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Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention
and control has revealed the emergence of new genetic techniques that have improved
the understanding of the mechanisms essential for pathology induction and progression.
Comprehension of the modifications and individual differences of miRNAs and their
interactions in the pathogenesis of gynecological malignancies, together with an
understanding of the phenotypic variations have considerably improved the
management of the diagnosis and personalized treatment for different forms of cancer.
In recent years, miRNAs have emerged as signaling molecules in biological pathways
involved in different categories of cancer and it has been demonstrated that these
molecules could regulate cancer-relevant processes, our focus being on malignancies
of the gynecologic tract. The aim of this paper is to summarize novel research findings in
the literature regarding the parts that miRNAs play in cancer-relevant processes,
specifically regarding gynecological malignancy, while emphasizing their pivotal role in
the disruption of cancer-related signaling pathways.
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INTRODUCTION

Short nucleotide RNA molecules with a length of 18 to 30 nucleotides, or microRNAs, have first
been reported in 1993 (1–4) in studies based on genetic screening in nematodes. These findings have
inspired researchers in biomedical sciences to focus on investigating these molecules in various
organisms, focusing on their structure and functions. By now, it is well known that approximately
2% of the human genome comprises nearly 20.000–25.000 protein-coding genes, with most of the
genome being composed of regions that do not encode but are transcribed into regulatory RNAs
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(ncRNAs), introns, and other sequences (4). These RNA
sequences bear many functions, including the gene expression
regulation of protein-coding genes at transcriptional level
through transcript degradation, and at post-transcriptional
level by translation suppression (5).

Among non-coding RNAs (ncRNAs), there are two groups of
RNAs fulfilling different tasks: some are indispensable for protein
synthesis, such as ribosomal RNAs (rRNAs), transfer RNAs
(tRNAs), small nuclear RNAs (snRNAs), and small nucleolar
RNAs (snoRNAs), while others are involved in regulatory
functions, for instance, Piwi-interacting ncRNAs (piRNAs),
small interfering RNAs (siRNAs), microRNAs (miRNAs) and
long non-coding RNAs (lncRNAs) (6, 7). The two classes of
ncRNAs interact both with cellular components, in order to
regulate various cellular processes and functions by controlling
gene expression, and with each other, thus being consistently co-
regulated (8). Depending on the number of specific nucleotides
that each class of ncRNAs contains, ncRNAs are divided into
lncRNAs, comprised of over 200 nucleotides, and sncRNAs, which
are made up of less than 200 nucleotides. Furthermore, based on
their functions, they can be divided into housekeeping, which are
constitutively expressed RNAs, and regulatory RNAs, which are
expressed during specific cell differentiation phases or as an
answer to various modifications in the surrounding area (9), as
depicted in Figure 1. The development of biomolecular techniques
and big data analysis has allowed the identification of the functions
that these types of RNA fulfill, as well as their interaction with
Frontiers in Oncology | www.frontiersin.org 2
various subcellular components, and their regulation. For instance,
lncRNAs interact with miRNAs at specific binding sites, resulting
in their mutual regulation and messenger RNA (mRNA)
transcript control (10). Furthermore, it has been shown that
ncRNAs form interconnected networks that regulate numerous
physiological and pathological biological processes, including
protein synthesis, gene regulation, chromatin modulation, tumor
cell invasion – with multiple studies currently focusing on their
roles as either oncogenic or tumor suppressor factors (11–13).
These networks also govern the expression of snoRNAs, which can
act as precursors for other RNA types such as piRNAs (14).

snoRNAs often originate within the nucleolus, measuring
approximately 60–300 nucleotides (nt) in length. snoRNAs are
generally encoded within the intronic regions as long non-coding
RNAs or can be separately transcribed from the intergenic
regions (13). Overall, snoRNAs can be classified into two main
groups, namely C/D box snoRNAs (SNORDs), and H/ACA box
snoRNAs (SNORAs) (15). snoRNAs contribute to the biogenesis
and maturation of rRNA, as well as in the complex interaction
between snRNAs, tRNAs, and rRNAs. Individually, SNORAs
participate not only in the pseudouridylation process by linkage
with SNORDs and the dyskerin nuclear protein (15), but also in
the methylation cycle along with fibrillarin proteins (16).
However, some snoRNAs lack defined functions, being
generally referred to as orphan snoRNAs (17, 18).

While miRNAs are currently considered as the most
plentiful circulating ncRNAs in normal and cancer patients,
FIGURE 1 | RNA types include coding and non-coding RNAs. Housekeeping ncRNAs are made up of ribosomal (rRNA), transfer (tRNA), small nucleolar RNAs
(snoRNAs), and small nuclear (snRNA). Regulatory noncoding RNAs include short ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), the former consisting of
microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs), and the latter containing oncogenic and tumor suppressor lncRNAs.
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data from an RNA-seq analysis profiling extracellular RNA
from both cancer patients and healthy controls has shown that
piRNAs amount to almost the same sum (19). Though it has
been shown that the synthesis of piRNA does not require the
aid of the Dicer enzyme (20), their exact roles are yet to be fully
elucidated (21). However, the interaction between miRNAs and
piRNAs is known to result in the regulation of gene expression
by targeting mRNAs (8).

miRNAs are small non-coding RNA molecules that function
as post-transcriptional regulators of gene expressions (5, 22, 23).
They are highly important in both physiological and pathological
processes in the human body, as well as in cell development and
proliferation, tissue differentiation, and programmed cell death
(24), while also being involved in maintaining 60 to 70% of the
cellular homeostasis (7). miRNAs are abnormally expressed in a
multitude of diseases, such as cardiovascular and renal illnesses
(25, 26), muscle disorders (27), some types of fibrosis (28, 29),
pre-diabetes and diabetes (30, 31), leukemias and hematological
malignancies, as well as disorders involving hematopoietic stem
cells and stem cell differentiation (32–36). Furthermore, miRNAs
have also been revealed to facilitate the maintenance of the
blood-brain barrier, thereby mediating central nervous system
homeostasis (37–39). Last but perhaps foremost, miRNAs have
been extensively studied in a wide variety of malignancies (40,
41). To date, approximately 500–1,000 different mammalian
miRNA genes are known (25). A complete list with specific
details regarding the nomenclature and annotation of miRNA
sequences was founded in the year 2002, later known as the
microRNA Registry. Nowadays, the miRbase online instrument
can be used, providing information about microRNA sequences
from 271 organisms, with 38.589 hairpin precursors and
approximately 48.860 mature microRNAs (4, 42).

Cancer cells differ from normal cells mainly due to their
ability to divide and grow uncontrollably, as a result of
modifications undergone by specific genes. Considerable gene
variation and altered pathways have been reported for different
types of cancers, which depend on the genetic individuality of the
affected organism as well as on epigenetic factors (4).
Understanding the mechanisms and signaling pathways by
which genes become mutated is therefore essential in order to
enhance the chances of establishing personalized therapeutic
schemes. To this extent, in the last years, miRNAs have
emerged as signaling molecules in a multitude of biological
signaling pathways in distinct types of neoplasia, and it has
been demonstrated that they can regulate cancer-relevant
processes. Due to the capacity of a single miRNA molecule to
target hundreds of mRNAs, aberrant miRNA expression can be
held responsible for the dysregulation of at least several cancer-
related signaling pathways (41).

