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Abstract

DNA conservation is central to many applications. This leads to an ever-increasing number

of samples which are more and more difficult and costly to store or transport. A way to allevi-

ate this problem is to develop procedures for storing samples at room temperature while

maintaining their stability. A variety of commercial systems have been proposed but they fail

to completely protect DNA from deleterious factors, mainly water. On the other side, Ima-

gene company has developed a procedure for long-term conservation of biospecimen at

room temperature based on the confinement of the samples under an anhydrous and anoxic

atmosphere maintained inside hermetic capsules. The procedure has been validated by us

and others for purified RNA, and for DNA in buffy coat or white blood cells lysates, but a pre-

cise determination of purified DNA stability is still lacking. We used the Arrhenius law to

determine the DNA degradation rate at room temperature. We found that extrapolation to

25˚C gave a degradation rate constant equivalent to about 1 cut/century/100 000 nucleo-

tides, a stability several orders of magnitude larger than the current commercialized pro-

cesses. Such a stability is fundamental for many applications such as the preservation of

very large DNA molecules (particularly interesting in the context of genome sequencing) or

oligonucleotides for DNA data storage. Capsules are also well suited for this latter applica-

tion because of their high capacity. One can calculate that the 64 zettabytes of data pro-

duced in 2020 could be stored, standalone, for centuries, in about 20 kg of capsules.

Introduction

Conservation of DNA, purified, in biospecimens or synthetic is a prerequisite to many applica-

tions, from biobanking, biodiversity preservation or molecular diagnostics to digital data stor-

age (for reviews, see for instance [1–3]). This generates an ever-increasing number of samples

which are more and more difficult and costly to store or transport. For reviews, see [4–6].

A way to alleviate, at least partially, this problem, is to develop procedures for storing sam-

ples at room temperature, allowing a standalone storage without energy costs. But, of course,
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this implies that DNA integrity must be maintained at room temperature which can be

achieved by keeping DNA away from environmental degradation factors: water, oxygen,

ozone, and other atmospheric pollutants [7–10], water being by far the most deleterious

element.

Many systems, often based on dehydration, have been used for room temperature storage

of purified DNA: freeze-drying [11], inclusion in soluble matrices including liposomes, poly-

mers such as silk [12] or pullulan [13] or adsorption on solid supports such as natural or

treated cellulose [14–16]. Other procedures use encapsulation in sol-gel-based silica [17,18] or

in silica nanoparticles [19,20], inclusion in salts [21] or layered double hybrids [22], dissolution

in deep eutectic solvents [23] or ionic liquids [24]. As none of these procedures can totally pro-

tect DNA from atmosphere or moisture, other ways have been proposed: protection under a

gold film [25] or encapsulation under an inert atmosphere in hermetic stainless-steel capsules,

the DNAshells™ (Imagene SA, France) [6,26,27].

To demonstrate the real efficacy of a given preservation procedure one must estimate the

DNA rate of degradation at room temperature (here, 25˚C) which is difficult because of the

low degradation rate of dehydrated DNA in this condition. So, generally, one must rely on

accelerated aging kinetics and extrapolation to room temperature by using Arrhenius equa-

tion. Such an approach has recently been used by Grass et al [28] and Organick et al [29], to

compare some of these procedures in the context of DNA data storage. Among the tested pro-

cedures, DNA encapsulated in DNAshell™ did not give reliable rates of degradation because

these were too low.

Here we report an Arrhenius analysis for purified DNA stored in DNAshell complementing

these previous studies and exemplifying the high stability of DNA when stored under inert

atmosphere.

Material and methods

DNA preparation

DNA was extracted from blood collected on EDTA, following the Puregene protocol (Gentra,

Qiagen, Hilden Germany) and resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8 and

stored at 4˚C.

Ethics statement

The data regarding DNA stability presented in this study relate to projects that have been for-

mally approved by the “Comité de protection des personnes Sud Ouest et Outre Mer III”°,
including use of blood and blood-derived samples. "L’Etablissement français du sang" (EFS,

France) is a French national establishment that is authorized to collect blood samples from

adult volunteer donors for both therapeutic and non-therapeutic uses. The donations were col-

lected in accordance with the French blood donation regulations and ethics and with the

French Public Health Code (art L1221-1). Blood samples were anonymized according to the

French Blood Center (EFS) procedure. Volunteer donors signed written informed consents

before blood collection. EFS authorized Imagene to perform this study and provided de-identi-

fied blood and blood-derived samples for non-therapeutic use.

DNA encapsulation

DNA encapsulation was realized as previously described [27,30]. Briefly, the DNA solutions

(700 ng in 10 μL) were aliquoted in glass inserts fitted in open stainless-steel capsules (DNA-

shells). The samples were dried under vacuum and left overnight in a glove box under an
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anoxic and anhydrous argon/helium atmosphere for further desiccation. Then, caps were

added and sealed by laser welding. