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Abstract
Understanding how bone adapts to mechanical stimuli is fundamental for optimising treatments against musculoskeletal 
diseases in preclinical studies, but the contribution of physiological loading to bone adaptation in mouse tibia has not been 
quantified so far. In this study, a novel mechanistic model to predict bone adaptation based on physiological loading was 
developed and its outputs were compared with longitudinal scans of the mouse tibia. Bone remodelling was driven by the 
mechanical stimuli estimated from micro-FEA models constructed from micro-CT scans of C57BL/6 female mice (N = 5) 
from weeks 14 and 20 of age, to predict bone changes in week 16 or 22. Parametric analysis was conducted to evaluate the 
sensitivity of the models to subject-specific or averaged parameters, parameters from week 14 or week 20, and to strain 
energy density (SED) or maximum principal strain (εmaxprinc). The results at week 20 showed no significant difference in 
bone densitometric properties between experimental and predicted images across the tibia for both stimuli, and 59% and 
47% of the predicted voxels matched with the experimental sites in apposition and resorption, respectively. The model was 
able to reproduce regions of bone apposition in both periosteal and endosteal surfaces (70% and 40% for SED and εmaxprinc, 
respectively), but it under-predicted the experimental sites of resorption by over 85%. This study shows for the first time the 
potential of a subject-specific mechanoregulation algorithm to predict bone changes in a mouse model under physiological 
loading. Nevertheless, the weak predictions of resorption suggest that a combined stimulus or biological stimuli should be 
accounted for in the model.

Keywords  Bone remodelling · Finite element analysis · In vivo micro-computed tomography · Bone adaptation · In silico 
simulation · Validation

1  Introduction

There is an increasing burden of musculoskeletal diseases 
such as osteoporosis, osteoarthritis and bone metastases with 
an ageing society. These diseases disrupt the healthy bone 

remodelling in bone, increasing the risk of fractures through 
a reduction in bone mass, quality and/or abnormal loading 
patterns (Webster et al. 2012). For example, osteoporosis 
is characterised by the reduction in bone mineral density 
(BMD), the deterioration of the trabecular architecture, and 
the thinning of cortical shell, as the resorption of bone tis-
sues by osteoclasts and the addition of new bone by osteo-
blasts are no longer at equilibrium (Jang and Kim 2010; 
Müller 2005). Currently, the development of new treatments 
for diseases relies on preclinical interventions on cell cul-
tures and animal models. A computational model of bone 
remodelling can be used to test novel interventions in silico 
and speed up the discovery-to-market time and reduce the 
cost of novel interventions (Pereira et al. 2015; Schulte et al. 
2013b).

Bone remodelling is driven by both biological and 
mechanical factors in a multi-faceted physiological process 
to cause bone apposition and resorption (Zadpoor 2013). 
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However, many studies on mouse models have demonstrated 
that the mechanical environment is a key determinant of 
bone remodelling in long bones and vertebrae (Birkhold 
et al. 2017; Pereira et al. 2015; Webster et al. 2012). The 
form–function relationship where bone adapts its shape 
and material properties is referred to as Wolff’s law (Wolff 
1892), and many bone mechanistic mechanoregulation mod-
els in finite element analysis (FEA) have been developed to 
relate the mechanical stimuli to the bone adaptation (Cheong 
et al. 2018a; Pereira et al. 2015; Villette and Phillips 2017). 
Most of these algorithms are based on Frost’s Mechanostat 
Theory, where bone apposition occurs above a higher, appo-
sition limit and resorption occurs below a lower, resorption 
limit (Frost 2001). These algorithms have been applied in 
continuum FEA to predict the internal architecture of bone 
(Huiskes et al. 1987), extracortical bone formation (Cheong 
et al. 2018a), ingrowth in tissue engineered implants (Byrne 
et al. 2007), and response to external mechanical loading 
(Pereira et al. 2015) with realistic results.

Micro-FEA models use three-dimensional images 
obtained by high-resolution scanning modalities such as 
micro-computed tomography (micro-CT), by converting 
each voxel classified as bone into a finite element (FE). 
The dimension of the trabeculae is larger than the image 
resolution; thus, one of the advantages of micro-FEA is that 
bone microarchitecture can be intrinsically accounted for. 
In mouse bones, bone remodelling algorithms have been 
applied to study changes in the cortical and trabecular bone 
of the caudal vertebra due to extra-physiological loading, 
obtained from longitudinal in vivo micro-CT imaging (Lev-
chuk et al. 2014; Schulte et al. 2011; Schulte et al. 2013b). 
Micro-FEA in the mouse tibia has mainly been limited to 
predicting the strain and stiffness of the mouse tibia, and 
correlating the results with time-lapsed testing and digi-
tal volume correlation (Birkhold et al. 2017; Giorgi and 
Dall’Ara 2018; Oliviero et al. 2018; Patel et al. 2014). Bone 
remodelling in whole murine tibia has only been modelled 
using tetrahedral elements with an inhomogeneous mesh 
size, and by comparing the predicted shape and density of 
the loaded leg to the non-loaded contralateral leg (Carriero 
et al. 2018; Pereira et al. 2015), under the strong assumption 
that the control leg did not undergo adaptive changes since 
the start of the experiment. The spatial match of remodelled 
regions in the caudal vertebra and tibia found by previous 
studies was accurate in approximately 50% of the surface 
(Pereira et al. 2015; Schulte et al. 2013b), but the remodel-
ling parameters were determined for a loaded model, which 
may be different under physiological loading. This informa-
tion would be useful to elucidate the contributions of novel 
interventions on bone remodelling.

The aim of this study was to develop the first bone remod-
elling algorithm for micro-FEA to predict cortical bone 
changes in the mouse tibia due to physiological loading, 

and to validate the results with a longitudinal dataset. The 
main hypothesis was that the parameters for remodelling can 
be tuned by comparing the geometries of the bones from the 
experimental and predicted images after bone adaptation, 
to provide an accurate prediction of bone spatio-temporal 
changes. Bone densitometric analyses and local accuracy 
criteria were conducted to assess the accuracy of the bone 
remodelling algorithm. This was the first time the contri-
bution of physiological loading to bone remodelling was 
evaluated in the whole mouse tibia.

2 � Materials and methods

2.1 � In vivo micro‑CT scanning

Five 14-week-old female C57BL6/J mice underwent in vivo 
micro-computed tomography (micro-CT) scans (voxel size: 
10.4 μm) of their whole right tibiae at weeks 14, 16, 17, 18, 
19, 20, 21 and 22 of age. However, only the images from 
weeks 14, 16, 20 and 22 were used in this study to determine 
the effect of age on the bone remodelling parameters, and 
whether the parameters calibrated from the baseline scans 
can be applied throughout the study. The mice’s weight 
ranged from 16 g to 22 g during the experimental study. 
Details of the experimental approach can be found in Lu 
et al. (2016) and Lu et al. (2017). All the experimental proce-
dures complied with the UK Animals (Scientific Procedures) 
Act 1986 and were approved by the local Research Ethics 
Committee of the University of Sheffield. Post-processing 
of the images involved rigidly registering the bone scans to 
a reference bone to obtain a similar alignment for all images 
of every mouse tibia at each time point. The reference bone 
was aligned such that the long axis of the mouse tibia was 
aligned to the longitudinal axis, and the anterior–posterior 
plane bisected the midpoint of the line joining the centres of 
the articular surfaces of the medial and lateral condyles (Lu 
et al. 2016). Thereafter, the growth plates and condyles were 
removed by cropping out the region corresponding to 80% 
of the tibial length, measured from the end of the proximal 
growth plate as detailed in Lu et al. (2017). The precision 
error of the scanning and registration procedure and the pro-
tocol to quantify bone changes through densitometric analy-
sis (Sect. 2.6), have demonstrated errors of less than 3.5%, 
with an intraclass correlation coefficient of over 0.8 in local 
bone mineral content (BMC). Details of the reproducibility 
study can be found in Lu et al. (2016) and Lu et al. (2017).

2.2 � Micro‑FEA models

The greyscale datasets from weeks 14, 16, 20 and 22 were 
processed to remove the proximal fibula, as the material 
properties of the tibio-fibular proximal growth plate and 
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joint are not known, but have been reported in a combined 
experimental and micro-FEA study to transmit a small pro-
portion of force during loading (Yang et al. 2014). Each 
image was then binarised, by defining a single-level thresh-
old calculated as the midpoint between the peaks of the 
background and bone in the histogram (image frequency 
plot) (Oliviero et al. 2017). The threshold value obtained 
using automatic segmentation was 556.7 ± 28.9 mg/cc. Due 
to potential errors in segmenting the bone surface associated 
with partial volume effect (PVE), lower and higher limits of 
greyscale values around the threshold value were computed 
by finding the nearest histogram bin where the number of 
voxels is at least twice that at the threshold value, to detect 
the start of the greyscale values corresponding to the bone 
and background voxels. This region, termed transition zone 
(TZ) in the manuscript, refers to the region of greyscale val-
ues which could represent either bone or background. This 
approach allowed the inclusion of 2–3 layers of pixels from 
the surface defined by the threshold to be affected by the 
bone remodelling process (Supplementary Fig. S1). This 
thickness corresponds to the size of osteoblasts or osteoclas-
tic penetration depth (20–30 microns) (Müller 2005; Puckett 
et al. 2008). The subject-specific threshold and TZ computed 
for each mouse from the baseline scan (week 14 of age) were 
applied throughout the study.

The segmented images from weeks 14 and 20 were used 
to build three-dimensional micro-FEA models to obtain the 
strain distribution, which was used with the bone remodel-
ling algorithm to predict the images at weeks 16 and 22, 
respectively. All bone voxels with grey values above the 
threshold, without a transition zone, were converted into 
linear 8-noded hexahedral elements. Homogenous isotropic 
material properties were assumed, using an elastic modulus 
of 14.8 GPa and Poisson’s ratio of 0.3 (Oliviero et al. 2018; 
Webster et al. 2012). The FEA models acquired from micro-
CT scans incorporated the microstructure and structural 
anisotropy of bone, and previous studies showed good cor-
relation between the measured and simulated stiffness, and 
local displacements for mouse bones (Christen et al. 2014; 
Macneil and Boyd 2008; Oliviero et al. 2018).

Three separate FEA analyses using the same model 
were conducted for each individual mouse, with a 1-N load 
applied along each anatomical direction (inferior–superior, 
anterior–posterior, medial–lateral) independently, before 
scaling the results to the corresponding load value in each 
direction. This approach allows for simple post-processing 
of the results in all possible loading scenarios by using the 
superimposition of the effects, a principle that can be used as 
the models are linear. All the nodes on the proximal surface 
of the bone were fully constrained (Fig. 1). The nodes on the 
distal surface were restrained from any rotation, via kine-
matic coupling to the area centroid of the distal surface. Peak 
physiological walking load at the ankle joint was calculated 

by solving a free-body diagram, using the mass of the foot, 
and force plate data available in Charles et al. (2018), which 
recorded an average peak vertical and horizontal ground 
reaction force of 120% and 10.9% of body mass, respec-
tively. No muscle load was included. The stimulus values 
were scaled to the body mass (BW) of the mice used in this 
study (Table 1). Only the stimuli along the superior–inferior 
and the posterior–anterior directions were included in the 
superimposition of the results as the medial–lateral force 
was reported to be much smaller. Sensitivity analysis con-
ducted on the 5 specimens also showed that the inclusion 
of this additional component did not significantly affect the 
results (Supplementary Table S1). The FEA models were 
solved using Abaqus 2017 (Dassault Systèmes Simulia, 
RI, USA) on the University of Sheffield High Performance 
Computing Clusters (ShARC). 

2.3 � Algorithm

A quasi-static analysis was conducted assuming that bone 
remodelling is the outcome of a response to the peak applied 
stimulus, which has been shown previously to account for 
the main changes in bone remodelling under daily load his-
tory (Huiskes 2000).

As bone remodelling units (BRUs) react to mechanical 
and biological stimuli at the surface to cause bone remodel-
ling, only the surface nodes were selected for the bone adap-
tion algorithm to be applied. In this approach, no biological 
stimulus was included and bone remodelling was based on 
mechanical stimulus alone. A node-based approach for bone 
remodelling, instead of an element-based method using inte-
gration points, was implemented as it minimises the occur-
rence of checkerboard discontinuities (Chen et al. 2007). The 
proposed mechanoregulation algorithm in Fig. 1 assumes a 
linear response to the stimulus (Huiskes et al. 1987), and the 
same rate of remodelling in both apposition and resorption. 
No lazy zone without remodelling (i.e. a range of stimulus 
values where no response is induced) was modelled initially, 
following the results obtained for the mouse caudal vertebra 
and the human distal tibia (Christen et al. 2014; Razi et al. 
2015; Schulte et al. 2013a). The effect of including the lazy 
zone was later investigated as part of the parametric analysis. 
The nodal values from the FEA outputs were used to com-
pute the mean change in the grey values of the voxel density, 
according to the following equation, which was converted to 
tissue mineral density (TMD) according to the linear math-
ematical relationship provided by the CT manufacturer for 
bone voxels:

where B is the rate of bone remodelling, k is the chosen 
threshold of the mechanical stimulus, and Θ is the actual 

(1)ΔTMD(N) = B(�(N) − k)
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mechanical stimulus in the node N. The nodal values were 
obtained by extrapolating the values from the integration 
points to the nodes before averaging them. Strain energy 
density (SED) and maximum principal strain (εmaxprinc) were 
used as the stimulus separately as they have been shown 
to give realistic results in bone remodelling simulations 
(Cheong et al. 2018b; Schulte et al. 2011; Villette and Phil-
lips 2017).