Gynecological cancers pose an important public health issue,
being some of the most frequent cancers among women of all ages
(43). Patients are oftentimes diagnosed in late stages not only due
to a general lack of awareness and knowledge about cancer but
sometimes also because of improper screening and even
misdiagnoses (44). In gynecological cancers, several signaling
pathways have been identified to be modified, including the
Frontiers in Oncology | www.frontiersin.org 3
transforming growth factor-b (TGF-b)/Smad pathway, G
Protein-Coupled Receptors (GPCRs), phosphatidylinositol-3-
kinase (PI3K)/Akt, the mechanistic target of rapamycin
(mTOR), the mitogen-activated protein kinases (MAPK) and
the extracellular signal-regulated kinases (Erk), fibroblast growth
factor (FGF), the insulin receptor (IR) and insulin-like growth
factor receptor (IGFR), vascular endothelial growth factor
(VEGF), Toll-like receptors (TLRs), Wnt/b-catenin, Jak/STAT,
the Notch signaling pathway, the nuclear factor kappa B (NF-kB)
pathway. Other signaling pathways that are implicated in several
pathologies including breast cancer, are related to the nuclear
receptor superfamily of ligand-dependent factors such as the
estrogen receptor (ER), the retinoic acid-related orphan
receptors (ROR a-g or NR1F1-3), and the orphan receptor
TAK1 (TR4 or NR2C2) (45).

In this review, we have summarized the implications and
future perspectives regarding the signaling functions of miRNA
and their roles in regulating oncogenic processes in breast,
ovarian, cervical, vulvar, and endometrial cancer.
MIRNA BIOGENESIS

microRNAs have long been shown to control numerous
biological processes, including tumorigenesis, with miRNAs
being massively dysregulated in tumor cells (46). While the
dysregulation of miRNAs is well documented in a range of
diseases, direct causal links in cancer have relatively recently
been elucidated. Tumoral cells often associate reduced levels of
mature miRNAs as a consequence of genetic loss and epigenetic
gene silencing resulting in defects in their synthesis (47).

The biogenesis of microRNAs results from a well-defined
conserved processing mechanism, with deviations being
associated with several diseases (48, 49). Following experiments
on mice, primary miRNAs (pri-miRNAs) represent the basis of
creation for miRNAs, which is a process that takes place in two
phases, the first one taking place in the nucleus and the second
one in the cytoplasm, both being governed by the specialized
RNase type III proteins, Drosha and Dicer (Figure 2) (50). The
fundamental RNA polymerase that is responsible for the
transcription of miRNA genes is RNA polymerase II (Pol II).
Pol II-dependent miRNA gene expression has a short-term
control, in order to enable the synthesis of a specific group of
miRNAs per certain conditions and cell types (51–53). pri-
miRNA transcripts contain one or more local hairpins that are
cleaved by the nuclear RNase III enzyme Drosha and its partner,
the DiGeorge syndrome critical region 8 (DGCR8) protein (54,
55) in pre-miRNA sequences made up of almost 80 to 100
nucleotides (56, 57). This step of miRNA biogenesis pathway is
localized in the nucleus and requires DGCR8 in order for a large
complex, known as the Microprocessor complex, to be formed
(56). Following transcription, the pre-miRNA is displaced from
the nucleus towards the cytoplasm by Exportin-5 (58, 59). In the
cytoplasm, Dicer, a cytoplasmic ribonuclease, cleaves the pre-
miRNA into a double incomplete mature miRNA (a miRNA/
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miRNA duplex made up of approximately 20 to 22 nucleotides)
(24, 60).

Within the cytoplasm, incomplete miRNAs suffer additional
modifications in order to become mature miRNAs, being
processed by Dicer and RNase III type protein and loaded
onto the Argonaute (Ago) protein so as to generate the effector
RNA-induced silencing complex (RISC). The mature miRNA
duplex is included in RISC, which further coordinates the
translation of complementary mRNA and guides it to target
miRNA (53, 61). The mature miRNA identifies its correspondent
sequences in the 3′ untranslated region (3’-UTR) of their target
mRNAs by way of seed region, typically placing nucleotides 2–7
in the miRNA (62, 63). One strand of the produced RNA duplex
is subsequently loaded to RISC while the other strand is typically
degraded. In some cases, some pre-miRNAs produce mature
sequences from both strands that survive and are functional in
comparable frequencies (64). Since regulation does not require
high complementarity, only one miRNA can target up to
hundreds of different mRNAs, leading to the development of
aberrant miRNA expression, affecting a multitude of transcripts
that have great repercussions on cancer-related signaling
pathways. Additionally, miRNAs can trigger downstream
signaling pathways by directly binding with Toll-like receptors
(TLRs) working as ligands (65–67).
Frontiers in Oncology | www.frontiersin.org 4
MIRNA AND SIGNALING PATHWAYS IN
CANCER

In just a few years, microRNAs have become strongly fixed as key
molecular components of the cell in both pathological and
normal states (68). The main activity of miRNAs is to lead
protein translation by linking to complementary sequences of the
3’-UTR sites of target mRNAs and by negatively regulating
mRNA translation (69). The first proof of miRNA involvement
in human malignancies was provided by Croce’s research group,
which aimed to find tumor repressors at chromosome 13q14 site
in B-cell chronic lymphocytic leukemia cells (70). This site
carries miR-15a and miR-16-1 genes and it has been found to
be frequently deleted or downregulated in B-cell chronic
lymphocytic leukemia. Both miR-16-1 and miR-15a serve as
tumor repressors that promote cell death by suppressing B-cell
lymphoma 2 (Bcl-2), an anti-apoptotic protein heavily expressed
in malignant non-dividing B cells and other solid malignancies
(71, 72).

An abundance of scientific research has lately been published,
concerning the function of miRNAs in gynecological
malignancies. For instance, miRNAs such as miR-145 have
been identified as central players in cervical carcinogenesis,
whereas it has been demonstrated that miR-125b, miR-145,
FIGURE 2 | miRNA biogenesis. miRNA gene is transcribed by RNA polymerase II to form a hairpin loop primary transcript (pri-miRNA) which is processed by Drosha/
DCGR8 to form pre-miRNA. pre-miRNA is then exported to the cytoplasm by exportin 5, where Dicer cuts off the hairpin loop so as to create a complex that includes the
mature miRNA. The mature miRNA is next incorporated into RISC to target the 3’-UTR site of the mRNA to silence expression by cleavage or regression.
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miR-21, and miR-155 have pivotal roles in breast malignancies
(73). miR-200 and let-7 have been identified as key modulators
in ovarian neoplasms, while miR-185, miR-210, miR-423, let-7c,
miR-205, and miR-429 have been associated with oncogenesis,
invasion, and metastasis in endometrial carcinomas (74, 75).
miRNAs target cell-cycle elements and control various signaling
pathways in several physiological and pathological processes,
including gynecological malignancies, thus being involved in cell
proliferation. Signaling pathways in which miRNAs have been
shown to be involved and their target genes have been
summarized in Table 1.

