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Abstract: (1) Background: Glioblastoma multiforme (GBM) is among the most aggressive cancers
with a poor prognosis. Treatment options are limited, clinicians lack efficient prognostic and predic-
tive markers. Circulating miRNAs—besides being important regulators of cancer development—may
have potential as diagnostic biomarkers of GBM. (2) Methods: In this study, profiling of 798 human
miRNAs was performed on blood plasma samples from 6 healthy individuals and 6 patients with
GBM, using a NanoString nCounter Analysis System. To validate our results, five miRNAs (hsa-
miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly
chosen for RT-qPCR detection. (3) Results: In all, 53 miRNAs were significantly differentially ex-
pressed in plasma samples of GBM patients when data were filtered for FC 1 and FDR 0.1. Target
genes of the top 39 differentially expressed miRNAs were identified, and we carried out functional
annotation and pathway enrichment analysis of target genes via GO and KEGG-based tools. General
and cortex-specific protein–protein interaction networks were constructed from the target genes of
top miRNAs to assess their functional connections. (4) Conclusions: We demonstrated that plasma
microRNA profiles are promising diagnostic and prognostic molecular biomarkers that may find
an actual application in the clinical practice of GBM, although more studies are needed to validate
our results.
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1. Introduction

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal primary
tumors of the central nervous system accounting for over 80% of malignant gliomas. The
prognosis for malignant gliomas has not significantly improved in the last four decades.
Fighting the disease is challenging both for patients and health care systems. Despite recent
progress that has been made in treatment protocols, GBM is still characterized by a high
mortality rate: the average life expectancy of GBM patients (GPs) is 1.5 years [1]. Early
detection and assessment of GBM pathologies still need to be solved. Routine diagnostic
procedures carried out in clinics are not suitable for early diagnosis and for efficient
treatment; therefore, there is a need for new diagnostic and prognostic markers that might
also represent novel therapeutic targets [2]. Preferably, these should be detectable in easily
accessible biological fluids using robust and minimally invasive methods. During recent
years, several groups investigated the possibility of using circulating miRNAs as candidate
biomarkers for diagnosis in many human cancers including GBM [3].
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MiRNAs are 21–25 nucleotides long, endogenously expressed non-coding RNAs that
post-transcriptionally repress the expression of protein-coding genes through binding to the
3′ untranslated regions (UTR) of target mRNAs [4,5]. Accumulated evidence indicates that
miRNAs as post-transcriptional regulators may interact with a large number of mRNAs
and are involved in the regulation of many biological processes, such as developmental
timing, cell metabolism, cell differentiation, cell death, cell proliferation, hematopoiesis,
and patterning of the nervous system [6]. Many miRNAs exhibit tissue-specific patterns of
expression and are deregulated in various cancers, where they may be either oncogenic
(oncomirs) or tumor suppressive. However, this classification is not straightforward: due to
an extensive palette of target genes, the same miRNA may play opposing roles in different
processes [7]. MiRNAs from tumors may be secreted within membrane vesicles (exosomes)
or directly into the blood, indicating that miRNAs probably play a key role in intercellular
communication [8,9]. Circulating miRNAs found in human blood plasma may represent
stable biomarkers as a result of their packaging into vesicles or interaction with proteins
that protect miRNAs from RNase digestion [10].

In addition to analyzing the potential of single miRNAs as biomarkers, there are
several research groups that have been investigating the potential of using multiple serum
miRNAs in combination for diagnostic and prognostic purposes in GBM. A study revealed
that a seven-miRNA panel including hsa-miR-15b, hsa-miR-23a, hsa-miR-150, hsa-miR-197,
and hsa-miR-548b-5p had a high potential to distinguish malignant astrocytomas from
normal controls [11]. A meta-analysis performed by Qu et al. concluded that panels
containing miR-21 may be more specific for glioma [12]. Roth et al. were able to identify
a specific miRNA signature in the blood cells of GPs, namely an increased expression of
hsa-miR-128 and hsa-miR-194 and a decreased expression of hsa-miR-342-3p and hsa-miR-
628-3p [13]. Despite a large number of reports, no consensus regarding the circulating
miRNA signature has been reached so far, making it currently impossible to unambiguously
distinguish GBM patients from healthy individuals (HIs) on this basis.

NCounter technology may be used to detect any type of nucleic acid in solution and—
with modifications—to assess other biological molecules as well. In this study, we chose
this assay for profiling miRNA expression in plasma samples of GPs and HIs. Differentially
expressed (DE) miRNAs were identified, their targets were predicted by a bioinformatics
search and subjected to gene ontology and pathway analyses. Detection of the significantly
differently expressed miRNAs in plasma samples of more GPs could provide valuable
insight into the pathogenesis of GBM.