Each BRU was defined to be of the same size as the image 
voxel and on the same plane as the image slice, with the 
midpoint of its lattice face coincident with the node of the 
voxel. Hence, the vertices of each BRU (lattice point) were 
coincident with the centres of the top/bottom face of 8 voxels 

(or 4 pixels in 2D) (Fig. 1). The new average tissue mineral 
density (TMD) at the surface node for the following itera-
tion was computed by summing the change in density at the 
surface node and the averaged TMD of the surrounding 8 
voxels. The change in density was applied only to either 
‘bone’ or ‘surface’, by linearly scaling their grey values by 
a fixed value, so that the average of all voxels was equivalent 
to the predicted TMD at the next iteration. For example, 
resorption was predicted when there was an overall nega-
tive change, and the scaling factor was applied only to all 
voxels labelled as ‘bone’. The TZ region was allowed to 
undergo both resorption and apposition, under the assump-
tion that there are both osteoclasts and osteoblasts acting on 
the surface. Depending on the magnitude of the mechanical 
stimulus in that region, apposition or resorption was defined. 
The TMD values from all the connected BRUs at each voxel 
were averaged, to compute a final BMD value, which was 
used to update the images for the following iteration. As the 
mechanoregulation algorithm used has an open-loop control, 
the limits of TMD values for the predicted images were set 
at 0 and 1400 mg/cc before the images were converted back 
to grey values, to ensure that the final TMD values remained 
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Fig. 1   Bone remodelling algorithm flow chart illustrating the genera-
tion of virtual micro-CT images at different time points (left). The 
steps indicated in blue-grey are used in the optimisation algorithm 
to compute the parameters for bone remodelling. (1) Remodelling 
unit lattice: the stimulus at the voxel node A is used to calculate the 
new average grey values from the 4 pixels (closed circle, 8 voxels in 
3D), which is converted to TMD as it belonged to a bone voxel. A net 
positive change was applied to the grey value(s) of the background 

voxel(s) (black closed circle), while negative change was applied to 
bone voxel(s) (white closed circle). The final value at B was aver-
aged from the contributions of all the 8 open circles. (2) Boundary 
conditions of the micro-FEA model. (3) Remodelling algorithm with 
apposition limit (threshold in mechanical stimulus) k and rate of 
remodelling B. Time unit for the change in TMD depends on the time 
between the acquired micro-CT scans

Table 1   Physiological loading applied in the FEA model, per body 
mass (BW) in grams

Load/BW (N/g)

Inferior–superior 0.01355
Anterior–posterior 0.00289
Medial–lateral 0
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realistic (Fig. 1). The upper threshold was set by first identi-
fying the peak TMD value of bone voxels in the histogram, 
and choosing a value slightly higher than that.

2.4 � Parameter selection

The proposed mechanoregulation algorithm assumes that bone 
adapts to physiological loading according to the apposition 
limit (threshold in the mechanical stimulus), k, and rate for 
bone remodelling, B. This changes the grey values of the bone 
and background voxels, which affects which voxels are seg-
mented as bone in the next iteration. This resulting change in 
bone geometry affects the structural properties observed in the 
next time point, in particular the bending stiffness. The results 
from a previous study using the same dataset showed that the 
FEA predicted experimental stiffness increases with age, and 
that the normalised FEA predicted stiffness at week 22 was 
14.1 ± 1.9% higher than that at week 14 (Lu et al. 2017). In this 
study, a time step of 2 weeks was used. From classical mechan-
ics, the bending stiffness is a function of the object’s second 
moment of area or volumetric second moment (Hibbeler 
2005). As the length of mouse tibia increases slightly with 
age, the volumetric second moment, I, was used to account for 
differences in tibia length, by dividing the tibia into 10 sections 
according to Lu et al. (2016):

Hence, by minimising the least squares of the volumetric 
second moment between the experimental scan at the next time 
point (weeks 16 and 22) and the predicted bone, B and k could 
be estimated for each subject (Fig. 2):

where i is the bone section under consideration, n is the 
total number of sections in the bone, and j is the time point 
being analysed.

The values of B and k were calculated using sequential 
quadratic programming, a constrained nonlinear optimisa-
tion technique (MATLAB 2018A, The MathWorks Inc., 
Natick MA, USA), to prevent non-negative values for the 
volumetric second moment (Christen et al. 2012). A grid 
search using 100 initial parameters was conducted to ensure 
that the solutions found represented the global optima.

2.5 � Parametric analysis

Four sensitivity analyses were conducted to predict the 
images at week 22 of age as follows:

1.	 Subject-specific parameters calibrated between weeks 
20–22 without lazy zone.

2.	 Averaged parameters calibrated between weeks 20–22 
without lazy zone.

3.	 Subject-specific parameters calibrated between weeks 
20–22 with a lazy zone.

4.	 Subject-specific parameters calibrated between weeks 
14–16 without lazy zone.

The lazy zone was assumed to be symmetrical about 
the apposition limit, and it was computed by including it 
as an extra parameter to be calculated in the optimisation 
procedure.

(2)Ixx(vol) = ∬ y2dV

(3)Iyy(vol) = ∬ x2dV

min r
(

Bj, kj
)

=

n
∑

i=1

(

Ixx,j+1 − Ixx(predicted),j
(

Bj, kj
))

+

n
∑

i=1

(

Iyy,j+1 − Iyy(predicted),j
(

Bj, kj
))

(4)subject toBj > 0 and kj > 0

micro-CT scans
Week 20

Bone remodelling algorithm

Predicted Scan22 grey values

Minimised
least squares?