Toll-like Receptors (TLRs),;, are membrane-bound receptors
found on antigen-presenting cells (APCs) and they are members
of the group of pattern recognition receptors (PRRs). Some
signaling pathways, such as the interferon regulatory factor
(IRF), ERKs, NF-kB, MAPKs, c-Jun N-terminal kinases
(JNKs), p38, are activated following TLRs stimulation, being
involved in the immune response (88).

Transforming growth factor-beta (TGFb) is part of a large
family of growth and differentiation factors that perform
multiple functions in embryonic development or act as
cytokines in the postnatal period, being divided into two
functional groups: TGFb and the growth/differentiation factor
(GDF) group. The key target genes of the TGF-b signaling
pathway are the receptor-regulated SMADs (89, 90). In vulvar
carcinoma, Yang X et al. have linked the overexpression of miR-
590-5p with the downregulation of the target gene TGFbIIR,
which induced the appearance of malignant cellular changes and
metastasis in sentinel lymph nodes. TGF-b signaling is also
Frontiers in Oncology | www.frontiersin.org 5
involved in other cancers, including breast and endometrial
neoplasms (45, 89, 91).

GPCRs contain seven transmembrane regions, making up the
largest signaling receptor family. They exert their actions by
activating the phosphatidylinositol bisphosphate (PIP2) and
cAMP signaling pathways (92). These signaling pathways are
involved in different physiological and pathological functions,
such as cell proliferation and invasion, being described in
numerous cancers, including ovarian and breast cancers (45, 93).

The PI3K/AKT pathway further plays an important role in
the survival of tumor cells, metabolism, and growth regulation,
with some of the most common mutations in cancer being
associated with deviations of this signaling pathway. Its
disruption affects both the EGFR/HER family and the mTOR
pathway. This signaling pathway is frequently altered in ovarian,
cervical, endometrial, and breast cancer (45, 94, 95). For
instance, in cervical cancer, miR-21 can increase cell growth
via the PI3K/AKT/mTOR signaling pathway, by binding and
inhibiting the tumor suppressor PTEN (96). Further on, miR-
486, which is substantially downregulated in non-small cell lung
cancer, has been demonstrated to alter migration and
proliferation via the IGF-1/PI3K/Akt pathway, by targeting
IGF1, IGR1R, and p85 (97, 98).

miR-21, on the other hand, promotes cell proliferation,
through the Ras/MEK/ERK signaling pathway, which is
inhibited by miR-21 targeting the 3’-UTR of RASA1 mRNA in
ovarian cancer (99, 100). The MAPK and ERK molecules operate
in a signaling cascade defined as the MAPK cascade. MAPK/ERK
pathway is downstream of some transmembrane receptors, such
TABLE 1 | miRNA signaling pathways involved in gynecological cancers.

miRNA Signaling pathway Target Target expression Action Pathology Reference

miR-433 MAPK RAP1A Overexpression Cell migration, proliferation, apoptosis Breast cancer (76)
miR-99a mTOR

FGFR3
PI3-AKT Overexpression Invasion, proliferation, apoptosis Cervical cancer

Breast cancer
(77)

miR-155 AKT LKB1 Overexpression Autophagy Cervical cancer (78)
miR-21 TNFR1

PI3K/AKT/mTOR
RAS/MEK/ERK

Caspase 3
TNF-alpha
PTEN
RASA1

Overexpression Apoptosis Breast cancer
Cervical cancer
Ovarian cancer

(79)

miR-200
miR-141
miR-200a
miR-200b
miR-200c

NOTCH
TGF-beta

ZEB1 ZEB2
E cadherin
EMT

Overexpression Invasion, metastasis Ovarian cancer (80)

Let-7
*miR let-7d-5p

RAS
HGMA1

P53 Overexpression Apoptosis Ovarian cancer (81)

miR-34a p53 HNRNPA1 Cell proliferation Breast cancer
Endometrial cancer

(82)

miR-424 p53 HNRNPA1 Overexpression Cell proliferation, apoptosis Breast cancer (82)
miR-503 p53 HNRNPA1 Overexpression Cell proliferation, apoptosis Breast cancer (82)
miR-142-3p Bach-1 EMT Overexpression Invasion, migration Breast cancer (83)
miR-205 ZEB1, ZEB2 EMT

PTEN
Overexpression Apoptosis, cell differentiation, and proliferation Endometrial cancer (84)

miR 4712-5p PTEn/AKT/GSK3beta/cyclin D1 PTEN Overexpression Cell invasion, metastasis Vulvar cancer (85)
miR-3147 TGF-b/Smad TGFb RII

EMT
Overexpression Invasion, cell proliferation, migration Vulvar cancer (86)

miR-146a BRCA1 Overexpression Cell proliferation Breast cancer (87)
October 20
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as EGFR, FGFR, VEGFR, IGFR, and GPCR, and it is involved in
essential functions like development, proliferation, apoptosis, or
differentiation of cells in ovarian and endometrial cancer (45,
73, 101).

The Notch signaling pathway is essential in cellular processes
and it is activated in response to cell-cell contacts. Notch
receptors are transmembrane proteins consisting of a series of
different protein molecules. Notch activation is involved in the
regulation of gene expression that is implicated in survival,
proliferation, and differentiation of cells (102). Through
genome-scale sequencing, recent studies have revealed that
mutations in the Notch genes could be identified in a broad
spectrum of cancers. They further found that resveratrol has an
inhibiting action when Notch signaling is oncogenic, while it
increases the tumor-suppressive effect when Notch signaling has
suppressive tumoral action (45, 103).

CTCF (CCCTC-binding factor) is a zinc-finger protein gene
capable of targeting numerous binding sites within the genome,
acting both as a transcriptional activator and repressor (104).
Furthermore, it can also serve as an insulator, impeding the
communication between promoters and enhancers (105). In this
manner, and due to its ability to establish inter- and
intrachromosomal bonds, CTCF can either up- or down-
regulate the expression of a substantial number of target genes,
depending on the context, thus fulfilling diverse roles in
epigenetic modulation (106). Moreover, when cooperating with
chromatin architectural proteins such as cohesin, the resulting
complex governs the spatial organization of the genome (107). In
addition to these roles, there is an increasing body of evidence
suggesting the involvement of CTCF in the regulation of certain
miRNAs (106, 108, 109). Specifically, by binding to the CpG sites
of miR-375, CTCF manages to silence its expression in estrogen
receptor (ER) negative breast cancer cells. As miR-375 is a key
driver of cell proliferation, these findings confirm the tumor
suppressor role of CTCF in breast cancer (106, 108, 110).
Furthermore, silencing of tumor suppressor miR-125b1 in
breast cancer due to epigenetic phenomena that result in the
methylation of CpG islands preventing CTCF binding, leads to
aberrant cell proliferation (108, 109, 111).

miRNAs, BRCA Mutations, and Breast
Cancer
Breast cancer is the most common malignancy among women
worldwide, with 5 to 10% of patients carrying an inherited
predisposition (112). The breast cancer 1 and 2 (BRCA1/2)
genes are tumor suppressor genes responsible for the synthesis
of proteins involved in damaged DNA repair (113). Mutations in
either gene have been associated with significantly increased risk
of both breast and ovarian cancer (114), and, to a lesser degree,
other types of cancer, including prostate and pancreatic cancer,
especially in BRCA2 mutations (115). Specifically, women with
germline BRCA1/2 mutations face risks of up to 72 and 69%
respectively of having breast cancer by the age of 80 (116, 117).
While numerous BRCA genes variants are possible, not all of
them carry the same risk, with studies establishing four main
pathogenic mutations: single nucleotide mutations (SNPs)
Frontiers in Oncology | www.frontiersin.org 6
resulting in premature termination codons (PTCs) (118), large
in-frame deletions or insertions of ≥ 1 exon, transcription
regulatory region deletions (114) and certain pathogenic
missense variants (119, 120). However, recent whole genome
association studies (WGAS) using targeted RNA sequencing
have enabled the analysis of multi-exonic ncRNAs in breast
cancer samples and, although their functionality has not been
revealed yet, they constitute promising leads in better grasping
the etiology of breast cancer (121).

