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Cancer of unknown primary (CUP) refers to cancer with primary lesion

unidentifiable by regular pathological and clinical diagnostic methods. This

kind of cancer is extremely difficult to treat, and patients with CUP usually have

a very short survival time. Recent studies have suggested that cancer treatment

targeting primary lesion will significantly improve the survival of CUP patients.

Thus, it is critical to develop accurate yet fast methods to infer the tissue-of-

origin (TOO) of CUP. In the past years, there are a few computational methods

to infer TOO based on single omics data like gene expression, methylation,

somatic mutation, and so on. However, the metastasis of tumor involves the

interaction of multiple levels of biological molecules. In this study, we

developed a novel computational method to predict TOO of CUP patients by

explicitly integrating expression quantitative trait loci (eQTL) into an XGBoost

classification model. We trained our model with The Cancer Genome Atlas

(TCGA) data involving over 7,000 samples across 20 types of solid tumors. In

the 10-fold cross-validation, the prediction accuracy of the model with eQTL

was over 0.96, better than that without eQTL. In addition, we also tested our

model in an independent data downloaded from Gene Expression Omnibus

(GEO) consisting of 87 samples across 4 cancer types. Themodel also achieved

an f1-score of 0.7–1 depending on different cancer types. In summary, eQTL

was an important information in inferring cancer TOO and the model might be

applied in clinical routine test for CUP patients in the future.

KEYWORDS
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Introduction

About 5% of cancer patients could not be diagnosed with

regular clinical and pathological examinations, including medical

history inquiry, physical examination, blood routine examination,

biochemical examination, urine routine examination, stool

routine examination, occult blood test, chest, abdomen and

pelvic CT, and immunohistochemical examination (https://

www.mskcc.org/cancer-care/types/cancer-unknown-primary-

origin). This kind of cancer is called cancer of unknown primary

(CUP), which is commonly treated by broad-spectrum

chemotherapy with a usually bad prognosis. A landmark study

suggested that therapy targeting primary lesion could significantly

improve the survival of patients (1). Thus, it is critical to develop

novel methods in identifying the tissue-of-origin (TOO) of CUP.

In recent years, many computational methods have been

developed for this purpose based on various types of biomarkers

(2). For example, He et al. used somatic single-nucleotide

polymorphism (SNP) to infer TOO of CUP, which achieved a

cross-validation area under curve (AUC) of approximately 0.8

(3). To improve the performance, gene expression profiles were

introduced by combining a few machine learning methods like

XGBoost and random forest (4, 5). In addition, other markers

like miRNA and DNA methylation were also used (6, 7). There

are also a few studies integrating multiple types of biomarkers,

e.g., SNP and gene expression (8) and gene expression and DNA

methylation (7). However, the accuracy especially in

independent testing datasets is yet to be improved to meet the

clinical criteria. A possible way to improve accuracy is to mine

the intrinsic association among various types of biomarkers.

Expression quantitative trait locus (eQTL) is a locus that

explains the association between SNPs and gene expression

levels (9). eQTL analysis is important in revealing the genetic

structure of gene expression (10, 11). For practical purposes,

eQTLs were divided into cis-eQTL and trans-eQTL according to

the distance from SNP to gene transcription (9). As a common

definition, cis-eQTLs are denoted in a predefined window of

megabase of a genomic sequence, upstream or downstream of

the target gene; trans-eQTLs are denoted as any locus located

outside the same window or even on different chromosomes

(12). Gong et al. also developed the database PancanQTL

following a similar approach, defining cis-eQTL and trans-

eQTL of 33 cancer types (13). The database has demonstrated

the role of genetic variation in tumor development and

progression. Additionally, Gibson et al. introduced some

prominent eQTL resources and eQTL publications (14, 15).