Volumetric second moment

Volumetric second moment

micro-CT scans
Week 22

Optimised bone 
remodelling 
parameters

update parameters

Fig. 2   Optimisation algorithm to calculate the subject-specific param-
eters for bone remodelling, illustrated for weeks 20–22 here. The 
same algorithm is applied similarly to obtain the parameters between 
weeks 14–16. The steps indicated by dotted arrow are represented in 
detail by the blue-grey steps in Fig. 1
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2.6 � Output measurements and comparison 
of experimental and numerical predictions

Densitometric analyses were conducted on the experimen-
tal and predicted scans by calculating the bone volume 
(BV), bone volume fraction (BV/TV), bone mineral content 
(BMC) and volumetric bone mineral density (BMD). BV 
sums the total volume of bone voxels obtained after bina-
risation into bone and background, whereas TV is the total 
volume enclosed by the periosteal surface. The local tissue 
mineral density (TMD) is evaluated in each voxel with the 
densitometric calibration of the grey values in the micro-CT 
images. The total BMC or the BMC in a region is computed 
as the sum of the TMD in the region, followed by a multi-
plication of the total voxel volume. BMD is computed by 
normalising BMC by the total volume (TV) identified by the 
periosteal surface. The analyses were conducted separately 
in 40 regions where the bone was divided into 4 compart-
ments (anterior, lateral, medial, posterior) and 10 longitu-
dinal sections (Lu et al. 2016). In addition, the difference 
between the predicted and experimental bone densitomet-
ric indices at week 22 was computed to estimate the error 
(Schulte et al. 2011). To ensure that the same length of bone 
is compared, a two-step procedure was utilised. Firstly, the 
experimental week 22 images were rigidly registered to the 
week 20 images by centring their volume centroids. The 
main axis remained unchanged as both images were already 
rigidly registered to a reference bone. Thereafter, a bound-
ing box was applied to obtain the same number of slices and 
dimensions for both scans.

To compare the predictive abilities of the model, the 
amount of overlap between the binarised predicted and 
experimental scans was computed, after registration and 
binarisation of the images as described above. The overlap 
ratio was defined as the intersection of the binarised pre-
dicted and the experimental scan, normalised by the total 
area occupied by both scans (Eq. 5):

Thereafter, the simulated and experimental spatial pat-
terns of bone apposition and resorption were computed, to 
ascertain the amount of surface remodelling. The amount of 
apposition and resorption was computed by comparing the 
differences between the grey values of the two images, using 
Eq. 6, for both endosteal and periosteal surfaces:

To compare the accuracy and precision of the prediction, 
two metrics were used. Firstly, the spatial match, defined as 

(5)
Predicted week 22 ∩ Experimental week 22

Predicted week 22 ∪ Experimental week 22

(6)

(Predicted week 22−Experimental week 20)∩

(Experimental week 22−Experimental week 20)|

voxels ∈ bone surface

the predicted voxels matching the experimental sites, was 
computed by normalising Eq. 6 by the predicted amount of 
bone remodelling. Secondly, experimental sites predicted by 
the model were calculated as the ratio between Eq. 6 and the 
actual amount of bone remodelling (measured experimen-
tally). The Wilcoxon signed-rank test was used to test for 
any significant difference (p < 0.05) (Origin 2018, OriginLab 
Corp., Northampton, MA).

3 � Results

3.1 � Effect of bone remodelling and parameters 
of the remodelling algorithm

The regions of high strain energy density (SED) were simi-
lar at week 14 and week 20 under 1N load (Supplementary 
Fig. S2). For superior–inferior load, the regions of high 
SED were located at the interosseous crest and at the distal 
anterior section. For 1N anterior–posterior load, high SED 
values above 0.01 MPa were found near the boundary condi-
tions. In the proximal top half of the tibia, high SED values 
were also found near the proximal tibial crest, tibial ridge 
and the interosseous crest. Distally, they were found in both 
the anterior and posterior regions. For both loading condi-
tions, the regions of highest SED remained unchanged, but 
the areas decreased from week 14 to week 20.

The displacements on the distal surface under ante-
rior–posterior loading for the week 14 mice were 
0.00888 ± 0.00053  mm, 0.00046 ± 0.00018  mm and 
0.00132 ± 0.00016 mm in the anterior–posterior, medial–lat-
eral and superior–inferior directions, respectively. Under 
axial load, the displacements on the distal surface were 
0.00621 ± 0.00073  mm, 0.00489 ± 0.00130  mm and 
0.00205 ± 0.00017 mm in the anterior–posterior, medial–lat-
eral and superior–inferior directions, respectively.

The percentage change in the second moment of volume 
followed a concave shape except for Ixx at week 14. The 
highest increase was in the middle of the bone at both time 
periods (Sect. 5). Both Ixx and Iyy were generally higher 
between weeks 14–16 than 20–22 in other regions (Sup-
plementary Fig. S3). The rate and threshold of remodel-
ling (apposition limit), calculated by optimising the volu-
metric second moment for weeks 14–16 and weeks 20–22, 
are presented in Table 2, and the parameters obtained for 
each stimulus showed similar ranges for the two time peri-
ods used. The apposition limits for SED between weeks 
14–16 and 20–22 in Table 2 corresponded to 25.6 and 39.8 
μstrain, respectively. The accompanying remodelling rates 
were approximately 3.60 and 2.21 mg/cc-μstrain between 
weeks 14–16 and 20–22, respectively, after converting SED 
to strain. When the lazy zone was included as an additional 
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degree of freedom in the optimisation procedure, the band-
widths around the apposition limits when SED was used as 
the stimulus were 0.381 ± 0.830 and 0.404 ± 0.665 between 
weeks 14–16 and 20–22, respectively. The bandwidths 
obtained using εmaxprinc as the stimulus were 0.192 ± 0.157 
and 0.167 ± 0.213 between weeks 14–16 and 20–22, 
respectively.

3.2 � Bone densitometric analysis

The bone density results, calculated for the whole bone, 
showed no significant difference for the experimental scans 
between weeks 20 and 22 (Fig. 3, p > 0.05). The predicted 
results were also very similar for all tested parameters and 
stimuli. Hence, all subsequent analyses were conducted 
separately on 40 compartments in the bone.

The densitometric values increased from weeks 14 to 
22, and the changes between weeks 14–16 and 20–22 were 
small (Supplementary Fig. S4). The errors in predicted BV 
across the 10 sections followed a concave shape for both 
mechanical stimuli tested (Fig. 4). There was an over-pre-
diction in BV for the proximal and distal regions, and an 
under-prediction in the diaphysis. The errors in predicted 
BV/TV followed a similar pattern, with a spike in section 3 
of the medial compartment. However, in the SED case, 
this error was approximately half of the absolute highest 
error, which was located in section 10 of the lateral com-
partment (Table 3). The BMC and BMD results followed 
the same trends as the BV and BV/TV results and are only 
included in the Supplementary Material Fig. S5. The curves 
obtained using calibrated images from weeks 20–22 were 
insensitive to the parameters tested and resulted in errors 
of approximately 10%, but the use of parameters calibrated 
from images between weeks 14–16 introduced errors of up 
to 15% for both choices of stimulus. The absolute highest 
error was located in section 10 of the lateral compartment. 
While the other errors were mainly confined to section 5 of 
the anterior section for SED, the absolute highest errors were 
also located in sections 4 and 8 of the medial compartment 
for εmaxprinc. The results were not statistically significantly 
different for all cases (p > 0.05). 