The expression of up to thirty miRNA has emerged as having
direct consequences on all phases of breast cancer, from
formation to progression and propagation (122, 123). Together
with the group of miRNAs acting as tumor suppressors that
delay or block the potential to cause cancer, there are other
oncogene miRNAs (onco-miRNAs) that can cause neoplastic
transformation when overexpressed. Breast cancer can be caused
by genomic instability as a result of alterations that accumulate in
the human genome. One of the processes that can lead to
genome instability causing DNA damage is represented by
defects in the repair pathway such as double-strand brakes
(DSBs), which tend towards cell apoptosis. Considering the
crucial role of BRCA1/2 in breast cancer suppression, due to
their function in maintaining genome integrity through protein
synthesis required for repairing DNA damage, both BRCA genes
play parts in apoptosis and the processes of tumor suppression
(124, 125). Over 100 miRNAs target the transcription of
messenger RNA from the BRCA1 gene. Chang and Sharan
have proven that seven miRNAs target BRCA1 (126). miR-
146-5p and miR-146a deleting BRCA1 may cause the
development of sporadic basal-like and triple-negative breast
cancer (127, 128). Negative feedback between BRCA1 miRNA
and miR-146a has been described, in which the BRCA1
translation is inhibited by miR-146a and, in turn, miR-146a is
up-regulated by BRCA1 (127). Another well-known onco-
miRNA is miR-155, which is involved in breast tumor
formation and spreading, found more often in inflammation-
based cancers and neoplastic transformation caused
by inflammation (129). The pathogenesis of breast cancer is
influenced by the DNA methylation of miRNA genes,
with BRCA1 functionality reduction inducing global
hypomethylation. These findings highlight possible treatments
of BRCA1-deficient breast tumors that may be developed by
targeting miR-155, due to its impact on BRCA1 mutation
carriers (126, 130–132).

Several proteins acting as BRCA1/BRCA2 stability regulators
have been identified, including the cysteine protease Cathepsin S
(CTSS), which reacts on BRCA1 with BRCT domain, initiating
the process of proteolytic degradation (133), E3 ubiquitin-
protein ligase HERC2, F box protein 44 (FBXO44) and E2
ubiquitin-conjugating enzyme E2T (UBE2T). FBXO44
ubiquitination downregulates the BRCA1 protein (134, 135).
BRCA1 expression stabilization is gained through interaction
with BARD1 protein and the reduction of proteasome sensitive
ubiquitination. The BRCA1 protein level is increased as the
proteasomal degradation is prevented by IGF-1 receptor
signaling due to AKT-dependent phosphorylation of BRCA1 in
October 2020 | Volume 10 | Article 591181
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response to estrogen. Recent research performed by Kim et al.
has shown that BRCA1 is directly phosphorylated by the Fyn
related kinase (Frk/Rak) and, as a result, BRCA1 protein stability
is positively regulated (133). Besides protein level regulation,
BRCA1 and BRCA2 have been found to participate in a complex
regulatory post-transcriptional program. For instance, miR-19a
and miR-19b interact with 3’-UTR of BRCA2 mRNA resulting in
a simultaneous decrease of protein levels and mRNA of BRCA2.
In chronic myeloid leukemia cells, expression of BCR-ABL1
oncoprotein is linked with BRCA1 downregulation. Recent
studies revealed that the TIA1 cytotoxic granule-associated
RNA-binding protein-like 1 (TIRA) is responsible for BRCA1
downregulation, which disables mRNA translation of BRCA1 by
linking to adenylate-uridylate-rich elements (ARE) sites in the
3’-UTR of BRCA1 mRNA. The study also described the complex
formed between TIRA, the mRNA binding protein Hu antigen R
(HuR), and BRCA1 mRNA (136).

Further on, more recent studies performed by Gorrini and
colleagues have demonstrated that BRCA1 deficient cells are
protected by estrogen from reactive oxygen species induced
death through the activation of PI3K/AKT and NRF2
upregulation (nuclear factor erythroid 2 related factor 2)
transcriptional program. In consequence, antioxidant genes are
increased (137–139). The results showed that a local upregulated
estrogen concentration helps the expansion and survival of
BRCA1 mutated breast cancer cells (140). Furthermore,
hormone functions are affected by BRCA1 in different ways
such as activating Era expression (141), adjusting the level of
progesterone receptor (PR) (142, 143), and repression of
estrogen-dependent gene transcription (144, 145).

In breast cancer, studies have shown that various signaling
pathways are implicated in the proliferation as well as cellular
death of malignant cells. For instance, Zhu et al. have shown that
one significant role in breast cancer growth is played by the
signaling pathway of mTOR (mammalian target of rapamycin)
(146), its downregulation by miR-100 and/or miR-125b enabling
cellular death and inhibiting the progression of breast cancer
(147, 148). Another miRNA, miR-142-3p, belonging to the miR-
142 family, might be related to the development of various types
of malignancies, especially breast cancer, by targeting various
mRNAs, including Bach1, which is highly active in cancerous
cells. To this extent, in their study, Liang et al. have found that
increased mRNA levels of Bach1 were considerably linked to
poor metastasis-free-survival rates (149). Further studies have
also indicated that overexpression of miR-142-3p in breast
malignancies resulted in the downregulation of Bach-1, making
it likely that miR-142-3p could be a target in breast cancer
therapy (83, 149, 150).

In previous studies, miR-433 has been found to have acted as
an oncogene - for instance, in colorectal cancer, overexpression
of miR-433 downregulates MACC1 and leads to cell death, while
in hepatocellular carcinoma, it suppresses cell proliferation by
targeting HDAC6, PAK4, and GRB2 (151–153). In breast cancer,
miR-433 has generally been found to be decreased, while its
overexpression has been linked to cell death and inhibition of
tumor cell growth and migration. After screening miRNA target
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genes, T. Zhang et al. predicted Rap1a as a potential target of
miR-433, later proceeding with their experiment. Consequently,
they found that cells transfected with miR-433 associated
decreased Rap1a protein levels along with slightly lowered
Rap1a mRNA levels, thus demonstrating that, by targeting the
RAP1A gene and subsequently activating the MAPK signaling
pathway, miR-433 behaves as a tumor suppressor (76). The
MAPK pathway is known to be implicated in tumorigenesis,
playing key roles both in the growth and apoptosis of malignant
cells (154), however, in breast cancer, the RAP1A/MAPK cascade
remains to be further clarified (155).

