
As a disease of the eye, keratoconus (KC) leads to the 
uninflammatory thinning of the  corneal  stroma [1]. KC 
usually occurs in the transition period from childhood to 
adulthood, and it is more common in Asian populations [2]. 
KC may induce the symptoms of double vision, nearsight-
edness, blurry vision, light sensitivity, and astigmatism [3]. 
KC patients may need special contact lenses or even corneal 
transplantation [4,5].

KC is caused by genetic, hormonal, and environmental 
factors [6], and genetic and environmental factors contribute 
to the pathogenesis and development of KC. Previous studies 
have shown that the alteration of inflammatory factors and 
genetic molecules is associated with KC [7-9]. For instance, 
Pahuja et al. [8] and Shetty et al. [10] showed that the levels of 
inflammatory factors such as tumor-necrosis factor (TNF)-α, 
interleukin (IL)-6, and matrix metalloproteinase 9 (MMP-9) 
were elevated in the epithelium of KC patients. Long non-
coding RNA (lncRNA), microRNAs (miRNAs), and several 
pathways—including transforming growth factor β (TGF-β), 

phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), 
and Wnt signaling pathways—may function in the devel-
opment and progression of KC [7,9,11]. The expression of 
miR-184 in normal cornea samples is higher than that of 
miR-205, and miR-184 may act in cornea development and 
corneal diseases [12,13]. Calpastatin plays a role in genetic 
susceptibility to KC, and the differential modulation of 
calpain–calpastatin complex may influence the functional 
defect of the cornea [14]. Downregulated β-actin may be 
correlated with decreased human antigen R (HuR) in the 
corneal stroma of KC patients, which may also serve as a 
risk factor for the occurrence and development of KC [15]. 
However, the key RNAs involved in the pathogenesis of KC 
have not been comprehensively identified, and the pathogen-
esis of KC remains unclear.

In recent years, more and more evidence has shown that 
the mutual regulation models between lncRNA and miRNA 
and their downstream target genes are closely related to 
the occurrence and development of diseases [16,17]. As an 
important factor in post-transcriptional regulation, miRNA 
activity can be regulated by lncRNA through sponge adsorp-
tion [18]. As competitive endogenous RNA (ceRNA), lncRNA 
competitively binds to miRNA to regulate the protein level 
of the coding gene and participates in the regulation of cell 
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biologic behaviors [19]. Therefore, in-depth research into the 

control mechanism of ceRNA will help us better understand 

the occurrence and development of diseases.

By analyzing the gene expression profile of KC, the 
differentially expressed (DE)-RNAs between KC samples 
and myopic control samples were screened. Following this, a 
ceRNA regulatory network was built to select the key RNAs 

Figure 1. The expression distribution curves, scatter diagram, clustering heatmap, and histogram of the differentially expressed RNAs 
(DE-RNAs). A: The expression distribution curves of the identified RNAs. The red, green, and blue curves represent long non-coding 
RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, respectively. B: The scatter diagram of the DE-RNAs. The red, green, and blue dots 
represent significantly upregulated RNAs, significantly downregulated RNAs, and non–DE-RNAs, respectively. C: The clustering heatmap 
of the DE-RNAs. B: The histogram showing the proportion of upregulated and downregulated RNAs.
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affecting the development of KC from those in myopia. This 
study might help to reveal the ceRNA regulatory mechanisms 
correlated with the pathogenesis of KC.

METHODS

Data preprocessing and differential expression analysis: 
Transcriptome RNA-seq data set GSE112155 was down-
loaded from the Gene Expression Omnibus (GEO) database. 
There were 20 cornea epithelial tissue samples in GSE112155, 
including 10 KC samples (10 males) and 10 myopic control 
samples (6 males and 4 females). Female control samples 
were included in our study to avoid a gender bias, as reported 
by You [20]. The expression profile data related to read count 
level was normalized using R package preprocessCore 
(version 1.40.0, Berkeley, CA) [21].