3.3 � Spatial match and accuracy of surface 
remodelling

The remodelling on the bone surfaces from weeks 20–22, 
obtained by comparing the experimental images obtained 
at the  two time points, is visualised in Fig. 5. The total 
remodelling was higher on the periosteal surfaces than 
the endosteal surfaces. Apposition was higher on the peri-
osteal surfaces for all sections, but resorption was higher 
on the endosteal surfaces in the diaphysis. For comparison, 
the apposition were 28.3 ± 16.9% lower and 11.3 ± 10.5% 
higher than the changes observed between weeks 14–16 on 
the endosteal and periosteal surfaces, respectively. Resorp-
tion were 44.0 ± 53.4% higher and 23.9 ± 11.4% lower than 
the changes observed between weeks 14–16 on the endosteal 
and periosteal surfaces, respectively. Overall, the apposition 
on all bone surfaces was 22.6 ± 11.8% lower than between 
weeks 14–16, while the resorption was similar between the 
two time periods (1.3 ± 17.3%).

For all parameters tested for SED and εmaxprinc, The vol-
umetric overlap between the experimental and predicted 
week 22 images was 86 ± 3% for the whole bone. Sub-anal-
ysis conducted using subject-specific parameters calibrated 
between weeks 20–22 showed that the overlap was above 
75% across the tibial slices, except at two regions – at the 
proximal end (below the growth plate) and at approximately 
40% of the bone length, where a cut of the fibula was made 
during image processing (Fig. 5). A similar pattern was 
observed for the overlap between the experimental and pre-
dicted week 16 images using parameters calibrated between 
weeks 14–16, but the value was lower at 80 ± 4%.

The predicted voxels matching with experimental sites 
(spatial match) for the whole tibia were similar in apposi-
tion and resorption (Table 4) for all parameters and stimuli 
evaluated. The percentage of experimental sites predicted 
by the model (prediction accuracy) in apposition was higher 
for SED than εmaxprinc. The prediction accuracy in resorption 
was low for both stimuli. εmaxprinc was more sensitive to the 
parameters used than SED. 

Figure 6 shows the regions of apposition (pink) and 
resorption (blue) of mouse 5 predicted correctly by the 
model using subject-specific parameters from weeks 20–22, 

Table 2   Parameters obtained 
from optimisation that were 
used in this study

Numbers indicate averaged values every 2 weeks ± standard deviation calculated for the 5 difference mice

Stimulus SED εmaxprinc

Parameter Remodelling rate, B 
(mg/cc-Pa-2 weeks)

Apposition 
limit, k (Pa)

Remodelling rate, B (mg/
cc-μstrain-2 weeks)

Apposi-
tion limit, k 
(μstrain)

Weeks 14–16 0.31 ± 0.18 4.86 ± 5.83 3.34 ± 1.13 27.9 ± 13.1
Weeks 20–22 0.19 ± 0.09 11.7 ± 6.4 2.16 ± 1.80 20.4 ± 15.8



992	 V. S. Cheong et al.

1 3

overlaid on the 3D reconstruction of the experimental bone 
from week 22. Using SED as the stimulus captured resorp-
tion mainly at the remnants of the fibula, while εmaxprinc cap-
tured resorption on the anterior-medial proximal tibia, the 
lateral-posterior diaphysis and the medial distal tibia. The 
spatial match for εmaxprinc was grainy, as the regions of spa-
tial match were more scattered throughout the bone.

The spatial match and accuracy of the predicted and 
experimental results across the 10 longitudinal sections 
for mouse 5 at week 22, using parameters calibrated from 
weeks 20–22 without a lazy zone, are shown in Fig. 7. 
Higher spatial match on the periosteal surface than the 
endosteal surface for apposition (in yellow-green) was 
observed, for both SED and εmaxprinc. The use of SED 
predicted less resorption than when εmaxprinc was used for 
mouse 5 (in blue).

Figure 8 displays the spatial match and predictive accu-
racy at week 22, using subject-specific parameters without 

a lazy zone calibrated from weeks 20–22 and weeks 14–16 
for the endosteal and periosteal surfaces. Similar to the 
results for the whole bone, the sectional results were not 
significantly different for the predictions using the param-
eters calibrated from the weeks 20–22 or weeks 14–16 
images for both stimuli (p > 0.05). The predictive accuracy 
was above 70% for apposition, on both the periosteal and 
endosteal surfaces. However, there was poor prediction 
accuracy in resorption, in particular for models based on 
SED. The prediction accuracy in resorption was higher for 
εmaxprinc, but still poor. This was at the expense of a lower 
predictive accuracy in apposition.

The spatial match in apposition was more evenly pre-
dicted on the endosteal surfaces for models based on SED 
as the spatial match was higher in the diaphysis on the peri-
osteal surfaces. This was similar to the spatial match for 
models based on εmaxprinc on the periosteal surfaces, but the 
spatial match was highest at the distal tibia on the endosteal 
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Fig. 3   Densitometric indices of experimental (exp) scans of mice 
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surfaces. The spatial match in resorption was higher for 
models based on εmaxprinc than SED on the endosteal sur-
faces, but the reverse was true for the periosteal surfaces. 
The variance was also larger for εmaxprinc than SED.

The accuracy of remodelling was more consistent and 
higher for SED, but there was a higher variance due to a 
decrease in the predictive accuracy in the diaphysis (sec-
tions 4–6) for εmaxprinc. The spatial match of other tested 
parameters were very similar to the subject-specific results 
calibrated at week 20. The predictive accuracy was very 
low for resorption on both surfaces in the SED case, while 
εmaxprinc captured resorption primarily in the diaphysis 
on both surfaces. The predictive accuracy for apposition 
and resorption mirrored each other for models based on 
εmaxprinc, but not for those based on SED.

4 � Discussion

In this paper, strain- and strain energy density-based bone 
remodelling algorithms for the murine tibia were devel-
oped and their outputs compared to longitudinal micro-CT 
images collected in vivo. The innovative parts of the study 
are represented by the definition and application of micro-
FEA bone remodelling model in whole mouse tibia, the 
comprehensive comparison (validation) with longitudinal 
datasets, and the calibration of the mechanoregulation 
parameters for physiological loading.