Past studies have shownmiR-99a to take part in the pathology
of several cancers, such as non-small lung cell carcinoma,
leukemia, and prostate cancer (156–158). Long et al. have later
found that miR-99a also plays a significant role in breast
neoplasia, where it acts as a regulator of fibroblast growth
factor receptor 3 (FGFR3). They proved for the first time that
miR-99a directly targeted FGFR3 in breast malignancies and that
it could be used as a convenient biomarker for this pathology
(77). FGFR3 is also upregulated in various types of tumors, and
its abnormal expression could initiate distinct signaling
pathways, like the PI3-AKT and the FGFR3 signaling
pathways, this way contributing to the development of cancer
(159, 160). Several studies have also shown that miR-99a is
downregulated in malignant tumors like esophageal carcinoma,
head and neck squamous cell carcinoma, cholangiocarcinoma,
and also in primary breast tumors compared to normal breast
tissue (77). On the other hand, researchers demonstrated that the
upregulation of miR-99a in breast cancer inhibits malignant cell
proliferation and invasion (77, 161–163), miR-99a working as a
tumor suppressor. Further studies are therefore desired before
potentially implementing miR-99a as a diagnostic and
prognostic biomarker.

In breast cancer, snoRNAs have also been highlighted as
having prognostic applicability, including SNORD89 and
SNORD46. In this regard, in their thorough NGS analysis,
Krishnan et al. have recently found that SNORD89/46 were the
most significantly downregulated snoRNAs in breast cancer
patients, thus reporting them as prognostic markers for breast
cancer (164). Further studies have reported small nucleolar
RNA-derived RNA-93 (sdRNA-93), a processed stable form of
snoRNA-93, as playing an important role in cell invasiveness in
epithelial human breast cancer cell lines. At the same time,
sdRNA-93 was significantly higher expressed in Luminal B/
HER2+ breast cancer samples when compared to normal
breast tissue and other types of breast cancer (165, 166).

Further on, it has been discovered that piR-36712 plays a
pivotal role in suppressing breast cancer cell proliferation
through the retroprocessed pseudogene of selenoprotein W
(SEPW1), SEPW1P, by inhibiting the expression of SEPW1.
The expression of both p21 and p53 was inhibited by the
mRNA degradation induced by SEPW1. Concurrently, piR-
36712 has been found to promote the antineoplastic effect of
chemotherapeutic agents (167). A recent study carried out by
Fancello and colleagues has found that, in approximately 34% of
invasive breast cancer samples, ribosomal alterations were driven
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by mutations in the uL18/RPL5 ribosomal protein genes, thus
highlighting the suppressor role of RPL5 in breast cancer (168).

Clearly, ncRNAs remain a vast unexplored resource for the
better understanding of breast cancer tumorigenesis and
metastasis, potentially aiding in the progress of identifying
relevant diagnostic and prognostic markers, as well as
therapeutic targets.

miRNAs in Ovarian Cancer
Ovarian cancer is the most lethal gynecologic neoplasia,
associating a very poor life prognosis. Epithelial ovarian
cancers amount to more than 90% of this malignancy, and the
5-year survival rate is just 29% (169). Moreover, ovarian cancer is
diagnosed late due to the absence of noticeable symptoms in the
early stages, and, when detected, carcinomatosis spread is higher
than 60% (170, 171). Biomarkers used today for prediction and
prognosis are CA-125 and human epididymis protein 4 (HE4),
used along with imaging and screening methods. However, the
relatively low sensitivity and specificity of these procedures
require the discovery of new, more efficient diagnostic and
prognostic methods. To this end, many studies have been
performed and more are underway, in order to explore the
exact relation between miRNAs and ovarian cancer and to
improve current diagnosis, prognosis and treatment methods.

The development of tumors is imposed by the tumor
microenvironment. Extracellular matrix molecules regulate
cancer invasion and metastasis, and, at the same time, down-
regulation of miRNAs controls the spread of the tumor by
degrading the extracellular matrix (172, 173). Matrix
metalloproteinases are important in tumor aggressiveness and
increase cancer metastasis by causing deterioration in the
molecules of the extracellular matrix (174). Studies have
demonstrated that MMP-9, MMp-3, MMp-7, MMP-2 are
involved in tumor aggression in ovarian cancer. An example is
that of MMP-7, which is increased in malignant ovarian tissues,
where miR-543 is substantially reduced. The explanation resides
in the fact that miR-543 decreases MMP-7 transcription by
attaching to the 3’-UTRs of MMP-7 mRNA, leading to the
reduction of cancer proliferation (175).

The miR-200 group consisting of miR-141, miR-200a, miR-
429, miR-200c, and miR-200b, is clustered in chromosome 1
(1p36) and adjusts many cellular functions, including cell death,
proliferation, and epithelial-to-mesenchymal transition (EMT).
This group decreases the transcriptional suppressors of E-
cadherin, ZEB1, and ZEB2, promotes E-cadherin expression,
and modulates the conversion of mesenchymal cells into
epithelial cells (176, 177). miR-200a can bind to three specific
sites within the 3’UTR region of the ZEB1 mRNA, while miR-
141 has two potential binding sites in the 3’UTR region of the
ZEB2 mRNA. By binding to the ZEB1 and/or ZEB2 mRNAs,
these miRNAs mediate the post-transcriptional inhibition of the
ZEB1 and ZEB2 gene expression (177, 178). Furthermore,
negatively regulated miR-200a in cancer cells inhibits E-
cadherin, known invasion, and metastasis suppressor (179).
Tumor angiogenesis is another process influenced by the miR-
200 family. Studies have shown that new blood vessel
development is inhibited by this cluster’s influence on the
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interleukin-8 (IL8) secreted by cancer cells and on chemokine
CXCL-1, thus decreasing the spread of tumor cells through blood
circulation (180). To this extent, Pecot et al. have implemented
several experimental models, demonstrating that tumor-targeted
delivery of miRNAs of the miR-200 family leads to a significant
decrease in angiogenesis and consecutive tumor cell metastasis,
while also promoting vascular normalization (181).

The miRNA let-7 family is another important cluster which
has been broadly studied and has a significant function in
ovarian cancer growth. It has been demonstrated that, by
decreasing the expression of specific proteins like c-Myc, Ras,
cyclin 2, and the High Mobility Group AT-Hook 2 (HMGA2)
protein, the let-7 group decreases cell proliferation and supports
both apoptosis and cell differentiation in various types of cancer.
Since the let-7 group is poorly expressed in aggressive ovarian
malignancies, it can be concluded that it may decrease the
infiltration and spreading of ovarian cancer (81). miR let-7d is
known to behave as an oncogene in ovarian malignancies, and its
inactivation can lead to the overexpression of Ras, resulting in
apoptosis of cancer cells (182, 183). One study performed by
Chen Y. et al. found that miR let-7d-5p negatively regulated
HGMA1 in ovarian cancer, leading to the obstruction of the p53
signaling pathway, thus suppressing cell proliferation and
facilitating programmed cell death (184). Furthermore, in
wanting to predict chemotherapy resistance and prognosis of
epithelial ovarian cancer, Xiao et al. have performed thorough
research focusing on the human let-7 family. They found that let-
7e inhibitor had an up-regulatory effect on the mRNAs of target
genes regulatory factor X 6 (RFX6), enhancer of zeste 2 (EZH2),
caspase 3 (CASP3), and matrix metalloproteinase-9 (MMP9).
On the other hand, treatment with let-7e mimics resulted in
decreased mRNA levels of poly-ADP-ribose-polymerase 1
(PARP1) and insulin-like growth factor-1 (IGF-1). Further on,
they found that ovarian cancer cell lines had an increased
sensitivity to cisplatin when associated with overexpression of
let-7e, thus confirming the role of poor let-7e expression in
platinum resistance in epithelial ovarian cancer (185).