Though eQTL has been widely used in cancer research, it has

not been applied in CUP analysis. In this study, we integrated

eQTL into ourmachine learningmodel to infer the primary lesion

of CUP. Specifically, we first collected cancer-associated eQTLs

based on The Cancer Genome Atlas (TCGA) data portal (https://

tcga-data.nci.nih.gov/tcga/) and GTEx analysis (http://www.
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gtexportal.org/home/). Based on the eQTLs, we trained a CUP

model using data from TCGA. We validated the performance of

our model by cross-validation and independent testing through

our collected data from Gene Expression Omnibus (GEO).
Materials and methods

Data preparation

In order to obtain cancer-related eQTL, the calculation can

be carried out according to the process mentioned in the

Introduction section. However, in reality, SNP data are usually

inaccessible and not easy to download because they are

protected. In the work by Gong and Mei et al., they have

calculated the cis-eQTLs and trans-eQTLs in 33 cancer types,

and created the database PancanQTL, which is an accessible

database (http://bioinfo.life.hust.edu.cn/PancanQTL/) to

support searching, browsing, and downloading. We

downloaded cis-eQTLs for 20 cancers, which have been

studied abundantly and have more complete data samples,

from PancanQTL for further study.

The training data were downloaded from TCGA, and the

test data were downloaded from GEO. The number and

proportion of samples for each cancer in the training data and

test data are detailed in Table 1.
Generate MAP files and PED files

Due to the fact that the input files for the next step, “quality

control with Plink”, need to be in MAP and PED formats, the raw

TCGA data must be converted intoMAP and PED files. There are 7

columns of data in the PEDfile, and the names of each columnare as

follows: Family ID (if there is no Family information, the Family ID

can be replaced by the Individual ID itself), Individual ID, Paternal

ID (0 = unknown), Maternal ID (0 = unknown), Phenotype (0 =

unknown), sex (1 = male; 2 = female; 0 = unknown), and SNP type

data. There are 4 columns in the MAP file, and the data names of

each column are as follows: chromosome number (number format,

0 = unknown), SNP name (character or number, note that it should

correspond to SNP column in PED file every to each), molar

position of chromosome (optional, 0 = unknown), and SNP

physical coordinate (position of variant on chromosome). The

MAP content can be defined using the following website: https://

docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/.
Correction covariable and quality
control analysis

In this step, confounders are corrected and normalized. A

confounder can be any unknown variable that affects the
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correlation measure between the independent and dependent

variables (genetic and non-genetic bias) (16). Its purpose is to

remove the impact of technical differences such as bench effects.

In order to solve these problems, we need correction covariables

and quality control. Daniel Fischer summarized some common

software (17): The following are common processes and software

in cancer.
Fron
1. The first three genotyping principal components (PCs):

Firstly, we can do quality control analysis with Plink

(http://zzz.bwh.harvard.edu/plink/) or synbree (18, 19).

Then, we can use GCTA (https://cnsgenomics.com/

software/gcta/#Overview) to generate the top 3 PCs.

2. The first 15 expression PEER (Probabilistic Estimation of

Expression Residuals) factors: In this step, we can use

PEER Programs (https://hpc.nih.gov/apps/peer.html) to

generate 15 PEER factors.

3. Gender, tumor stage, age, and other factors.
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eQTL analysis using MatrixQTL

We can also use Merlin, snpMatrix, eMap, FastMap, and

other programs (17), but normally, matrixEQTL (http://cran.r-

project.org/package=MatrixEQTL) is used for ultra-fast analysis

(Figure 1). Shabalin et al. developed the program using matrix

calculations and explained the statistical principles of the

different patterns (Supplementary Tables 1, 2).
Feature selection method

The cis-eQTLs of 20 cancers downloaded from PancanQTL

were intersected, and the genes in which these eQTLs were

located were identified. Intersect these genes with genes from the

training data and test data. The following procedure considered

only these genes. Then, random forest was used for

feature selection.

Random forest was proposed by Leo Breiman in 2001 (20). It

is a kind of integrated learning algorithm that uses a decision tree

as a learning machine and uses Bagging (Bootstrap Aggregating)

to extract data (21–23). The idea of using random forest to

evaluate the importance of features can be summarized as

follows: the “contribution” of each feature in each tree in

random forest is calculated, and then the “contribution”

between features is compared after taking an average value.

