaca mulatta:
Caudate 5.5–6.8;
Putamen 8.0–9.6;

Nucleus accumbens
2.6–3.5

Human:
Caudate 2.6–3.6;
Putamen 4.1–5.5;

Nucleus accumbens
1.3–2.5

[21,44]

[18F]FLUDA
Human (CHO-K1 cells):

0.7
Human:
>1400

CD-1 mouse:
3.9–5.9

Mouse (C57BL/6JRj,
rotenone treated):

2.5–3.5
Pigs:

Caudate 1.1–2.1;
Putamen 0.9–1.9;

Nucleus accumbens:
0.8–1.5

[25]
Present study

* BPND in stated brain regions of human subjects: controls/PD/PD with levodopa-induced dyskinesia; in vitro
displacement of a-[3H]CGS21680 (KD human A2AAR = 22 to 28 nM, KD rat A2AAR = 14/57 nM, KD mouse A2AAR
= 65 nM, KD pig A2AAR = 23 nM, agonist [45,46]), b-[3H]SCH58261 (KD human A2AAR = 2.3 nM, antagonist [47]),
c-[3H]ZM241385 (KD human A2AAR = 0.23 nM, KD rat A2AAR = 0.14/0.4 nM [46,48]).

Table 8 shows BPND values in striatum ranging from 0.74 to 9.6 for other radiotracers
used for A2AAR imaging in different species [5,21,30,49]. The Ki values of those radiotracers
in vitro are in the range of 0.05 nM to 12 nM for the human A2AAR and 0.5 to 18.9 nM
for the A2AAR of rodents. Hence, FLUDA possesses a high affinity towards the human
A2AAR (Ki = 0.7 nM), as shown by competition assays with [3H]ZM241385 [25]. Analyses
by the SRTM method have determined the cerebral cortex, midbrain, and cerebellum to
serve as reference regions for the calculation of BPND in striatum [21,30,44]. In the present
study, we used the cerebellum as a reference region, with the VOI positioned and scaled
to avoid significant partial volume effects, even in the small mouse brain. A2AAR agonist
treatment evoked an increase of cerebral blood flow in rats [49] and the A2AAR antagonist
tozadenant decreased regional cerebral blood flow in humans [50,51]. While treatment–
evoked perfusion changes might conceivably alter [18F]FLUDA uptake, we saw no effects
of A2AAR blockade in the non–compartmental analysis of reference regions in healthy
CD–1 mice and pigs. The reductions in the time–to–peak, TAC peak values, and AUCs in
the striatum under blocking conditions compared to baseline reflect the A2AAR–specific
binding in this brain region. The striatal BPND values of [18F]FLUDA determined in healthy
CD–1 mice under baseline (3.9) and istradefylline blocking condition (0.0) indicate high
specificity of the radiotracer towards the A2AAR. The apparent magnitude of BPND in the
mouse striatum using a 1 mm spherical VOI placed near the centroid of activity (5.9) was
considerably higher compared to the BPND estimation by the atlas–based VOI for whole
striatum (3.9). This is indicative of the penalty in accuracy due to spillover of signal from
the mouse striatum, and may favour the use of a more stringent VOI in rodent PET studies.
Similarly, the limited spatial resolution of PET led to systematic underestimation of the true
BPND of the D2R radiotracer [18F]fallypride in the mouse striatum relative to gold standard
ex vivo determination [52].

[18F]FLUDA presents a more favourable BPND (3.9–5.9 in CD–1 mice), compared to
its isotopologue [18F]FESCH (BPND of 1.6–3.4 in rat striatum [30] vs. 2.7–3.8 in CD–1 mice
(data not shown). This difference might reflect methodological factors, or inherent effects
of deuteration on the ligand affinity. Furthermore, the enhanced stability of [18F]FLUDA
(parent fraction of > 99% in the mouse brain at 15 min p.i.) compared to [18F]FESCH
(parent fraction of 71% [26]) reduces the bias in quantitation due to brain–penetrant ra-
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diometabolites, which may be a factor explaining the higher BPND of [18F]FLUDA. In
the present study, the differing [18F]FLUDA BPND between C57BL/6JRj mice and CD–1
mice (2.5 ± 0.4 vs. 3.9 ± 1.2 respectively, p = 0.005) suggests an important effect of strain
on A2AAR availability in vivo. While the two mouse strains also differed with respect to
age, clinical PET studies in humans did not indicate important age–dependent changes in
A2AAR availability [53,54].

Rotenone treatment evokes behavioral parkinsonism and about 75% depletion of
striatal dopamine content in rodent [55]. Interestingly, we found reduced striatal A2AAR
availability in the rotenone model mice as compared to the control–aged group (Table 5).
Similarly, Zhou et al. showed a small decrease of striatal BPND with [11C]preladenant in
6–OHDA–induced parkinsonian rats compared to sham rats (BPND 4.3 vs. 4.6), suggesting
post–synaptic effects of dopamine depletion on A2AAR availability [56]. Indeed, a loss of
A2AAR on striatal medium spiny neurons stands in contrast to the increased expression
of dopamine D2Rs reported in a model where rotenone was directly administered to the
substantia nigra [57], and in postmortem human brain studies [58]. However, Bhattacharjee
et al. found elevated striatal uptake of [18F]MRS5425 ([18F]FESCH) in the 6–OHDA–induced
PD model of rats [59]. The inconsistent A2AAR PET findings in PD model animals may
be due to lack of standardisation in the treatment protocols, and time dependence of the
phenotypical changes [60]. Thus, the shorter rotenone treatment of two month in our
present study may have induced transient receptor changes, which were not observable
in the earlier study with rotenone treatment of four months [26]. Furthermore, A2AAR
expression on glial cells in the rodent brain may contribute to the PET signal [61,62]. Hence,
further investigation is required to establish and explain the effects of rotenenone–induced
parkinsonism on striatal A2AAR, and the relationship with dopamine D2Rs coexpressed on
medium spiny neurons.

A2AARs on medium spiny neurons are also implicated in the neurochemical pathology
of Huntington’s disease (HD). In autoradiographic studies with [3H]CG21680, Martinez–
Mir et al. detected a decrease of the A2AAR density in the basal ganglia from patients
with HD, but that finding in vitro has yet to be confirmed using A2AAR PET in living
HD patients [63]. Thus, PET imaging of A2AAR with [18F]FLUDA could prove to be
a valuable tool for the staging of HD and intervention studies, as seen in pre–clinical
models [64,65]. Activation of A2AAR on striatal or extrastriatal neurons had opposite
effects on psychomotor activity [66]. However, neither [18F]FLUDA, nor other available
radiotracers, are able to detect the low A2AAR density in extrastriatal regions.

In terms of scale, the pig brain presents a distinct advantage over the rodent brain for
molecular imaging by PET. On the other hand, the in vivo metabolite analysis of [18F]FLUDA
in pigs revealed faster biotransformation of the radiotracer over time (Figure 4), as com-
pared to CD–1 mice, in which the parent fraction of [18F]FLUDA in plasma collected at 15
min p.i. was still 71% [25] vs. only 50% in the pig. Additionally, we have already reported
on the formation of at least two additional metabolites in pigs [25]; it remains unknown
if the hydrophobic metabolites seen in Figure 4A can cross the blood–brain barrier, thus
contributing to brain activity. The non–compartmental analysis did not indicate any effect
of tozadenant pretreatment on the striatal [18F]FLUDA uptake in CD–1 mice. However,
continuous infusion of tozadenant throughout the pig recording resulted in an almost
complete displacement of the striatal binding [18F]FLUDA. The present estimate of striatal
VT of [18F]FLUDA in pigs (14.6 mL ·g −1, Logan graphical analysis) is comparable to the
[18F]MNI–444 VT in monkeys (12.4–30.3 mL · g−1, Logan graphical analysis) [21]. Human
striatum shows a regionally heterogeneous distribution of A2AARs, with higher levels in the
putamen compared to the head of the caudate nucleus [14,35]. We see some hint of gradients
in [18F]FLUDA uptake in pig striatum, although less than in a similar sized non–human
primate brain (Table 8). Remarkably, the primate and pig results suggest lower BPND than
what we estimated in the mouse striatum, despite its small size. This is consistent with the
previously determined receptor density in vitro with [18F]FLUDA in murine (Bmax = 556 ±
143 fmol/mg wet weight) and pig striata (Bmax = 218 fmol/mg wet weight) [25]. In quanti-
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tative autoradiographic studies with the A2AAR ligand [3H]ZM241385, Villar–Menéndez
et al. determined a Bmax of 730 fmol/mg protein in putamen of patients dying with PD
vs. only 330 fmol/mg protein in controls [58]; we would expect a BPND of [18F]FLUDA
comparable to our studies in mice. On the other hand, findings of increased A2AAR binding
in post–mortem brain from PD patients is at odds with our present findings in the acute
rotenone model.

5. Conclusions

Our study supports the suitability of the SRTM using the cerebellum as a reference
region for the evaluation of the BPND of [18F]FLUDA in healthy mice, a mouse PD model,
and healthy pigs. [18F]FLUDA kinetics in pigs differs from that in mice with respect to
the greater number and formation rate of plasma radiometabolites, some of which may
contribute to brain signals. The magnitude of BPND in the striatum is higher in mice than
in pigs, irrespective of the method for quantitation, and despite the greater vulnerability of
quantitation in the small mouse striatum to underestimation. However, our investigation
in a larger–brained species supports the translatability of [18F]FLUDA for the non–invasive
PET imaging of A2AAR in the human basal ganglia.
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