2. Results
2.1. Identification of Differently Expressed MicroRNAs in Plasma Samples of GBM Patients and
Healthy Controls

In order to compare plasma miRNA expression profiles between GPs and HIs, six
GBM patients and six individuals diagnosed with disc herniation—serving as healthy
controls—were recruited in this study. Patients were aged between 52 and 69 years with a
mean age of 61.3 years, while the age of controls ranged from 42 to 68 years with a mean
age of 58.6 years. In both groups, the number of women and men were equal.

MiRNA profiles in plasma samples were determined using the nCounter Human v3
miRNA Panel of the NanoString nCounter Analysis System (NanoString Technologies,
Seattle, WA, USA). During the experiment, special attention was paid to sampling and
sample processing in order to preserve miRNA stability and enable standardization of
the results.

Normalized miRNA counts varied considerably among individuals; however, most
miRNA counts were low, especially in controls, with few exceptions. Hsa-miR-451a had
the highest count with group mean values 1144 and 2965 for controls and GBM patients,
respectively. It was followed by hsa-let-7i-5p and hsa-miR-6721-5p (group mean values:
233 and 349; 179 and 254, respectively). None of these highly expressed miRNAs showed
significantly different expression among the cohorts.
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In total, 107 out of the 798 unique miRNAs showed significant differences in counts
between tumor and normal plasma samples following filtering and differential expression
analysis. After adjusting expression data for fold change (FC) and false discovery rate
(FDR) cut-off values (log2FC 1 and FDR 0.1), 52 miRNAs were found to be upregulated,
among them hsa-miR-338-5p had the highest expression value (log2FC = 2.14). Hsa-miR-
181a-3p was the only downregulated miRNA in GP samples compared to healthy controls
(log2FC = −0.43) after adjusting for FDR 0.1. The distribution of DE miRNAs is shown in
Figure 1a,b. The complete list of DE miRNAs is presented in Table 1. Based on our search
results using the miRCancer and miR2Disease databases and the literature, the majority
(~94%) of the DE miRNAs identified in this study had already been found to be associated
with various malignancies, many of them (~57%) with GBM, too.
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Figure 1. MA plots showing the log2 fold change of normalized counts in the function of the average expression values of
differentially expressed miRNAs in plasma samples of GBM patients. (a) Expression data were filtered for false discovery
rate (FDR) 0.15 and fold change 0.5; (b) The same data were filtered for FDR 0.1 and fold change 1.

2.2. Validation of Differentially Expressed MiRNAs by RT-qPCR

To validate our NanoString results, five miRNAs (hsa-miR-433-3p, hsa-miR-362-3p,
hsa-miR-195-5p, hsa-miR-133a-3p, and hsa-miR-29a-3p) were randomly chosen together
with hsa-miR-1286-3p, which did not show differential expression between the two groups.
Relative expression of these miRNAs was determined by RT-qPCR measurements using
hsa-miR-16-5p as the reference miRNA [14,15]. All measurements were done in triplicate.
Expression of hsa-miR-433-3p, hsa-miR-195-5p, and hsa-miR-29a-3p was significantly
upregulated compared with those in the control samples (the Kruskal–Wallis p-values were
the following: hsa-miR-433-3p: p = 0.00714, hsa-miR-195-5p: p = 0.0466, hsa-miR-29a-3p:
p = 0.0041), while in the case of hsa-miR-362-3p and hsa-miR-133a-3p we could not detect
any expression either in healthy control samples or in GBM patient samples. Although RT-
qPCR methods for miRNA quantification are relatively inexpensive, commonly available,
and allow measurements of very small quantities of miRNAs, the amounts of circulating
miRNAs in peripheral blood are often below their limit of detection [15]. Expression of
hsa-miR-1286-3p did not show a significant difference between HIs and GPs.

We constructed ROC-AUC curves using the expression data obtained from the non-
malignant and malignant samples for hsa-miR-433-3p, hsa-miR-195-5p, and hsa-miR-
29a-3p that showed significantly different expression between HIs and GPs according to
NanoString and RT-qPCR measurements. ROC-AUC proved to be 0.98214, 0.9704, and
0.98214 in the case of hsa-miR-433-3p, hsa-miR-195-5p, and hsa-miR-29a-3p, respectively.
Normalized Ct values for HIs and GPs were dichotomized by mapping the sensitivity
values in relation to 1—specificity in the case of hsa-miR-433-3p, hsa-miR-195-5p, and
hsa-miR-29a-3p—to estimate optimal cut-off values. Hsa-miR-433-3p and hsa-miR-29a-3p
showed the same sensitivity (92%) and specificity (96%), while in the case of hsa-miR-195-
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5p sensitivity was 88% and specificity was 96% (Figure 2). Of course, these results require
validation in a larger cohort of GBM patients.