miRNAs in Cervical Cancer
Cervical malignancies pose serious health risks to the female
population, associating a poor prognosis with an overall 5 years
survival rate amounting to less than 40% (186), thus highlighting
the need for new diagnostic methods and targeted treatments.
Studies have shown that the abnormal expression of miRNAs
contributes to the development of cervical cancer, due to their
innate ability to regulate tumor promoter and/or repressors
genes (187, 188). To this extent, although limited information
regarding cervical tumors is currently available, miR-433 has
been demonstrated to be downregulated in cervical tumoral
tissues and cell lines, as opposed to normal tissues, its levels
reflecting tumor characteristics such as size, stage, and
dissemination (189, 190). While the upregulation of miR-433
in cervical cancer inhibits cell proliferation and invasion and
promotes cell death, rescue experiments have demonstrated that
metadherin (MTDH), an oncogene that facilitates cancer cell
migration and metastasis, is a direct target gene of miR-433. In
this regard, the overexpression of MTDH has been shown to
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reverse the effects of the overexpressed miR-433 in cervical
cancer cell lines (191). Employing functional studies, Liang
et al. have demonstrated that cervical cancer cell lines treated
with miR-433 agomir substantially decreased mRNA levels of
MTDH, thus inhibiting tumor cell proliferation and invasion and
triggering apoptosis (192). MTDH has also been previously
demonstrated to influence the regulation of b-catenin and
AKT pathways and, due to its inhibitory effect on these
pathways in cervical cancer, it has been validated as a direct
target of miR-433 (193, 194).

Additional studies have revealed that miR-21 acts as an
oncogene in various malignancies, by regulating several
pathways involved in tumor progression (195). In cervical
cancer, its overexpression acts as a gene expression inhibitor
(196). miR-21 upregulates mRNA and protein expression levels
of TNFa (197), which initiates cellular apoptosis by binding and
activating the TNFR1 receptor in HeLa cells, thus inhibiting the
TNFR1 pathway (198). In contrast, the TNFR2 pathway is
increased by miR-21, and cell proliferation is activated by
TNFa, which binds TNFR2, upregulating NF-kB, and thus
inhibiting Caspase 3 and activating JNK (197). Further on,
miR-21 has also been shown to increase cell proliferation via
the PI3K/AKT/mTOR signaling pathway, by binding and
inhibiting the tumor suppressor PTEN (96, 199). PTEN acts as
a negative regulator of this particular signaling cascade, by
targeting AKT and therefore modulating cell differentiation,
proliferation, and migration (96). Loss of miR-21 leads to
considerable upregulation in PTEN mRNA levels, with Chen
et al. demonstrating that cells lacking miR-21 display a lesser
degree of cisplatin resistance, both in culture and xenograft
mouse models (200). Furthermore, miR-21 also promotes
cell proliferation through the Ras/MEK/ERK signaling
pathway, which is inhibited by miR-21 due to its targeting of
the 3’-UTR of RASA1 mRNA (99, 100, 201). However,
further investigation is required in order to elucidate other
targets of miR-21, as well as their exact implications in
cervical malignancy.

miRNAs in Endometrial Cancer
In developed countries, endometrial cancer is the most
frequently-occurring gynecological cancer, having to do with
increased obesity rates, longer life expectancy, and particular
lifestyles in these nations. Globally, it is the second most harmful
type of cancer among women, after cervical cancer (202), with
the most common type of endometrial cancer being the
endometrioid tumor (203, 204). Endometrial cancer is
classified into two types: type I - endometrioid endometrial
cancer, amounting to 75% of cases, and type II - non-
endometrioid, which can have clear-cell or serous histology.
Endometrioid cancers more often show mutations in the
Kirsten rat sarcoma viral oncogene homolog (KRAS) and
Phosphatidylinositol 3-kinase catalytic subunit alpha (PI3KCA)
and phosphatase and tensin homolog (PTEN) loss, while non-
endometrioid cancers show human epidermal growth factor
receptor 2 (HER-2) overexpression and mutations in p53
(205). Phosphoinositide-3-Kinase Regulatory Subunit 1
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(PIK3R1) mutations are present in approximately 43% of
endometrioid endometrial cancers and about 12% of non-
endometrioid endometrial cancers, the mutated PI3KR1
leading to increased activation of the PI3K/AKT signaling
pathway (206).

Oncogene expression and aggression factors in endometrial
malignancies have been researched in comparison with normal
endometrial tissue, and miRNA expression has been found to be
significantly different. Moreover, among endometrial cancer
types, such as papillary carcinoma and endometrioid
carcinoma, miRNA patterns have been demonstrated to vary
(207). miRNAs have the ability to link to the associated mRNA
targets with or without perfect complementarity, with multiple
target genes being simultaneously influenced by a single miRNA,
either by means of the same or different cellular signaling
pathways. Consequently, delivery of tumor suppressor
miRNAs along with silencing of oncogenic miRNAs have been
demonstrated to carry the potential to repair aberrations of the
related signaling pathways in endometrial cancer (208, 209). For
instance, in endometrial cancer, while miR-34b, which is linked
to invasion and proliferation, can be overexpressed, along with
miR-100, miR-99a, and miR-199b, the tumor-suppressive miR-
34a is underexpressed (67, 210). Expressions of specific miRNAs
in endometrial cancer cells have been found to be either elevated,
such as miR-423, miR-210, miR-185, miR-7, or decreased, like
miR-221, miR-let7e, miR-30c, when compared to normal
endometrial tissue. To this extent, tumor-suppressor mRNAs
have been found to be suppressed by the former miRNAs, thus
promoting tumor cell growth, invasion, and metastasis. In turn,
tumor suppressor miRNAs such as miR-221, miR-let7e, and
miR-30c tend to inhibit oncogenic mRNAs, their lowered levels
enabling carcinogenesis (211). Further thorough research
conducted by Chung et al. has identified another miRNA
cluster that appears to be dysregulated in endometrial cancer.
Using low-density arrays, they analyzed the expression of 365
human miRNAs in normal and endometrioid endometrial
cancer and identified a cluster of dysregulated miRNAs,
including miR-7, miR-194, miR-449b, and miR-204. They also
discovered that, by overexpressing miR-204, which is involved in
the regulation of Forkhead box C1 (FOXC1), cell migration and
the number of invasive cells could be inhibited (212).

In endometrial cancer cells, Dong et al. have identified 23
miRNAs as being dysregulated, mainly as a result of the mutated
p53 (213). miR-130b among them, which is decreased in
endometrial cancer relative to normal tissues, has the ability to
target the key EMT promoter gene ZEB1 and to revert mutant
p53-induced EMT/CSC of endometrial cancer cells (213, 214).
Furthermore, miR-205 along with the miR-200 family inhibits
EMT by regulating the E-cadherin dependent transcription of
repressors ZEB1 and ZEB2 (75, 215). Overexpression of miR-
200b in adenocarcinoma cells has also been found to inhibit the
expression of the tissue inhibitor of metalloproteinase-2
(TIMP2), and increase the matrix metalloproteinase level
(MMP), revealing the implication of miR-200b in endometrial
cancer metastasis (216). EMT plays an important role in
promoting chemoresistance and tumor cell invasion, with
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cancer biology studies and genetic evidence showing that the
PI3K/AKT signaling pathway is the main mechanism controlling
EMT features, despite its effects on cancer cell survival and
proliferation (217). During EMT, adhesive and polarizing
capabilities of the epithelial cells are lost, therefore gaining
invasive and migratory behaviors which promote cancer
invasion and metastatic spread. Judging by the suppressive
action of miR-205 on EMT, some studies have suggested that
high levels of miR-205 can be regarded as a marker of early-stage
cancer, thus leading to an improved prognosis (218, 219).

Further on, the overexpression of miR-21 in endometrial
cancer tissues and downregulation of PTEN through linking to
3’UTR of PTEN mRNA has been shown to promote cell
proliferation (220). Similarly, decreased expression of PTEN
associated with an increased expression of miR-205 in
endometrial cancer has been linked to smaller overall patient
survival rates, suggesting the link between miR-205 and the 3’-
UTR of PTEN mRNA in endometrial cancer cells (84).
Additional research has indicated that the transfection of
endometrial cancer cells with miR-183 resulted in PTEN
protein expression reduction. However, it is yet to be clear if
miR-183 can suppress 3’-UTR of PTEN mRNA in endometrial
cancer cells (84, 221).

Endometrial cancer proliferation has also been revealed to be
promoted by the abnormal regulation of the Notch pathway
(222). The Notch signaling cascade is initiated by the
interactions between specific ligands and receptors, and Guo
and colleagues have demonstrated that, by repressing Notch
signaling, the tumor suppressor lncRNA human maternally
expressed gene 3 (MEG3) inhibits cell proliferation in
endometrial carcinoma (223). The initiation of the Notch
signaling pathway is triggered by the ligand-receptor
interaction, followed by the intramembranous proteolytic
cleavage of the Notch receptors, which ensures the delivery of
an active form of the Notch intracellular domain (NICD). NICD
shows positive regulation of target genes such as the hes
family bHLH transcription factor 1 (HES1), by acting as a
transcriptional activator following nuclear translocation. HES1
has a particular effect on cell proliferation, by acting as a
transcriptional repressor that negatively regulates genes such
as the cyclin-dependent kinase inhibitor p27Kip1 (224). The
Notch signaling pathway is also thought to be involved in the
interaction between miR-184 and cell division cycle 25 A
(CDC25A) protein. By examining the CDC25A mRNA
sequence and identifying an optimal binding site for miR-184,
Chen et al. have recently found that miR-184 overexpression
significantly reduced CDC25A protein levels, thus hindering
endometrial carcinoma cell growth and invasion. Conversely,
they have also highlighted that downregulation of Notch
receptors (NOTCH 1,2,3,4) and target gene HES1 induced
by miR-184 can be overturned by the overexpression of
CDC25A (225).

miRNAs in Vulvar Cancer
Vaginal and vulvar carcinomas are rather rare diseases, adding
up to 4% of gynecological cancers worldwide (226). According to
Frontiers in Oncology | www.frontiersin.org 10
the Centers for Disease Control and Prevention, approximately
5% of US females with genital tract malignancies are diagnosed
with vulvar and vaginal neoplasm (227). The management of
vulvar neoplasia is highly dependent on early diagnosis, clinical,
and pathological degree of the tumoral process at the time of
detection and on the emergence of loco-regional lymph node
metastases (228). Therefore, the identification and detection of
specific miRNAs for this type of cancer may help better address
this public health concern and patients’ needs. Some types of
miRNA molecules make up specific profiles for vulvar
carcinoma, with some authors proposing them as biomarkers
for both early diagnostics and therapeutic signaling targets in
personalized treatments (229). However, so far only a few
suitable references regarding microRNAs expressed in vulvar
cancerous lesions, especially vulvar squamous cell carcinoma,
have been reported (230).

There are two different pathways by which vulvar cancers
develop. Squamous cells leading to vulvar squamous cell
carcinomas (VSCC) amount to about 80% of all vulvar
malignant tumors (230, 231). Most of these tumors, especially
among young women, are linked to high-risk human
papillomavirus (hrHPV) infections (231, 232) and are
associated with other risk factors such as immunosuppression
and smoking (233). Other types of carcinomas may appear in the
context of chronic inflammatory skin diseases such as lichen
sclerosus (LS) or may constitute differentiated vulvar
intraepithelial malignancies, basal cell carcinomas, malignant
melanomas, Paget disease or Bartholin gland carcinoma (232,
234). Genetic and epigenetic changes in vulvar lesions were
reported in quite a few studies, where vulvar intraepithelial
neoplasia (VIN) and VSCCs were correlated with HPV
infection. Some of these studies have identified p53 as an
altered signaling pathway, where NOTCH1 mutations were
often detected (235, 236). Some studies have reported somatic
mutations in higher range regarding HPV-negative tumors
compared to HPV-positive tumors, where mutations of TP53
were detected (237). The number of genetic changes, however,
also depends on the cancer stage, increasing the number of
dysregulated signaling pathways and the altered signaling
molecules, thus elevating the grade of dysplasia (235). Other
studies reported different altered signaling processes related to
VSCC. For instance, in VSCC it has been shown that miR−3147
regulates the Smad4 pathway by repressing mRNAs of Bax, Bim,
p21, and PAI-1 genes, thus increasing both migration and
invasion (86), while miR−590−5p promotes malignant cellular
processes by upregulating the target gene TGFbRII (228). The
extensive roles of miRNAs in vulvar carcinoma have also been
recently investigated by Yang et al., who suggested that miR
−4712−5p may promote carcinogenesis by targeting PTEN and
could facilitate VSCC growth and invasion through the alteration
of the PTEN/Akt/p−GSK3b/cyclin D1 signaling pathway (231).