The lncRNAs, miRNAs, and mRNAs in GSE112155 were 
annotated and identified in the HUGO Gene Nomenclature 

Committee (HGNC) database [22], which includes 3,979 
lncRNAs, 1,932 miRNAs and 19,197 recognized protein-
coding genes. Using R package edgeR (version 3.22.5) [23], 
the DE-lncRNAs, DE-miRNAs, and DE-mRNAs between 
the KC and control samples were analyzed. A |log2 fold 
change (FC)| of >1 and false discovery rate (FDR) of <0.05 
were selected as the thresholds of significant differential 
expression.

Hierarchical clustering analysis and enrichment analysis: 
For the screened DE-RNAs, bidirectional hierarchical clus-
tering based on a correlation algorithm was performed using 
the R package pheatmap (version 1.0.8) [24]. In addition, 
using the DAVID tool (version 6.8, Frederick, MD) [25], the 
DE-mRNAs were analyzed though the Gene Ontology (GO) 
enrichment analysis, which included the Biology Process 
(BP), Molecular Function (MF), and Cellular Component 
(CC) categories [26], and through the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis [27]. 

Figure 2. The long non-coding RNA (lncRNA)–microRNA (miRNA) regulatory network. The squares and diamonds represent lncRNAs 
and miRNAs, respectively. Blue and red represent upregulation and downregulation, respectively.

http://www.molvis.org/molvis/v26/1
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/2.4/bioc/html/preprocessCore.html
http://www.genenames.org/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://david.ncifcrf.gov/
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A p value of <0.05 was taken as the threshold of enrichment 
significance.

Regulatory network analysis of ceRNA: As a kind of ceRNA 
within miRNA, lncRNA is involved in the expression regula-
tion of target genes and plays an important role in the occur-
rence and development of diseases [28]. The lncRNA–miRNA 
regulatory pairs in the miRecode (version 11, Gothenburg, 
Sweden) [29] and starBase (version 2.0, Guangzhou, China) 
[30] databases were merged, and the regulatory pairs between 
DE-lncRNAs and DE-miRNAs were then screened from 
them. Using the Cytoscape software (version 3.6.1, Bethesda, 
MD) [31], the lncRNA–miRNA regulatory network was 
visualized.

Using the starBase database [30], the target genes were 
predicted for the DE-miRNAs involved in the identified 
lncRNA–miRNA pairs. The starBase database integrates 
target prediction information from the targetScan, picTar, 
RNA22, PITA, and miRanda databases [30]. In this study, 
miRNA-target regulatory pairs included in at least one of the 
five databases were selected. Subsequently, the DE-mRNAs 
were correlated with the predicted target genes, and only the 

miRNA-target regulatory pairs involved the DE-miRNAs and 
DE-mRNAs with opposite expression change directions were 
retained. Moreover, the miRNA–mRNA regulatory network 
was built using the Cytoscape software [31].

Along with the identified lncRNA–miRNA and miRNA–
mRNA regulatory pairs, the ceRNA regulatory network was 
constructed using the Cytoscape software [31]. In addition, 
DAVID tool [25] was used to enrich the KEGG pathways for 
the mRNAs implicated in the ceRNA regulatory network, 
with a p value of <0.05 as the significance threshold.

Construction of KC-associated ceRNA regulatory network: 
Using “keratoconus” as the keyword, the KEGG pathways 
directly correlated with KC were searched in the Compara-
tive Toxicogenomics Database (Raleigh, NC) [32]. To obtain 
the mRNAs participating in the KC-associated pathways, 
the searched pathways were compared with the pathways 
enriched for the mRNAs implicated in the ceRNA regulatory 
network. Finally, the regulatory pairs involving the mRNAs 
enriched in the KC-associated pathways were extracted from 
the ceRNA regulatory network to construct the KC-associated 
ceRNA regulatory network.

Figure 3. The microRNA (miRNA)–mRNA regulatory network. The diamonds and circles represent miRNAs and mRNAs, respectively. 
Blue and red represent upregulation and downregulation, respectively.

http://www.molvis.org/molvis/v26/1
http://www.mircode.org/
http://starbase.sysu.edu.cn/index.php
http://www.cytoscape.org
http://ctd.mdibl.org/
http://ctd.mdibl.org/
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RESULTS

Data preprocessing and differential expression analysis: 
A total of 22,281 RNAs were detected in transcriptome 
RNA-seq data set GSE112155. Based on the HGNC database, 
3,261 lncRNAs, 789 miRNAs, and 18,231 mRNAs were 

identified. The expression distribution curves of the identi-
fied lncRNAs, miRNAs, and mRNAs are shown in Figure 
1A. There were 282 DE-lncRNAs (192 upregulated and 90 
downregulated), 40 DE-miRNAs (29 upregulated and 11 
downregulated), and 910 DE-mRNAs (554 upregulated and 

Table 2. The pathways enriched for the mRNAs implicated in the competing 
endogenous RNA (ceRNA) regulatory network.

Term Count P-value Genes
hsa04510:Focal adhesion 5 0.001561 COL4A2, COL4A1, CCND2, TNC, KDR
hsa04060:Cytokine-cytokine receptor interaction 5 0.003707 CXCL1, CCL22, CXCL5, KDR, CXCL10
hsa04062:Chemokine signaling pathway 4 0.006217 CXCL1, CCL22, CXCL5, CXCL10
hsa04512:ECM-receptor interaction 3 0.006331 COL4A2, COL4A1, TNC
*hsa04940:Type I diabetes mellitus 2 0.018766 CPE, HLA-B
*hsa05200:Pathways in cancer 4 0.021608 COL4A2, COL4A1, PPARG, RUNX1T1
hsa04623:Cytosolic DNA-sensing pathway 2 0.023854 IL33, CXCL10
hsa04270:Vascular smooth muscle contraction 2 0.042772 EDNRA, PRKG1

Note: “*” indicates the pathways overlapped with the keratoconus-correlated pathways searched from Comparative Toxicogenomics 
Database.

Figure 4. The competing endogenous RNA (ceRNA) regulatory network. The squares, diamonds, and circles represent long non-coding 
RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, respectively. Blue and red represent upregulation and downregulation, respectively. 
Black lines and red lines represent, respectively, lncRNA–miRNA and miRNA–mRNA relationships.

http://www.molvis.org/molvis/v26/1
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356 downregulated) between the KC and control samples. 
A scatter diagram of the screened DE-RNAs is presented in 
Figure 1B.

Hierarchical clustering analysis and enrichment analysis: A 
clustering heatmap showed that the expression values of the 
screened DE-RNAs could separate different types of samples 
(Figure 1C,D). The result suggested that the DE-RNAs had 
expression characteristics in the samples. Enrichment anal-
ysis showed that 13 GO_BP terms (such as ion transport), 
10 GO_CC terms (such as extracellular region), 11 GO_MF 
terms (such as channel activity), and 9 KEGG pathways (such 
as neuroactive ligand-receptor interaction) were enriched for 
the DE-mRNAs (Table 1).

Analysis of the ceRNA regulatory network: After 66 eligible 
lncRNA–miRNA pairs were obtained, the lncRNA–miRNA 
regulatory network (involving 31 lncRNAs and 8 miRNAs) 
was built (Figure 2). Afterwards, 116 miRNA–mRNA 

regulatory pairs were acquired to construct the miRNA–
mRNA regulatory network (involving 7 miRNAs and 92 
mRNAs; Figure 3).

Then, lncRNA–miRNA–mRNA regulatory pairs were 
then identified, and the ceRNA regulatory network was 
constructed (Figure 4). In the ceRNA regulatory network, 
there were 131 nodes (including 32 lncRNAs, 7 miRNAs, and 
92 mRNAs) and 182 edges (including 66 lncRNA–miRNA 
pairs and 116 miRNA–mRNA pairs). Additionally, 8 KEGG 
pathways (such as focal adhesion) were enriched for the 
mRNAs implicated in the ceRNA regulatory network (Table 
2).