Table 1. List of miRNAs with significantly different plasma levels in GPs and HIs, listed according
to their expression levels (log2FC) and showing their involvement in the formation of tumor types
according to a manual search of the literature and the miR2Disease and miRCancer databases.
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Figure 2. (a) ROC (receiver operating characteristics) curves with AUC (area under the curve) were made to check
and visualize the performance of miR-29a-3p, miR-195-5p, and miR-433-3p, randomly selected for the validation of the
NanoString measurement via qRT-PCR. (b) Estimated optimal cut-point values of miR-29a-3p (normalized Ct value: 2),
miR-195-5p (normalized Ct value: 0.97), and miR-433-3p (normalized Ct value: 2). (c) Dot plot analysis of miR-29a-3p,
miR-195-5p, and miR-433-3p for GBM patients (GBM) and healthy controls (H).

2.3. MiRNA Ranking, Target Gene Prediction, and Analysis

An accurate prediction of miRNA targets is critical for characterizing the function of
DE miRNAs. The facts that a single miRNA may interact with several different mRNAs
and the translation of an mRNA may be regulated by several miRNAs justify a network-
based analysis for miRNA function. In this study, the miRNet tool was applied to identify
experimentally validated miRNA targets and build an miRNA-centric network incorpo-
rating direct miRNA–target gene interactions and protein–protein interactions into the
network. This approach allows us to determine the importance of the given miRNAs in the
network based on their network-specific centrality values. On the basis of this analysis,
hsa-miR-215-5p has the highest degree value (755) followed by hsa-miR-195-5p (640) and
hsa-miR-362-3p (536), reflecting their importance in the network. (Complete and mini-
mum networks built from the DE miRNA–target gene and protein–protein interactome
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of proteins encoded by target genes—as generated by the miRNet tool—are presented in
Supplementary Materials Figure S1).

Applying the miRTargetLink tool, we constructed a core miRNA–target network to
show the experimentally validated miRNA–target interactions for the top 10 miRNAs
with the highest expression values from the significantly DE miRNAs revealed by our
analysis. We also included hsa-miR-433-3p, hsa-miR-362-3p, hsa-miR-195-5p, hsa-miR-
133a-3p, and hsa-miR-29a-3p: miRNAs used for the RT-qPCR validation of the NanoString
measurement (Figure 3). According to the miRTargetLink tool, their common target genes
possessing more than two interactions in the full network are Runt-related transcription
factor 2 (RUNX2), nuclear kinase (WEE1, a key regulator of cell cycle progression), cell
division control protein 42 homolog (CDC42), B-cell lymphoma 2 (BCL2, a regulator
of apoptosis), cyclin-dependent kinase 4 (CDK4), endoribonuclease (DICER1), vascular
endothelial growth factor A (VEGFA), phosphatase and tensin homolog (PTEN), and cyclin-
dependent kinase inhibitor 1A (CDK1NA). All of these proteins are known to be involved
in tumorigenesis (Figure 3) [16–19].
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Figure 3. The core network of DE miRNAs and their experimentally validated target genes. The
network was generated by the miRTargetLink tool using the strong interaction option. Color code:
orange, more than two interactions; blue, two interactions in the full network.

2.4. Pathway and Gene Ontology Enrichment Analysis of MiRNA Targets

To shed more light on the potential pathophysiological role of significantly DE miR-
NAs in GBM development and to further explore the function of their predicted target
genes, we selected the most upregulated 38 miRNAs and the single downregulated hsa-
miR-181a-3p to perform Gene Ontology and pathway enrichment analysis. A functional
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annotation and enrichment analysis of their target genes in Gene Ontology Biological
Process (GO-BP), Molecular Function (GO-MF) terms, and in canonical KEGG pathways
was performed using the DAVID tool [20]. Among the identified biological processes, we
found DNA demethylation, protein O-linked glycosylation, positive regulation of tran-
scription from RNA polymerase II promoter, negative regulation of transcription from
RNA polymerase II promoter, regulation of gene expression, negative regulation of G1/S
transition of the mitotic cell cycle, and the apoptotic process. The complete list of GO-BP
and GO-MF for the 39 DE miRNAs is present in Figures 4 and 5. Furthermore, as far as can
be judged from the result of a KEGG pathway analysis, a number of cancer types such as
glioma, prostate cancer, bladder cancer, small cell lung cancer, non-small-cell lung cancer,
melanoma, endometrial cancer, pancreatic cancer, and viral infectious pathways (hepatitis
B, HTLV-I infection) were found to be associated (Figure 6).
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2.5. Protein–Protein Interaction Network Analysis of MiRNA Targets