The algorithm proposed in this study adopts a simi-
lar approach as other continuum models with tetrahedral 
meshes that used estimated strains at the bone surface to 
predict changes in shape (Cheong et al. 2018a; Pereira 
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Fig. 4   Errors in predicted BV and BV/TV for (a–b) SED and (c–d) 
εmaxprinc across the 40 sections of bone. Ssp20_lz0: subject-specific 
parameters from weeks 20–22, no lazy zone. Avg20_lz0: averaged 
parameters from weeks 20–22, no lazy zone. Ssp20_lz1: subject-

specific parameters from weeks 20–22, with lazy zone. Ssp14_lz0: 
subject-specific parameters from weeks 14–16, no lazy zone. X-axis 
indicates longitudinal sections from distal (0) to proximal (10)
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et  al. 2015). Bone remodelling algorithms have been 
developed for both trabecular and cortical bone in micro-
FEA, and applied to study osteoporosis and the effects 
of potential interventions in arresting trabecular thinning 
within the murine caudal vertebra (Schulte et al. 2011; 
Schulte et al. 2013b). In both models, the estimation of 
surface strains had an impact on the accuracy of the results 
and tetrahedral meshes have the advantage of capturing the 

surface geometry more accurately in modelling bone for-
mation. However, voxel-based models of the mouse tibia 
have recently been validated against local measures with 
time-lapsed testing and digital volume correlation (Olivi-
ero et al. 2018), demonstrating the feasibility to model 
cortical bone changes using micro-FEA.

The results showed that the parameters estimated from 
the optimisation algorithm were similar at weeks 14 and 
20 of age (Table 2). This could be due to the small changes 
in SED between weeks 14 and 20 (Supplementary Fig. 
S2), the change in volumetric second moment between 
weeks 14–16 and 20–22 being in the same order of mag-
nitude (Supplementary Fig. S3), and/or the similarities in 
densitometric measures between weeks 14–16 and 20–22 
(Supplementary Fig. S4). There were some narrowing of 
the spread of densitometric parameters from weeks 16 to 
22, which the bone remodelling algorithm was unable to 
account for (Fig. 3).

The apposition limits obtained in this study were 
approximately 3 times smaller than the peak εmaxprinc cal-
culated by the FEA model, and 10 times lower than the 
peak strain in tension measured using strain gauges on 
the diaphyseal mid-shaft of 12-week-old mouse tibia dur-
ing walking (< 300 με) (de Souza et al. 2005). However, 
experimentally measured strains under mechanical load-
ing of 11 N were approximately 1200–1500 με (de Souza 
et al. 2005; Willie et al. 2013). Scaling the model to an 
applied load of 11 N (as the FEA models used in this study 
were linear) would result in 1395 με, which falls within 
the range of values reported. The contribution of muscle 
load to the strain in the bone seems to be fairly large in 
the murine tibia and should be considered in future work.

Sub-analysis conducted on 40 compartments of the 
tibia showed that the choice of stimulus did not affect the 
shape of the errors in predicted and measured BV, BV/TV, 
BMC and BMD (Fig. 4). The over- (proximal end) and 
under- (diaphysis) prediction of the densitometric proper-
ties could be due to the differences in the amount of bone 
remodelling, as the proximal part and diaphysis are rich in 
trabecular and cortical tissues, respectively. Moreover, the 
differences between experimental measurements and com-
putational predictions could also be due to the choice of 
metric (volumetric second moment) for the optimisation of 
the mechanoregulation parameters. The change in volumet-
ric second moment was largest in the proximal regions, and 
this would have increased the weight for shape changes as 
the proximal tibia also has a higher number of voxels that are 
further from the neutral axis (Supplementary Fig. S3). The 
regional high errors for the predicted BV/TV in section 3 
of the medial compartment were probably due to the pre-
processing of images to virtually remove the fibula. Indeed, 
these cuts may not correspond exactly between the differ-
ent time points. The highest absolute error was observed 

Table 3   The location within the 40 partitions of the tibia (10 longi-
tudinal sections, 4 sectors for each section) with the absolute highest 
error

Ssp20_lz0: subject-specific parameters from weeks 20–22, no lazy 
zone. Avg20_lz0: averaged parameters from weeks 20–22, no lazy 
zone. Ssp20_lz1: subject-specific parameters from weeks 20–22, with 
lazy zone. Ssp14_lz0: subject-specific parameters from weeks 14–16, 
no lazy zone

Stimulus Error type Parameter Compart-
ment

Section Absolute 
highest 
error (%)

SED BV Ssp20_lz0 Posterior 10 12.3
Avg20_lz0 Lateral 10 13.9
Ssp20_lz1 Posterior 10 12.3
Ssp14_lz0 Lateral 10 19.1

SED BV/TV Ssp20_lz0 Lateral 10 10.3
Avg20_lz0 Lateral 10 9.9
Ssp20_lz1 Lateral 10 9.3
Ssp14_lz0 Lateral 10 14.5

SED BMC Ssp20_lz0 Anterior 5 10.3
Avg20_lz0 Anterior 5 10.2
Ssp20_lz1 Anterior 5 9.7
Ssp14_lz0 Lateral 10 16

SED BMD Ssp20_lz0 Lateral 10 9.1
Avg20_lz0 Lateral 10 8.7
Ssp20_lz1 Anterior 10 10.1
Ssp14_lz0 Lateral 10 13.4

εmaxprinc BV Ssp20_lz0 Lateral 10 10.3
Avg20_lz0 Lateral 10 12.6
Ssp20_lz1 Lateral 10 10.4
Ssp14_lz0 Lateral 10 15.2

εmaxprinc BV/TV Ssp20_lz0 Medial 4 8.1
Avg20_lz0 Medial 4 8.8
Ssp20_lz1 Medial 4 8.2
Ssp14_lz0 Lateral 10 9.9

εmaxprinc BMC Ssp20_lz0 Anterior 5 10.9
Avg20_lz0 Medial 8 10
Ssp20_lz1 Anterior 5 10.8
Ssp14_lz0 Posterior 1 13.1

εmaxprinc BMD Ssp20_lz0 Anterior 10 8.9
Avg20_lz0 Anterior 10 8.5
Ssp20_lz1 Anterior 10 8.9
Ssp14_lz0 Medial 10 10.4
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in section 10 (Fig. 4), where differences in apposition and 
resorption on both endosteal and periosteal surfaces were 
the largest (Fig. 5). The highest absolute errors in BV/TV 
for SED and εmaxprinc using subject-specific parameters from 
weeks 20–22 were 10.3% and 8.1%, respectively. This com-
pares favourably with other literature results which reported 
maximum prediction errors of 2.4% and 12.1% in BV/TV 
using SED, for murine caudal vertebrae under external 
mechanical loading, and ovariectomised (OVX) mice under 
physiological loading, respectively (Schulte et al. 2013b). 
The results obtained in this study for SED were also similar 
to their results in two other aspects, as there were no sig-
nificant differences between the simulated and experimental 
densitometric indices, and the highest errors were located at 
the proximal end.