“Contribution” can often be measured by the Gini Index

(formula 4 and formula 5) or OOB (out of bag) (24). The so-

called OOB data refer to the data obtained through repeated

sampling for training the decision tree whenever the decision tree

is established, but about 1/3 of the data are not utilized and do not

participate in the establishment of the decision tree (25). This

part of data can be used to evaluate the performance of the

decision tree and calculate the prediction error rate of the model,

which is called OOB data error. This is an unbiased estimate (20).

Gini Dð Þ = 1 −o
Cj j

i=1
p2i 1

Gini index of D is defined under the condition of a known

feature A:

Giniindex D,Að Þ =  o
V

v=1

Dvj j
Dj j Gini D

vð Þ 2

Noise interference is randomly added to the features of all

samples of OOB data outside the bag (the values of samples at

the features can be randomly changed), and the error of data

outside the bag is calculated again, which is denoted as errOOB2.

Assuming there are N trees in the forest, the importance of the

feature is ∑(errOOB2 − errOOB1) /N .

The reason why this value can explain the importance of the

feature is that, if the randomnoise is added, the accuracy of theOOB
TABLE 1 Data size and proportion.

Training Data from TCGA

Cancer Type Amount Percent

Breast invasive carcinoma (BRCA) 1,056 13.68%

Kidney renal papillary cell carcinoma (KIRC) 526 6.81%

Uterine corpus endometrial carcinoma (UCEC) 516 6.68%

Thyroid carcinoma (THCA) 500 6.48%

Lung adenocarcinoma (LUAD) 486 6.29%

Head and neck squamous cell carcinoma (HNSC) 480 6.22%

Colon adenocarcinoma (COAD) 451 5.84%

Brain lower-grade glioma (LGG) 439 5.69%

Stomach adenocarcinoma (STAD) 415 5.37%

Prostate adenocarcinoma (PRAD) 379 4.91%

Bladder urothelial carcinoma (BLCA) 301 3.90%

Liver hepatocellular carcinoma (LIHC) 294 3.81%

Ovarian serous cystadenocarcinoma (OV) 261 3.38%

Squamous cell carcinoma and endocervical
adenocarcinoma (CESC)

258 3.34%

Kidney renal clear cell carcinoma (KIRP) 222 2.88%

Acute myeloid leukemia (LAML) 173 2.24%

Glioblastoma multiforme (GBM) 153 1.98%

Rectum adenocarcinoma (READ) 153 1.98%

Pancreatic adenocarcinoma (PAAD) 142 1.84%

Skin cutaneous melanoma (SKCM) 80 1.04%

Unknown cancer 430 5.57%

Testing Data from GEO

Cancer Type Amount Percent

PRAD 44 38.60%

BRCA 25 45.61%

LUAD 1 00.88%

OV 17 14.91%
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data decreases significantly (that is, errOOB2 increases), which

indicates that this feature has a great influence on the prediction

result of the sample, and thus the importance is relatively high.
Classification method

In this study, we used random forest for feature selection and

XGBoost for classifier (5), which was programed by Tian Chen (26).

The XGBoost algorithm uses the gradient boosting decision tree

algorithm, in which boosting is an ensemble technique where new

models are added to correct the errors made by existing models.

Models are added sequentially until no further improvements can be

made. It uses a gradient descent algorithm tominimize the losswhen

adding new models. Therefore, gradient boosting makes use of the

residual error or error of the previous learner to train the nextmodel

and ultimately achieve the predicted effect. The biggest difference

between XGBoost and other ensemble learning is that its objective

function is added with the regular term after the Taylor expansion,

which results in a great increase in its computational speed.

We also used MLP Classfier (multilayer perceptron classifier)

for cancer classification. The multilayer perceptron classifier of

Kurt Hornik et al. in 1989 was based on the feedforward artificial

neural network (ANN) classifier (27). Feedforwardneural networks

refer to the start of the input layer before receiving only one layer of

input and output, and the calculated results to the floor will not give

feedback before the whole process can be represented using a

directed acyclic graph. The multi-layer perceptron is a full

connection between layers, and the layer of any one neuron is

connected to the layer of all neurons. In addition to the input and

output layers, theMLPClassifier can havemultiple hidden layers in

the middle. If there is no hidden layer, the problem of linearly

separable data can be solved. Here, we use the simplest MLP

Classifier (which contains an input layer, a hidden layer, and an

output layer structure) to expand the explanation.