Based on common protein targets of the 38 most upregulated miRNAs and the only
downregulated miRNA, we constructed two protein–protein interaction (PPI) networks.
First, a general PPI network, then a cortex-specific PPI network was generated from the
target list by using the NetworkAnalyst tool. Both of them proved to be large fuzzy
networks: there are 1191 nodes and 1676 edges in the general PPI network, while the
cortex-specific one contains 668 nodes and 852 edges. In Figure 7, the general and cortex-
specific minimum networks are shown with the major hubs labeled.
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Comparing the two networks, it can be established that many of the major hubs—
considered to be key nodes with major biological importance—are shared and represent
proteins that are already known to be involved in tumorigenesis, such as BCL2, retinoblas-
toma 1 (RB1), PTEN, erb-b2 receptor tyrosine kinase 2 (ERBB2), cyclin D1 (CCND1),
zinc finger E-box binding homeobox 1 (ZEB1), fascin actin-bundling protein 1 (FSCN1),
Wnt family member 1 (WNT1), X-linked inhibitor of apoptosis (XIAP), forkhead box O1
(FOXO1), ubiquitin like modifier activating enzyme 2 (UBA2), DNA methyltransferase
3 beta (DNMT3B), annexin A2 (ANXA2), and WEE1. However, ranking of nodes based
on their degree centrality is not identical in the two PPI networks. ERBB2, RB1, ANXA2,
CCND1, PTEN, FSCN1, DNMT3B, BCL2, XIAP, FOXO, and WEE1 are present in both but
have higher degree centrality in the cortex-specific network.

Using the Gene Ontology and KEGG database options of the NetworkAnalyst tool, we
performed a PPI-network-based functional enrichment and pathway analysis as well. This
made it possible to compare results of the general analysis with results of a cortex-specific
enrichment analysis. Results are shown in Figures 8 and 9. Results of the functional
enrichment analysis suggest that circulating plasma miRNAs are not randomly released
from cells, since many of their predicted target genes are enriched in critically important
pathways and biological processes contributing to tumorigenesis. Examples for that are
pathways in cancer, cell cycle, viral carcinogenesis, ubiquitin-mediated proteolysis, apop-
tosis, FoxO signaling pathway, p53 signaling pathway, glioma genesis, transcriptional
misregulation in cancer, ErbB signaling pathway, EGFR tyrosine kinase inhibitor resistance,
PI3K–Akt signaling pathway, and neurotrophin signaling pathway. Functional enrichment
analysis of target genes using the KEGG pathways also revealed several cancer types; how-
ever, those are not listed in Figure 10. Mazurek et al. analyzed the molecular pathways of
tumor metabolism in GBM. According to their analysis, the activation of PI3K results in the
formation of phosphatidylinositol-3,4,5,-triphosphate (PIP3), and following its formation,
PtdIns(3,4,5)P3 recruits Akt at the inner plasma membrane. This translocation of Akt into
the membrane activates its kinase activity, leading to uncontrolled cell proliferation and
the inhibition of apoptosis during tumor transformation. Growth factor receptors are other
elements of the PI3K axis and are involved in its activation. These include EGFR, EGFRvIII,
and platelet-derived growth factor receptors (PDGFRs) [21].
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3. Discussion

Glioblastoma (GBM) is a devastating primary malignancy of the central nervous
system. Fighting the disease is challenging both for patients and health care systems.
Survival is poor, and treatment options are limited [22]. In addition to imaging studies,
biomarkers—especially ones detectable from liquid biopsy—may be helpful to distinguish
between healthy persons and GPs, to detect tumor recurrence at the earliest possible stage,
and to distinguish between pseudoprogression and substantial tumor growth [23].

Data regarding the composition of the human genome show that a large part of it is
transcribed into non-coding RNAs with major functions both in normal physiology and
in pathological processes [24]. In recent years, several groups examined the biological
importance of cell-free miRNAs present in body fluids. It was suggested that circulating
miRNAs have the potential to become non-invasive biomarkers for the early diagnosis
of cancer [25,26]. MiRNAs have the advantage of being clearly defined markers that
may easily be determined by microarrays, nCounter technology, or real-time PCR in
peripheral blood. These methods allow the analysis of specific miRNA patterns that
comprise numerous miRNAs.

3.1. Identification of Differently Expressed MiRNAs in Plasma Samples of GBM Patients and
Healthy Controls
3.1.1. NanoString Analysis and Identification of Differentially Expressed MiRNAs

We performed miRNA screening analyses of plasma samples of GBM patients and
healthy individuals using nCounter. We compared expression profiles of circulating miRNA
in blood plasma samples of six healthy persons and six GBM patients. The nCounter
Human v3 miRNA Panel of the NanoString System was used to measure miRNA levels.
MiRNA counts were low for most of the miRNAs, especially in the control samples. This
may be due to the detection method: NanoString does not require an amplification step, so
it is clearly different from methods that use PCR for miRNA measurement.