Construction of KC-associated ceRNA regulatory network: 
Only 12 KEGG pathways directly correlated with KC were 
found in the Comparative Toxicogenomics Database. After 
comparing the searched pathways with the pathways enriched 
for the mRNAs implicated in the ceRNA regulatory network, 

Figure 5. The keratoconus (KC)-associated competing endogenous RNA (ceRNA) regulatory network. The squares, diamonds, and circles 
represent long non-coding RNAs (lncRNAs), miRNAs, and mRNAs, respectively. Blue and red represent upregulation and downregulation, 
respectively. Black lines and red lines represent, respectively, lncRNA–miRNA and miRNA–mRNA relationships. Purple triangles represent 
KC-associated pathways.

http://www.molvis.org/molvis/v26/1
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two overlapping pathways (type I diabetes mellitus, and path-
ways in cancer) were obtained as KC-associated pathways. 
Subsequently, the KC-associated ceRNA regulatory network 
was built (Figure 5). Meanwhile, the RNAs correlated with 
KC were obtained, including 6 mRNAs (peroxisome prolif-
erator-activated receptor gamma [PPARG]; human leuko-
cyte antigen-B [HLA-B]; runt-related transcription factor 1 
[RUNX1T1]; carboxypeptidase E [CPE]; collagen, type IV, 
alpha 1 [COL4A1]; and collagen, type IV, alpha 2 [COL4A2]), 

5 miRNAs (miR-301a, miR-181a, miR-222, miR-98, and 

miR-128), and 9 lncRNAs (X-inactive specific transcript 

[XIST]; ST7-AS2; LINC00309; LINC00299; LINC00261; 

LINC00276; LINC00355; rhabdomyosarcoma 2-associated 

transcript [RMST]; LINC00520; and prostate cancer antigen 

3 [PCA3]; Figure 6). The XIST-miR-181a-COL4A1 axis was 

particularly involved in the KC-associated ceRNA regulatory 

network.

Figure 6. The expression levels of the RNAs correlated with keratoconus (KC). A: The expression levels of the mRNAs correlated with KC. 
B: The expression levels of the microRNAs (miRNAs) correlated with KC. C: The expression levels of the long non-coding RNAs (lncRNAs) 
correlated with KC. Black and white columns represent KC samples and control samples, respectively.
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DISCUSSION

Previous studies have suggested that sex and ethnicity 
may affect morbidity, gene expression, and episode age 
in KC [20,33,34]. Gender consistency in gene expression, 
however, will generally explain the pathogenesis of KC. In 
this study, a total of 282 DE-lncRNAs (192 upregulated and 
90 downregulated), 40 DE-miRNAs (29 upregulated and 
11 downregulated), and 910 DE-mRNAs (554 upregulated 
and 356 downregulated) were screened for KC, relative to 
control samples with no gender bias. For the DE-mRNAs, 13 
GO_BP terms, 10 GO_CC terms, 11 GO_MF terms, and 9 
KEGG pathways were enriched. In the KC-associated ceRNA 
regulatory network, there were 6 mRNAs (including PPARG, 
HLA-B, COL4A1, and COL4A2), 5 miRNAs (including miR-
181a), and 9 lncRNAs (including XIST). The number of 
DE-mRNAs (910) between the KC and control samples was 
higher than 13 and lower than 1422 without and with gender 
bias, respectively, in You [20]. The number of DE-mRNAs 
(910) with strict criteria (edgeR, |log2FC| >1, and FDR <0.05) 
suggested that the result of the gene expression profile was 
credible.