Further on, the expression of miRNA molecules involved in
vulvar carcinomas has also been explored by Yang and
colleagues, so as to elucidate their mechanism of action in
correlation with the expression levels of transforming growth
factor-b (TGF-b) and Smad pathway factors (228). They found
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that 157 miRNA molecules were expressed in a significantly
altered manner in this type of carcinoma. They concluded that
while some miRNA molecules like miR-590-5p, miR-182-5p and
miR-183-5p were upregulated, others were downregulated,
especially miR-603, miR-103a-3p, and miR-107. Overexpression
of miR-590-5p was found to induce decreased mRNA and protein
levels of TGFbIIR, thus altering the TGF-b/Smad signaling
pathway, and therefore facilitating the generation of malignant
cellular changes along with sentinel lymph node metastasis (228).
Further on, Zalewski et al. have recently conducted a study aimed
at researching the expression levels of several miRNAs in plasma of
patients harboring the same type of lesions: vulvar intraepithelial
neoplasia and vulvar carcinoma. Six microRNAs (hsa-miR-425-5p,
hsa-miR-191-5p, hsa-miR93-5p, hsa-miR-423-5p, hsa-miR-103a-
3p and hsa-miR-16-5p) were analyzed. Of these, hsa-miR-93-5p
and hsa-miR-425-5p were the most appropriate genes that could be
used as internal controls for quantitative miRNA expression in
these kind of rare gynecological malignancies (226).
RESVERATROL: THE MIRNA
CONTROLLING COMPOUND

Inflammation is a non-specific immune response of the human
body to a tissue injury, toxic compounds, damaged cells, irritant
molecules or allergens. Inflammation is associated with both
healing and destruction of the tissue from the surrounding area.
In response to inflammation, the immune system coordinates a
large variety of mediators. The hallmark of inflammation is the
recruitment of the leukocytes in the peripheral zone of the tissue
(238, 239). There are two pathways that connect inflammation
with cancer: the intrinsic pathway, based on genetic alterations
that induce neoplasia and inflammation, and the extrinsic
pathway, which increases cancer risk by inflammatory
conditions (240). Several miRNAs have been shown to play a
part in both cancer and inflammation, with the most investigated
being miR-21, miR-125b, and miR-155. For instance, miR-155,
which is elevated in lymphomas and human leukemias, is known
to be involved in erythropoiesis and myelopoiesis, B-cell
maturation, Th1 differentiation, gene conversion, IgG1
production, B- and T-cell homeostasis and in the overall
regulation of the immune response (91).

Found in grapes and berries, resveratrol is a natural
polyphenolic antioxidant. Recent studies have shown that
resveratrol has properties in cancer and cardiovascular
prevention. It was first shown that resveratrol can inhibit
tumor promotion and progression in skin cancer studied on
mice (241, 242). Resveratrol 4-hydroxystyryl and m-
hydroxyquinone moieties seem to be significant due to their
inhibitory properties concerning various enzymes, such as
cyclooxygenases and lipoxygenases that produce pro-
inflammatory factors starting from arachidonic acid and
protein kinases (243). Resveratrol is a pleiotropic element
known to target a series of proteins in patients diagnosed with
ovarian cancer, particularly HES1 and NOTCH2 in CAOV-3
and OVCAR-3 cells. Resveratrol has been shown to
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downregulate WNT2 in CAOV3 cells and the nuclear
cumulation of B-catenin was reduced. Furthermore, resveratrol
notably reduced OVCAR-3 cell nuclear cumulation of STAT3.
Despite the evidence about resveratrol targeting multi-proteins,
it is necessary to determine the particular features of the
mechanism involved in the signaling pathways of this
interwoven network (244).

The effect on NOTCH signaling of resveratrol is known to be
context-dependent. Resveratrol has an inhibiting effect when
NOTCH signaling is oncogenic. However, resveratrol is
potentiating the tumor-suppressive action when NOTCH
signaling has suppressive tumoral action. c-Myc (oncogenic
transcription factor), an mRNA protein, was repressed by
resveratrol in treated breast cancer cells. In consequence, c-
Myc decrease resulted in the diminishing of miR-17 and pri-
miR-17-92, whilst c-Myc overexpression significantly increased
miR-17 and pri-miR-17-92 (245).

Studies have shown that this antioxidant also impedes the
proliferation of MDA-MB-231-luc-D3H2LN breast cancer cells
and the attention was directed to miRNA analysis, being revealed
that resveratrol generates the expression of miR-141 and miR-
200c within these cells (82, 246, 247). Besides, various genes and
biological signaling pathways were regulated by resveratrol. One
example is the p53 pathway which, once activated by resveratrol,
leads to cell death with the implication of miRNAs. Several
miRNAs like miR-34a, miR-424, and miR-503 can impede breast
cancer development being downregulated by resveratrol through
the p53 pathway, thus inhibiting HNRNPA1, whose expression
is connected with cancer spread (248, 249). The effects of
resveratrol on miRNAs invariably prove to be essential due to
its anti-cancer, anti-inflammation, and anti-metastatic
properties. miR-663, miR-155, and miR-21 are implicated in
the regulation of native immunity, cell proliferation, tumor
development, and metastasis apparition, which suggests that
the capacity of resveratrol to behave as an anti-proliferation,
anti-tumor, and anti-inflammatory agent at the same time arises
from its ability to promote the expression of endogenous
miRNAs, thus having the capacity to globally affect the cell
proteome (91).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Due to their high incidence and mortality rate worldwide,
gynecological cancers have become a global public health
problem. In this review article, while summarizing the findings
in the literature regarding the roles of miRNAs in cancer-relevant
processes, specifically in the context of gynecological cancers, we
have also focused on implications of miRNA signaling pathways
and their role in regulating oncogenic processes in breast, ovarian,
cervical, vulvar and endometrial cancer.

miRNAs have arisen as signaling molecules in virtually all
biological pathways in different forms of cancer, including
gynecological neoplasia, and it has been proven that these
molecules could regulate various processes involved in
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tumorigenesis. Considering the ability of a single miRNA to
target hundreds of mRNAs, expressions of aberrant miRNA are
liable for the deregulation of signaling pathways that control
cancer-associated processes. Understanding the mechanism by
which these changes within intercellular and intracellular
signaling pathways occur represents a challenge for the
survival of women who are detected with advanced and/or
recurrent gynecological malignancies. As the important
functions of miRNAs in gynecological cancer are being
deciphered, their potential use as prognostic and/or diagnostic
markers is evidenced by a long list of studies. Therapeutic
strategies involving the reintroduction of lost miRNAs in
cancer or inhibition of oncogenic miRNAs are steadily
being developed. Various signaling pathways have been
identified and described to be modified in gynecological
cancers. The occurrence of oncogenic mutations may result in
overexpression of the affected genes or in the production of
mutated proteins whose activity is downregulated. Such proteins
could be involved in signaling pathways that are implicated in
many physiological cellular processes, like inflammatory
cytokine production, proliferation, senescence and apoptosis,
metastasis, and drug resistance

miRNAs such as miR-145, have been identified as central
players in cervical carcinogenesis, whereas it has been
demonstrated that miR-125b, miR-145, miR-21, and miR-155
have pivotal roles in breast neoplasia. miR-200 and let-7 have
been described as key modulators in ovarian malignancies and
miR-185, miR-210, miR-423, let-7c, miR-205, and miR-429 have
been associated with oncogenesis, invasion, and metastasis in
Frontiers in Oncology | www.frontiersin.org 12
endometrial carcinoma. Resveratrol, on the other hand, has the
capacity to behave as an anti-proliferation, anti-tumor, and anti-
inflammatory agent at the same time, due to its expression on the
endogenous miRNAs, having the capacity to globally affect the
cell proteome.

In this review article, we have summarized new research
findings regarding the importance that miRNAs have in cancer-
relevant processes, specifically concerning the gynecological
field, and about their significant role in the disruption of
cancer-related signaling pathways, so as to improve the overall
medical management of gynecological malignancies.
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