From input layer to hidden layer: Since input layer X=

{1, x1… , xm} to the hidden layer A={1, a1, … , ak} is fully
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connected, where element 1 is the bias node, then the output of

the hidden layer is X1= f1( W1X+ b1), where W1 is the weight

(also known as the connection coefficient); b1 is offset. The f

function can be the usual sigmoid or tanh function 3:

sigmoid xð Þ   = 1= 1 + e−xð Þ   tanh xð Þ  

= ex  −   e−xð Þ   = ex + e−xð Þ   3

From hidden layer to output layer: Hidden layer to output

layer is a multi-category logistic regression, namely, Softmax

regression; thus, the output of the output layer is f2(W2 X1+ b2),

where f2 is Softmax function 4.

Softmax xið Þ   =   exi=oJ
j=1e

xj 4

where xi is the output value of the ith node and J is the

number of output nodes. Obviously, the Softmax function can

limit the output value conversion range of multiple classification

problems to [0,1], and the sum is 1.

Neural networks have the remarkable ability to make meaning

out of complex or imprecise data, and can be used to extract

patterns and detect complex trends that neither humans nor other

computer technologies can notice. A trained neural network can

provide a prediction. Its advantages include the following: MLP is

self-adaptive; MLP does not make any comparisons with other

probability-based models of functions or other probability-based

information considered in its assumptions about potential

probability density; and the required decision-making function

can be generated directly through training.
Results

XGBoost showed better prediction
performance than MLP

The eQTLs of 7,000 samples across 20 types of solid tumors

were downloaded from PancanQTL. The genes where these
FIGURE 1

The flow diagram of common eQTL analysis processes. The eQTL data we analyzed were also generated by these processes.
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eQTLs were located intersected with the genes in the training

data. Following the intersection, the random forest algorithm

was used to select the features of these genes, and XGBoost and

MLP Classifier were used to classify them. The TCGA data were

randomly divided 9:1 and 1/10 was used for testing and 9/10

were used for cross-validation (Figure 2 and Table 2). The results

of tenfold cross-validation (10-CV) showed that XGBoost has a

higher and more stable accuracy in each feature number.

Therefore, XGBoost was used to train TCGA data as a whole

(Figure 3), and 800 gene features with optimal results in 10-CV

were selected to obtain the classifier. Additionally, the trained

model was tested independently using 114 samples from four

cancer types in a GEO testing data.

As shown in the results of the test data (Figure 4 and

Table 3), the classifier had a better specific recognition

capability for BRCA, and the scores of both recall and f1-score

were above 90%. We need to improve the recognition of OV and

PRAD. The cancer can be isolated alone, or further information

can be added based on existing biological pathways.
Top 15 genes in feature selection with
each eQTLs

We analyzed 15 genes selected from testing data and training

data to reverse-explore the biological implications of their effects

on cancer (Figure 5). For the AFFAP1L2 gene, its transcript level

in BRCA, KIRP, and LUAD is higher than other cancer types

(28). For CREB3L4, which is expressed in BRCA and HNSC, the

cancer associated with it is prostate cancer (29). HNF1A is

mainly expressed in BRCA and BCA, leading to familial
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hepatic adenomas (30). We picked rs1169300 for its maximum

magnitude in the presence of this gene; a large study pooling

data from 3 Finnish studies totaling over 18,000 individuals

concluded that while this SNP is not likely to be causative

(relative to cancer), it and one other CRP SNP (rs2464196) are

associated with increased risk for lung cancer (31). KLK3 is

expressed in BLCA, BRCA, LIHC, and LUAD, and the gene is

highly expressed in cancers such as prostate cancer and breast

cancer (32). We picked rs2735839 for its maximum magnitude

in the presence of this gene. A study of ~1,800 Caucasian

prostate cancer patients concludes that the rs2735839(A) allele

is associated with aggressive prostate cancer in general, and more

specifically, in Gleason score 7 patients, it is more often

associated with being GS 4 + 3 rather than GS 3 + 4 (odds

ratio 1.85, CI: 1.31–2.61) (33). PLCB2 is expressed in BLCA,

BRCA, COAD, ESCA, HNSC, KIRC, LGG, and LIHC, and the

cancer associated with this gene expression is PRAD (34).