The highest standard deviations of the densitometric val-
ues (Fig. 4) were found in the trabecular region (section 10). 
This is consistent with literature findings as trabecular bone 
has a high turnover rate and a 2-week follow-up may be too 
long to obtain accurate point-to-point registration of trabecu-
lar bone changes (Webster et al. 2012). The use of average 
values instead of the subject-specific parameters calibrated 
from weeks 20–22 increased the densitometric errors in 
most cases, but there was no change to the location of the 
maximum predicted errors except for BMC in both SED- 
and εmaxprinc-based models, and BV/TV for εmaxprinc-based 
models. This could be due to the low volume of trabecular 
bone included in the model, as literature has reported that 
trabecular bone changes cannot be accurately predicted from 
averaged values from a population of bone scans (Webster 
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overlap between the binarised predicted and the experimental scan, 
normalised by the total area occupied by both scans
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et al. 2012). Moreover, the spatial match and predictive 
accuracy were not significantly different in the parametric 
study conducted, which suggests that future bone remodel-
ling simulations in murine tibia involving only physiological 
loading can be calibrated from baseline scans and applied 
throughout the longitudinal study.

The experimental remodelling due to physiological 
loading (Fig. 5) showed that in week 14, resorption was 
more dominant on the periosteal surface than in week 16, 
but apposition on the endosteal surface was higher in week 
14 than in week 20. This is similar to the results obtained 
from 26-week-old mice that underwent mechanical load-
ing, which had higher bone remodelling on the periosteal 
surface at the proximal end, and on the endosteal surface 
at the diaphysis (Birkhold et al. 2017). In contrast, 3D 
fluorochrome mapping results obtained in a non-loaded 

contralateral control leg at week 22 showed that bone 
formation was located mainly on the endosteal surfaces 
(Carriero et al. 2018). The predicted overlap using subject-
specific parameters from weeks 14–16 and 20–22 were 
similar, demonstrating the robustness of the model. The 
59.1% and 47.4% spatial match in apposition and resorp-
tion using subject-specific, SED-based parameters values 
without a lazy zone from weeks 20–22 (Table 4) were 
similar to the results obtained by Schulte et al. (2013b) in 
the caudal vertebra. Their model used SED as the stimu-
lus and achieved spatial match in 47.6% of the surface 
in apposition and 54.5% of the surface in resorption, for 
ovariectomised mice under physiological loading. Never-
theless, it should be noted that OVX models tend to show 
a decrease in trabecular BV/TV with age, contrary to the 
increase in trabecular BV/TV with age in healthy mice.

Table 4   Overall accuracy in apposition and resorption for predicted week 22 images

Ssp20_lz0: subject-specific parameters from weeks 20–22, no lazy zone. Avg20_lz0: averaged parameters from weeks 20–22, no lazy zone. 
Ssp20_lz1: subject-specific parameters from weeks 20–22, with lazy zone. Ssp14_lz0: subject-specific parameters from weeks 14–16, no lazy 
zone

Stimulus SED εmaxprinc

Parameter Remodelling measure Spatial match/% Prediction accu-
racy/%

Spatial match/% Prediction accuracy/%

Ssp20_lz0 Apposition 59.1 ± 3.3 83.6 ± 7.0 59.3 ± 3.2 70.1 ± 11.9
Avg20_lz0 Apposition 59.1 ± 3.3 83.6 ± 6.6 59.2 ± 3.3 81.0 ± 6.5
Ssp20_lz1 Apposition 59.1 ± 3.3 84.0 ± 6.7 59.3 ± 3.2 72.4 ± 12.4
Ssp14_lz0 Apposition 59.1 ± 3.3 84.6 ± 6.4 59.2 ± 3.2 68.7 ± 14.9
Ssp20_lz0 Resorption 47.4 ± 7.0 2.2 ± 0.7 47.2 ± 11.0 13.5 ± 8.9
Avg20_lz0 Resorption 47.2 ± 7.0 2.2 ± 0.3 45.2 ± 5.5 4.5 ± 0.5
Ssp20_lz1 Resorption 48.0 ± 7.6 1.8 ± 0.7 47.2 ± 10.9 12.0 ± 8.8
Ssp14_lz0 Resorption 49.1 ± 7.8 1.4 ± 0.7 45.7 ± 7.3 15.3 ± 14.2

Fig. 6   Voxels predicted cor-
rectly in apposition (pink) and 
resorption (blue) for mouse 5 
using subject-specific param-
eters from weeks 20–22 without 
a lazy zone, overlaid on the 
experimental scans at week 22 
(grey), using (a) SED or (b) 
εmaxprinc as the stimulus
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The 3D representation of bone remodelling predicted 
correctly on the periosteal surface showed that under physi-
ological loading, bone apposition occurred mainly on the 
medial side, except at the proximal tibia crest (Fig. 6). On 
the lateral side, apposition occurred at the proximal and dis-
tal ends, while resorption occurred mainly between the tibial 
ridge and the interosseous crest in the diaphysis. Although 
the regions of remodelling generally matched with the SED 
distribution (Supplementary Fig. S2), it is slightly differ-
ent from the bone remodelling observed in the murine tibia 
loading model, where bone formation has been reported 

to occur on the medial surface and the interosseous crest 
(Carriero et al. 2018; Pereira et al. 2015). Both SED and 
εmaxprinc as the stimulus were able to predict bone apposition 
on both the endosteal and periosteal surfaces (Fig. 7), even 
though Carriero et al. (2018) reported that SED was able 
to capture external load-driven bone formation only on the 
periosteal surface. However, the spatial match for apposition 
was higher on the periosteal than the endosteal surface, for 
both mechanical stimuli (Fig. 8).