Comparing miRNA expression profiles in the control and GBM patient samples, we
have identified 59 miRNAs showing significantly different expression between controls
and patients: 58 miRNAs were found to be upregulated, whereas 1 was downregulated.
The observed significantly deregulated 53 miRNAs amounted to 6.64% of the 798 miRNAs
analyzed in total. The majority (~93%) of differentially expressed miRNAs identified
in this study had been previously associated with various malignancies, many of them
(~57%) with GBM too [27,28]. On the basis of the NanoString measurement, the only
downregulated miRNA in GPs was hsa-miR-181a-3p (log2FC = −0.43), whereas the most
strongly upregulated one was hsa-miR-338-5p (log2FC = 2.14). Very recently, He et al.
performed a meta-analysis of 24 studies comprising 2170 patients with different grades
of glioma and 1456 healthy participants to evaluate the diagnostic potential of circulating
miRNAs. Overall, 6 miRNAs (hsa-miR-133, hsa-miR-181, hsa-miR-182, hsa-miR-197, hsa-
miR-497, and hsa-miR-548) were noted as significantly differentially expressed by both our
own study and by He et al. [29].

3.1.2. Differently Expressed MiRNAs Specific for GBM

Searching the miR2Disease and miRCancer databases, we found that out of our pool
of significantly deregulated miRNAs, two miRNAs (hsa-miR-1252-5p and hsa-miR-591)
showed new associations with GBM. Rodrigues-Junior et al. revealed a direct association
between bortezomib sensitivity in multiple myeloma cells by targeting heparanase (HPSE).
Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE
enzymatic activity in MM cells [30]. In addition, there are several KEGG pathways related
to tumorigenesis signaling identified as putative targets for miR-1252-5p. These pathways
are linked to lysine degradation, transcriptional misregulation, glycosphingolipid, and
proteoglycan biosynthesis [30]. Huh et al. demonstrated that the regulation of miR-106a
and miR-591 in ovarian cancer cells affects sensitivity to paclitaxel (PTX) and cancer cell
migration and proliferation, and that ZEB1, BCL10, and caspase-7 are direct target genes of
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miR-106a and miR-591 [31]. Hsa-miR-423-3p should also be noted as specific for GBM and
having an experimentally validated target, CDKN1A, which is a component of pathways
known to play key roles in GBM biology [32].

3.1.3. The Role of Hsa-miR-433-3p in Cancer Development

Dysregulated hsa-miR 433-3p expression has been observed in various cancers and
has been significantly associated with the clinical outcome of tumor patients. It was re-
ported that hsa-miR-433-3p was downregulated in gastric carcinoma [33], visceral adipose
tissue of patients with non-alcoholic steatohepatitis [34], and hepatitis B virus–associated
hepatocellular carcinoma (HCC) [35]. Previous studies reported that hsa-miR-433-3p was
downregulated in glioblastoma samples as well [36,37]. For example, Sun et al. revealed
that hsa-miR-433-3p is downregulated in glioma tissue and cells and functions as a tumor
suppressor by targeting CREB in glioma, thus regulating cell growth, invasion, and mi-
gration [36]. As shown in the present study for GBM, hsa-miR-433-3p was reported to be
upregulated in patient plasma samples compared to control plasma samples in human
osteosarcoma. In osteosarcoma, ectopic expression of hsa-miR-433 decreased apoptosis in
tumor cells by targeting programmed cell death 4 (PDCD4), indicating that hsa-miR-433
may be a potential molecular target for osteosarcoma treatment [38]. To further confirm the
upregulation of hsa-miR-433-3p in GBM, RT-qPCR analysis was performed. Hsa-miR-433-
3p expression was markedly higher in GP plasma samples than in healthy control samples.
Given the differences in sample sources, RNA extraction, and detection methods, more
studies are required to further assess the role of hsa-miR-433-3p in GBM.

3.2. Validation of Differentially Expressed MiRNAs by RT-qPCR

In addition to hsa-miR-433-3p, the relative expression of some other miRNAs was
also determined by RT-qPCR measurements using hsa-miR-16-5p as the reference miRNA.
Expression of hsa-miR-195-5p and hsa-miR-29a-3p was significantly upregulated compared
with those in the control samples, while in the case of hsa-miR-362-3p and hsa-miR-133a-3p
we could not detect any expression either in healthy control samples or in GBM patient
samples. Similarly to our results, Wang et al. found the upregulation of hsa-miR-195-5p
in both blood and tissues of GBM patients and suggested that it may regulate fatty acid
metabolism through predicted or validated target genes [39]. It was found that patients
with high-risk/relapsed tumors are intimately linked to metabolic abnormalities, e.g., fatty
acid biosynthesis has been reported to play important roles in the pathogenesis of multiple
cancers [40]. Jia et al. observed that median survival of patients with low hsa-miR-195 levels
was 15 months, whereas for patients with high hsa-miR-195 levels, it was 56.53 months.
Multi-factor Cox regression analysis showed that a high level of hsa-miR-195 (odds ratio
(OR): 0.347, 95% CI: 0.121–0.992) was associated with decreased mortality of patients [41].
Zhao et al. found that hsa-miR-29a downregulates PTEN, EphB3, and SOX4 expression to
activate a complex post-transcriptional program of growth and invasion in glioblastoma
that promotes glioblastoma aggressiveness. In addition, increased hsa-miR-29a expression
in glioblastoma specimens correlates with decreased patient survival [17]. About hsa-
miR-181a-3p, which we detected using NanoString was the only downregulated miRNA,
Shi et al. found that hsa-miR-181a and hsa-miR-181b function as tumor suppressors
triggering growth inhibition, inducing apoptosis, and inhibiting invasion in glioma cells.
These findings suggest aberrantly downregulated hsa-miR-181a and hsa-miR-181b may be
critical factors that contribute to malignant appearance in human gliomas [42].