RC3H1 is expressed in BLCA, BRCA, and COAD, and diseases

associated with RC3H1 include immune dysregulation and

s y s t e m i c h y p e r i n fl a mm a t i o n s y n d r o m e a n d

angioimmunoblastic T-cell lymphoma (35). The TMEM176A

gene is present in BLCA and is highly expressed in liver cancer

(36). TMPRSS2 is expressed in BRCA, GBM, LGG, LIHC, and

other cancer types; the p-value is the highest in LGG (37). WT1

is expressed in BRCA, LUAD, and HNSC, with the highest t-stat

in BRCA (38). CCL16 is expressed in STAD, PRAD, and LIHC,

which is more obvious in breast cancer. CDH17 is expressed in

BRCA, HNSC, and a gene in metanephric adenoma and gastric

cancer (39, 40). HOXB13 maintains a relatively high transcript

level in the adult prostate. We picked rs138213197, which is an

SNP in the homeobox transcription factorHOXB13 gene located
FIGURE 2

The performance of the model against the number of genes. Tenfold cross-validation was used to train the model, and some data that were not
used for training were independently used for testing. XGBoost and MLP were used for classification, respectively. The accuracies of training and
verification are shown in this figure.
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in a cluster of HOX genes on ch 17q21–22 (41). Overall,

rs138213197(T) was reported to lead to a 20-fold higher risk

for prostate cancer, based on having been observed in 72 of

~5,000 patients but in only 1 person out of 1,400 controls (thus,

overall odds ratio 20.1, CI: 3.5–803.3, p = 8.5 × 10−7) (30). KLK2

is mainly expressed in PRAD and KIRC, resulting in prostate

cancer. SLC45A3 is mainly expressed in BRCA and KIRC,

resulting in prostate cancer (42). STEAP2, similar to SLC45A3,

also causes prostate cancer (42).
Frontiers in Oncology 06
Enrichment analysis

The top 800 genes that made the testing data the most accurate

were selected for enrichment analysis with the GeneOntology (GO)

databaseandtheKyotoEncyclopediaofGeneandGenomes(KEGG)

database by Metascape. The results indicated that these genes were

significantly enriched in pathways in cancer, especially in gastric

cancer andbasal cell carcinoma (Figures 6A,C).TheKEGGpathway

ofbasal cell carcinomacontainedKEGGfunctional sets ofHedgehog
A B

DC

FIGURE 3

The receiver operating characteristic curve (ROC curve) for classification. Twenty cancer ROC curves of the optimal 10-fold CVs’ results are
shown in (A–C). (D) The average ROC curve.
TABLE 2 The accuracy of training data and testing data.

Number of
features

Accuracy of XGB in
training data

Accuracy of XGB in
testing data

Accuracy of MLP in
training data

Accuracy of MLP in
testing data

200 0.943393782383419 0.945990297099496 0.832642487 0.83364232

300 0.950647668393782 0.946705989675118 0.854015544 0.856544482

400 0.956865284974093 0.950883005411232 0.867098446 0.871523024

500 0.956476683937823 0.95160761304501 0.87992228 0.878871727

600 0.9610103626943 0.954631683702029 0.884455959 0.894136587

700 0.960621761658031 0.953910807953061 0.89119171 0.898887898

800 0.962046632124352 0.955923952480666 0.894041451 0.904075011

900 0.963730569948186 0.955063338378288 0.899093264 0.904507288

1,000 0.961917098445595 0.955207430597308 0.900906736 0.908686169
Bold values indicate the highest accuracy in each data set.
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(Hh) signaling, where abnormalities in the Hh signaling pathway

have been reported to be associated with divergent cancers (43). The

pathway of glycosaminoglycan biosynthesis (GAG) is also

significantly enriched in this study. GAG plays multiple regulatory

roles in tumor-related angiogenesis, coagulation, invasion, and

metastasis (6, 44). Sulfur metabolism and peroxisome are also

significantly enriched, both of which are related to the metabolic

disorders of cancer (45, 46).