The prediction accuracy in resorption was very poor 
in SED. εmaxprinc captured resorption and loss better than 

maxprinc maxprincSED
a b c d

noitproseRnoitisoppA
SED maxprincSED

e f g

noitproseRnoitisoppA
SED

h
maxprinc

Fig. 7   Spatial match (a–d) and prediction accuracy (e–h) across 10 
sections of mouse 5 using subject-specific parameters from week 
20 for (a, e) apposition in SED, (b, f) apposition in εmaxprinc, (c, g) 
resorption in SED and (d, h) resorption in εmaxprinc. Yellow-green: 
voxels predicted correctly by the model. Blue: Predicted bone remod-

elling that did not match with experimental results. Red: Remodel-
ling observed experimentally between weeks 20 and 22 that were not 
predicted by the model. Grey: Bone contours at week 20. Black: Bone 
contours at week 22
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SED, but this was at the expense of apposition. The stand-
ard deviation of the prediction accuracy was also higher for 
εmaxprinc. These results could be due to the fact that εmaxprinc 
is not an isotropic measure, and therefore more sensitive to 
orientation and registration. In addition, the algorithm uses 
a BRU lattice to compute the changes in bone density, which 
averages the signals of neighbouring voxels equally. Bone 
resorption has been reported to be more sporadically located 
across the length of the bone (Schulte et al. 2011), and the 
averaging approach may have masked the sites of isolated 
resorption. However, averaging is necessary in bone remod-
elling algorithm to maintain the continuum assumption in 
FEA models, and a weighted average could be considered as 
part of future work for regions where resorption are detected 
(Cheong et al. 2018a; Li et al. 2001). The strengths of SED 
and εmaxprinc in predicting sites of apposition and resorp-
tion, respectively, also suggest that a combination of two or 
more stimuli may be required to improve the accuracy of the 
model, as the inclusion of tensile strain has been reported to 
increase the prediction of cortical bone changes (Carpenter 
and Carter 2008). Further sensitivity analysis on the choice 
of mechanical stimulus such as minimum principal strain 
should also be conducted.

This study has a number of limitations. Firstly, two 
small bending moments were induced and included in the 
analyses due to the geometry of the tibia under simulated 
compression. This was due in part to the application of the 
load through the centroid of the most distal slice, which 
may not correspond to the centre of motion at the ankle 
joint and thus affect the stimuli obtained. This distance is 
however very similar for each model thanks to the regis-
tration of the input micro-CT images to a reference bone. 
Nevertheless, further sensitivity analysis could be con-
ducted to determine the effect the point of load applica-
tion has on the small bending load induced. The predic-
tion accuracy of the models (Fig. 7) was probably in part 
due to registration errors, as indicated by the large red 
patch of actual apposition that was not predicted, near the 
tibial edge at the distal end. Two sources of errors are 
the rigid registration of all bones to a reference bone, and 
the matching of each slice after centring the geometric 
centroid of the scans at different time points. The former 
introduces a rotational error, while the latter bias the align-
ment longitudinally by a fixed distance. Bone growth and 
formation are highest near the growth plates and decrease 

distally (Carriero et al. 2018), and an elastic registration 
should be considered as part of future work to map the 
locations of the bone with time. Moreover, the optimisa-
tion code uses the whole length of the tibia, in 10 approx-
imately equal sections, for the calculation for the volu-
metric second moment. Sectioning may need to be region 
specific to capture changes in shape better. However, the 
current approach of registering the geometric centroid of 
the follow-up scans has the advantage of distributing the 
errors relatively equally across the 10 sections, compared 
with other 2D registration methods. Furthermore, the opti-
misation of the volumetric second moment may not give a 
unique solution, and although a grid of initial parameters 
was used to locate the global equilibrium, other parameters 
may be required to simulate resorption of bone primarily 
on the endosteal surface and the deposition of bone on the 
periosteal surface. Moreover, bone may only be partially 
optimised for loading conditions (Christen et al. 2012), 
and the physiological loading used in this study consid-
ered only the trotting motion, while other cage activities 
such as jumping and climbing have not been accounted 
for. Furthermore, a relatively simple structural homoge-
neous and isotropic micro-FEA model of the mouse tibia 
has been used. The study has only evaluated the perfor-
mance of SED and εmaxprinc as the stimulus. These stimuli 
would preferentially remodel regions that are under both 
compression and tension, or under tension, respectively. A 
more systematic approach by conducting detailed analyses 
of the strain (combined effects of different strain com-
ponents) and strain gradient should be done to evaluate 
the choice of stimulus more comprehensively. The bound-
ary conditions could be improved in future work, includ-
ing the contribution of muscles and a spectra of possible 
physiological loading instead of a single loading scenario. 
Site-specific bone remodelling parameters could also be 
considered, as the change in volumetric second moment 
(Supplementary Fig. S3) and other literature have showed 
higher metaphyseal than diaphyseal bone remodelling 
(Birkhold et al. 2017). The apposition limits in the meta-
physis and diaphysis are expected to be higher and lower 
than the values obtained in this study, respectively, but 
within the same order of magnitude. It should be con-
sidered that bone remodelling algorithms are primarily 
based on changes in mechanical stimulus, but in reality 
bone adaptation is due to a combination of mechanical and 
biological factors such as homeostasis, age and disease. 
Experimental studies have suggested that apposition is 
driven by mechanical factors, whereas resorption and loss 
may be driven more by biological factors (Birkhold et al. 
2017; Schulte et al. 2013a). This would suggest either a 
stochastic approach for bone resorption, or a coupling with 
chemical or cellular models, as phenomenological models 
are limited in scale and scope. The use of fluid flow as 

Fig. 8   Comparison of the spatial match (left axis) and predictive 
accuracy (right axis) at the endosteal and periosteal surfaces at week 
22, using parameters calibrated without a lazy zone: (a) subject-
specific parameters from weeks 20–22 (SED), (b) subject-specific 
parameters from weeks 14–16 (SED), (c) subject-specific parameters 
from weeks 20–22 (εmaxprinc) and (d) subject-specific parameters from 
weeks 14–16 (εmaxprinc). Solid lines indicate apposition, while dashed 
lines indicate resorption

◂
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a different mechanical mechanism has been reported to 
increase the predictive capabilities of the model on both 
endosteal and periosteal surfaces, and could be considered 
as part of future work (Carriero et al. 2018; Pereira et al. 
2015; Villette and Phillips 2017).

In conclusion, in this study a novel algorithm for bone 
adaptation was developed to predict changes due to phys-
iological loading. A phenomenological model was used 
with a lattice for bone remodelling unit to model changes 
in the grey values of the images, which was validated 
with in vivo longitudinal scans. The experimental and 
predicted results showed no significant changes in densi-
tometric values, demonstrating the model’s capability to 
catch densitometric changes. The spatial match in apposi-
tion and resorption were similar for SED and εmaxprinc as 
the stimulus. The predictive accuracy was above 50% in 
apposition, but very poor in resorption. Phenomenologi-
cal models benefit from model simplicity and computa-
tional efficiency (Villette and Phillips 2017), but further 
work is required to improve the accuracy of the model in 
resorption, to make it applicable to study musculoskeletal 
diseases where prediction of resorption is important. The 
results showed that bone adaptation in murine tibia due to 
physiological loading can be estimated from a population 
of baseline scans and applied throughout the longitudinal 
study.
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