3.3. MiRNA Ranking, Target Gene Prediction, and Analysis

Using the miRNet tool and a network-based approach, we constructed a miRNA–
target interaction network for miRNA groups. MiRNAs were ranked based on their
degree-centrality value in the network, which reflects their biological importance. Ap-
plying the mirTargetLink tool, we constructed core miRNA–target networks to show the
strongest interactions among 15 DE miRNAs including the ones we used for RT-qPCR
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analysis. According to mirTargetLink, their common target genes showing more than two
interactions in the full network are RUNX2, WEE1, CDC42, BCL2, CDK4, DICER1, VEGFA,
PTEN, and finally CDK1NA. Yamada et al. detected RUNX2 protein in five out of seven
human GBM cell lines, and its level was positively correlated with proliferative capac-
ity [43]. Wu et al. concluded that a combinational inhibition of WEE1 and PI3K might allow
successful targeted therapy in GBM [44]. According to Okura et al., high Cdc42 expression
is associated with poorer progression-free survival, and Cdc42 expression is highest in
the proneural and neural subgroups of GBM [16]; similarly, the expression of bcl-2 had a
significant relationship with survival as well [19]. Li et al. revealed that proneural GBM has
increased vulnerability to CDK4/6 inhibition, and the proneural subtype undergoes dy-
namic reprogramming upon palbociclib treatment, suggesting the need for a combination
therapy [45]. Findings by Johansson et al. suggest that elevated expression of VEGF-A may
be a prerequisite for the aggressive and infiltrative growth of astrocytomas [46]. Several
reports have shown that PTEN may control tumorigenesis independent of its enzymatic
activity, through its interaction with specific nuclear proteins. Benitez et al. demonstrated
that PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of
DAXX and histone H3.3 [47].

3.4. Pathway and Gene Ontology Enrichment Analysis of MiRNA Targets

MiRNA-group-specific target lists were used in a functional annotation analysis based
on the enrichment of miRNA targets in KEGG pathways and terms of gene ontology
biological processes. This revealed that miRNA targets are enriched in known cancer
pathways: signaling pathways crucial to tumorigenesis. Among the identified biological
processes, we find DNA demethylation, protein O-linked glycosylation, positive regulation
of transcription from RNA polymerase II promoter, negative regulation of transcription
from RNA polymerase II promoter, regulation of gene expression, negative regulation
of G1/S transition of the mitotic cell cycle, and the apoptotic process. As far as can
be judged from the results of a KEGG pathway analysis, several cancer types such as
glioma, prostate cancer, bladder cancer, small cell lung cancer, non-small-cell lung cancer,
melanoma, endometrial cancer, pancreatic cancer, and viral infectious pathways (hepatitis
B, HTLV-I infection) were shown to be associated.

3.5. Protein–Protein Interaction Network Analysis of MiRNA Targets

Possible interactions between target proteins and their functionally important inter-
acting protein partners were analyzed by constructing general and cortex-specific PPI
networks. The major hub proteins—BCL2, RB1, PTEN, ERBB2, CCND1, ZEB1, FSCN1,
WNT1, XIAP, FOXO1, UBA2, DNMT3B, ANXA2, and WEE1—were basically the same in
the two networks, suggesting that our differentially expressed miRNAs regulate target
genes that are involved in basic processes of tumor formation. Applying the NetworkAn-
alyst tool, we performed a network-based functional and pathway enrichment analysis
as well, including pathways in cancer, cell cycle, viral carcinogenesis, ubiquitin-mediated
proteolysis, apoptosis, FoxO signaling pathway, p53 signaling pathway, glioma genesis,
transcriptional misregulation in cancer, ErbB signaling pathway, EGFR tyrosine kinase
inhibitor resistance, PI3K-Akt signaling pathway, and neurotrophin signaling pathway,
to name a few of the most relevant ones. Key GO-BP terms included regulation of cell
cycle, regulation of apoptotic process, regulation of protein modification process, positive
regulation of cellular metabolic process, and negative regulation of cellular process, while
among GO-MF terms, enzyme binding, negative regulation of transcription, kinase binding,
transcription factor binding, positive regulation of transcription, and chromatin binding
were the most crucial ones based on target enrichment and over-representation. Results of
enrichment analysis show that most miRNA targets are involved in signaling pathways
and biological processes critical for tumor formation, suggesting that circulating miRNAs
could be potential regulatory factors in tumorigenesis. At the same time, these data also
show that the identified enriched pathways and GO terms are not specific for a given tumor
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type. A network-based approach could provide a means to discover novel proteins, which
interact physically and functionally with the seed proteins and may represent new cancer
genes or cancer biomarkers.