The results of GO enrichment analysis (Figures 6B, D)

showed that there was significant enrichment of cell adhesion

proteins/adhesion involved in cell communication, and the loss of

intercellular adhesion may lead to cell escape from the primary

lesion and metastasis. Among those, the high expression of

plakophilin 2 (PKP2) has been reported to be associated with

several human cancers. PKP2 promotes cell proliferation,

migration, and invasion by activating the EGFR signaling

pathway in LUAD cells (47). Lymphocyte-specific protein

tyrosine kinase (LCK) is a key T-cell kinase that is involved in

hematologic malignancies (48). In the GO analysis results, there

was also significant enrichment of “proto-oncogene vav”, which is

a human oncogene derived from a locus commonly expressed in

hematopoietic cells (48). In addition, tumor necrosis factor (TNF)

was also enriched. TNF induces cell survival, apoptosis, and

necrosis, and is widely expressed in cancer (49).
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Discussion

CUP is a malignant cancer with a high mortality rate. The

study of CUP from the perspective of gene expression and SNP

is conducive to the fundamental understanding of the disease

and the improvement of treatment.

In previous studies, eQTL has shown tissue specificity (50).

eQTL is also used to study cancer risk, development, and treatment

response. We have used a novel approach to incorporate cancer-

related eQTLs into our cancer tissue traceability model. We

extracted genes with cancer-related eQTLs as part of the feature

selection process and used the genes with cancer-related eQTLs for

subsequent model training. Following feature selection-based

eQTL analysis, the number of genes was reduced from 23,366 to

16,717. This significantly improves the prediction and

generalization capabilities of the model.

In this model, eQTL is applied to infer tumor origin for the

first time, which achieved better performances than using single

markers. However, there are a few limitations of this study.

Firstly, previous studies suggested that other biomarkers like

pathological images are important in cancer diagnosis and

prognosis prediction (51–53). It would be interesting to

incorporate these biomarkers together with eQTL to infer

TOO of CUP. Secondly, the machine learning algorithm used
TABLE 3 The model test results (precision, recall, and f1-score) of 4 cancers on the GEO dataset.

Abbreviation Precision Recall f1-score Support

PRAD 1 0.729545455 0.83772727 44

BRCA 1 0.940576923 0.97230769 52

OV 1 0.71 0.83 17

LUAD 1 1 1 1

avg/total 1 0.825263158 0.89938596 114
fron
A

B

FIGURE 4

The performance of the model in the testing data. (A) The model test results (R2-score) on four cancers. (B) The confusion matrix on testing data.
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in this study is quite standard. More complicated models might

be able to improve the performance as shown elsewhere (54, 55).

Finally, the independent testing dataset used in this study is

small, and a dataset containing more types of cancers should be

curated in the future.
Conclusion

In this study, we first described the biological basis of eQTL

and the commonly used mathematical models, then we
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discussed the application of eQTL in diseases and cancer, as

well as the general use of eQTL in cancer analysis and other

software and websites for additional information. We used eQTL

to classify cancer. The results of 10-fold cross-validation of

TCGA data with different features led to the selection of

XGBoost as the optimal model, and the reason for this

selection is explained along with its eQTL. Afterward, we

discussed the possibility of using other algorithms in eQTL

analysis to solve the problems in traditional analysis, and also

discussed the use of eQTL analysis for subjects other than

mRNA expression.
A B

DC

FIGURE 6

The enrichment analysis display. (A) KEGG enrichment histogram. The pathways of 800 genes’ enrichment were demonstrated (p< 0.01). (B) GO
enrichment histogram. The top 20 pathways with 800 genes were demonstrated (p< 0.01). The pathway association networks of KEGG and GO
are shown in (C) and (D). In the networks, each node represented a pathway, and the edges between nodes represented the existence of
common genes between pathways.
A B

FIGURE 5

The heatmaps of gene expression. Heatmaps representing the expressions of 15 genes for each cancer sample in the training data (A) and
testing data (B) were averaged and then log-transformed. Red represented high expression and blue represented low expression.
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