The elevated inflammatory factors, including IL-6, 
TNF-α, and IL-1 receptors, have been identified in KC 
epithelium, despite KC having been defined as a non-inflam-
matory condition [8,35-37]. Multiple studies have shown 
conflicting results about inflammation in KC. Among the 
reported inflammatory factors in KC, IL-6 and IL-6 receptor 
(IL-6R) play roles in glaucomatous optic nerve and retina 
damage, and their abnormal single nucleotide polymorphisms 
(SNPs) are involved in the development and progression of 
primary open-angle glaucoma (POAG) [38]. In addition, IL-6 
assumes important roles in herpes simplex virus (HSV) type 
I infection-induced corneal nerve degeneration [39] and in 
ocular inflammation and angiogenesis in the cornea [40]. The 
roles of PPARG in inflammation have been widely reported 
[41-43]. PPARG regulates the redox balance in macrophages 
[41]. A previous study explored the functions of PPARG 
agonist rosiglitazone on retinoblastoma cells and found that 
rosiglitazone plays an antitumor role via the suppression of 
cell growth, metastasis, and invasion and via the promotion 
of cell apoptosis [44]. HLA-A26, HLA-B40, and HLA-DR9 
are frequently found in older Japanese populations and may 
be related to KC in young people [45]. HLA-G contributes to 
establishing immune tolerance in allograft, which may also 
help to maintain the immune-privileged status of the cornea 
[46]. Our present study, however, identified the downregula-
tion of IL-6, PPARG and HLA in epithelium from patients 
with KC. We speculated the participation of IL-6, PPARG and 
HLA in KC pathogenesis. However, there were conflicting 

results between our study and others reporting the elevation 
of IL-6 in KC epithelium compared with controls [8,35-37].

In addition to conflicting inflammatory conditions in 
KC, histopathological changes in collagen decomposition or 
fibrosis are associated with KC induction [47,48]. Transcrip-
tion factor 8 (TCF8) plays a role in about half of posterior 
polymorphous corneal dystrophy (PPCD) cases, and its 
target, COL4A3, is critical in both Alport syndrome and 
PPCD [49,50]. Enhancement during collagen decomposition 
is responsible for the damage of pathological tissues in KC 
corneas, which is still retained in initial cultures of KC fibro-
blasts [51]. In KC corneas, type I, III, and V collagens have 
no difference in distribution, while the distribution of type 
IV collagen is disruptive and excrescent in the corneal base-
ment membrane [47,52]. KC corneas have decreased collagen 
protein levels, and collagen type IV functions as a candi-
date gene in the development of KC [53]. Our present study 
suggested that COL4A1 and COL4A2 were dysregulated in 
the KC epithelium relative to controls, suggesting the crucial 
role of collagen decomposition in the progression of KC.

In addition to the DE-mRNAs, we also identified the 
DE-miRNAs and lncRNAs in KC samples compared with 
controls. The miR-181a, miR-21, and Smad signaling coor-
dinately regulate the expression of TGF-β-induced gene 
(TGFBI) protein (TGFBIp) in corneal fibroblasts, and their 
pharmacologic modulation may be applied to treat TGFBI-
correlated corneal dystrophy [54]. The overexpression of 
miR-181b can be induced by hypoxia, which further promotes 
the angiogenesis of retinoblastoma cells by mediating GATA-
binding protein 6 (GATA6) and programmed cell death 10 
(PDCD10) [55]. Upregulated lncRNA XIST is positively 
related to an advanced stage and late differentiation state 
of retinoblastoma, and XIST may accelerate retinoblastoma 
progression via regulating the miR-124/signal transducer and 
activator of transcription 3 (STAT3) axis [56]. The XIST-miR-
181a-COL4A1 axis was involved in the KC-associated ceRNA 
regulatory network, indicating that XIST and miR-181a might 
be correlated with the pathogenesis of KC through the XIST-
miR-181a-COL4A1 axis.

In conclusion, 282 DE-lncRNAs, 40 DE-miRNAs, and 
910 DE-mRNAs were identified between the KC and control 
samples. These DE-RNAs were identified without gender 
bias. Further, PPARG, HLA-B, COL4A1, COL4A2, miR-181a, 
and XIST might be involved in the development and progres-
sion of KC in both females and males. Moreover, the XIST-
miR-181a-COL4A1 axis might function in the mechanisms of 
KC. However, the specific roles of these RNAs in KC should 
be further explored and supported by experiments.
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