4. Materials and Methods
4.1. Patients and Samples

Glioblastoma (GBM) patients (GPs) were detected and treated at the Department of
Neurosurgery, Faculty of Medicine, University of Debrecen, Hungary. Blood samples were
collected from six individuals diagnosed with disc herniation, serving as healthy controls
(HIs), and six patients with a histopathological diagnosis of GBM (GPs). Written informed
consent was obtained from each study subject. Demographic and clinical data for the study
subjects were obtained from the medical record review. None of the patients received
chemotherapy or radiotherapy treatment prior to participation in this study. Preoperative
blood samples were taken at admission or at the time of anesthesia induction for tumor
resection. The study was approved by the Scientific and Research Ethics Committee of
the Medical Research Council of the Ministry of Health, Budapest, Hungary (ETT TUKEB;
project identification code: 51450/2015/EKU (0411/15)) and was conducted in accordance
with the Declaration of Helsinki.

Whole-blood samples were collected in EDTA anticoagulated tubes (BD Vacutainer,
Euromedic, Budapest, Hungary) from each patient and from healthy volunteers for plasma
isolation and kept at 4 ◦C until further processing (within two hours of collection). Whole
blood was subjected to a two-step centrifugation protocol (2500× g and 16,000× g; 10–
10 min, 4 ◦C) to obtain plasma. After separation, cell-free plasma samples were homoge-
nized, aliquoted, and stored at −80 ◦C until further processing.

4.2. RNA Isolation and Purification for NanoString Measurement

Plasma samples were thawed at room temperature and total cell-free RNA was ex-
tracted from 500 µL of plasma and purified using the miRNeasy Serum/Plasma RNA
isolation kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
The quality of RNA was checked using a Nanodrop device (Thermo Scientific, Waltham,
MA, USA).

4.3. NanoString Analysis and Identification of Differentially Expressed MiRNAs

MiRNA content of all plasma samples was analyzed using the nCounter Human v3
miRNA Panel of NanoString nCounter Analysis System (NanoString Technologies, Seattle,
WA, USA) with 798 unique hsa-miRNA barcodes on it. Digital nCounter miRNA profiling
technology is capable of accurately discriminating between miRNAs at a single-base reso-
lution in a complex mixture. The system provides a direct digital readout of each miRNA
without requiring cDNA synthesis or enzymatic reactions. For the analysis, 100 ng total
cell-free RNA was used from each sample and mixed with pairs of capture and reporter
probes tailored to specifically recognize each miRNA present. Overnight hybridization (16
to 20 h) at 65 ◦C allowed sequence-specific probes to form complexes with targets. Excess
probes were removed using two-step magnetic-beads-based purification on an automated
fluidic handling system (nCounter Prep Station, Thermo Scientific, Waltham, MA, USA),
and target–probe complexes were immobilized on the cartridge for data collection. Data
collection was carried out on the nCounter Digital Analyzer (NanoString Technologies,
Seattle, WA, USA) following the manufacturer’s instructions, to count individual fluores-
cent barcodes and quantify target RNA molecules present in each sample. For each assay, a
high-density scan (600 fields of view) was performed.

Background correction of data was performed by subtracting the mean ± 2 standard
deviation of the negative control set. Lane-by-lane technical variation was corrected by
using the geometric median value of the positive-control set. Following correction, an
independent prefiltering step was performed to remove miRNAs having less than three
counts in any sample. A nonparametric Mann–Whitney U test was used to identify
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significantly DE miRNAs between the two groups. The raw count matrix of DE miRNAs
was used to determine quantitative changes in expression levels between glioblastoma
patients and the control group. Analysis of miRNA expression data was carried out by
the iDEP tool, a Shiny app powered by several R and Bioconductor packages [48]. For
differential expression analysis, the DESeq2 package was used. After adjusting the cut-
off values for fold change (FC ≥ 1) and false discovery rate (0.1), 52 upregulated DE
miRNAs were identified. A single downregulated miRNA was identified by lowering the
FC cut-off value.

4.4. Prediction of Targets of Differentially Expressed MiRNA, Functional Annotation, and
Pathway Enrichment Analysis

First, a miRNA–target gene network was constructed using the web-based miRNet tool
(http://www.mirnet.ca, accessed on 2 February 2021). Top miRNAs in the network were
ranked by degree- and betweenness-centrality values. Prediction of experimentally vali-
dated target genes of miRNAs was carried out using the web-based miRNet, miRTarBase,
and TargetScan software (http://miRTarBase.mbc.nctu.edu; www.targetscan.org, accessed
on 8 February 2021). Target intersections were further validated by the miRWalk2 database
(http://zmf.umm.uni-heidelberg.deg, accessed on 10 February 2021). General and GBM
specific protein–protein interaction (PPI) networks of target genes were constructed using
the NetworkAnalyst 3.0 tool (www.NetworkAnalyst.ca, accessed on 12 February 2021).

Lists of miRNA targets were used as input and the online Database for Annotation,
Visualization, and Integrated Discovery (DAVID; https://david.ncifcerf.gov, accessed on
13 February 2021) software tool was used to perform gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG)-based functional pathway enrichment analysis
for the predicted target genes of prioritized DE hsa-miRNAs.

The NetworkAnalyst tool was used to carry out GBM-specific enrichment analysis. A
p value of <0.05 was considered statistically significant.

4.5. Validation of Hsa-miRNA Expression by Quantitative Real-Time PCR (RT-qPCR)

Total cell-free RNA was extracted from 200 µL plasma samples of 28 healthy control
persons and 26 GBM patients by using the miRNeasy Serum/Plasma Kit (Qiagen, Hilden,
Germany) including 3.5 µL miRNeasy Serum/Plasma Spike-In Control RNA, according to
the manufacturer’s instructions. Concentration of the miRNA fraction in purified total RNA
in each sample was measured applying a miRNA-specific fluorometric assay on a Qubit®

2.0 Fluorimeter (Thermo Fischer Scientific, Waltham, MA, USA). To detect and measure the
amounts of mature miRNAs, the miScript PCR System (Qiagen, Hilden, Germany) was
used. The miScript II RT Kit (Qiagen, Hilden, Germany) was used for reverse transcription
of miRNAs. Quantitative real-time PCR was performed on the LightCycler® 96; Roche
Molecular Systems (Pleasanton, CA, USA) using the miScript SYBR Green PCR Kit (Qiagen,
Hilden, Germany) to determine the expression level of hsa-miR-433-3p, hsa-miR-29-3p, hsa-
miR-195-5p, hsa-miR-362-3p, hsa-miR-133a-3p, and hsa-miR-1286-3p in both GBM patient
and control samples. Conditions for the PCR reactions were as follows: denaturation at
95 ◦C for 15 min, followed by 50 amplification cycles of 94 ◦C for 15 s, 55 ◦C for 30 s, and
70 ◦C for 30 s. Finally, a melting curve was generated by taking fluorescent measurements
every 0.2 ◦C for 25 s from 50 ◦C up to 95 ◦C to detect a single PCR product. Expression
levels of the selected miRNAs were calculated using comparative cycle threshold (Ct)
method, and miR-16 was selected as internal control. Fold change in miRNA expression
was calculated according to the ∆∆Ct method. Experiments were performed in triplicate.

4.6. Statistical Analysis

The statistical significance of expression levels determined by qRT-PCR analysis
was calculated by the Mann–Whitney U test, the difference was considered significant
at p < 0.05. ROC-AUC graphs were generated with easyROC curve analysis (ver. 1.3.1.)
(http://www.biosoft.hacettepe.edu.tr/easyROC/, accessed on 05 February 2021). Opti-
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mal cut-off points were determined by ROC analysis based on the best balance of sensitivity
and specificity. In respect of all tests, significance level was p < 0.05.

5. Conclusions

In conclusion, our pilot study identified 53 significantly DE circulating miRNAs
in plasma samples of GBM patients using the nCounter Human v3 miRNA Panel of the
NanoString System. Among these, 52 miRNAs were found to be upregulated whereas 1 was
downregulated. To validate our results based on NanoString analysis, relative expression
of some miRNAs was determined by RT-qPCR measurements using hsa-miR-16-5p as the
reference miRNA. Expression of hsa-miR-433-3p, hsa-miR-195-5p, and hsa-miR-29a-3p
was significantly upregulated compared with those in the control samples, while in the
case of hsa-miR-362-3p and hsa-miR-133a-3p we could not detect any expression either
in healthy control samples or in GBM patient samples. We also constructed ROC-AUC
curves using expression data obtained from non-malignant and malignant samples for
the three significantly differently expressed miRNAs. Hsa-miR-433-3p, hsa-miR-195-5p,
and hsa-miR-29a-3p could discriminate patients with malignant tumors from patients with
non-malignant masses with a power AUC of 0.98214, 0.9704, and 0.98214, respectively.
Our functional annotation analysis showed that experimentally validated targets of DE
miRNAs are key regulators of tumor formation, suggesting that circulating miRNAs might
play an important pathophysiological role in the formation of different tumor types. A clear
limitation of our study is the low sample size; however, we feel that our results warrant
validation in a large cohort of GBM patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22105058/s1. Figure S1: The minimum (a) and complete (b) networks built from miRNA-
target gene and protein-protein interactome of the target genes coded proteins generated by the
miRNet tool. Node sizes are proportional to their degree centrality values. (a) The miRNA nodes are
lebeled by blue color, while proteins are reperesented by purple color. (b) The seed miRNAs (black
nodes) are highlighted by a yellow rim.
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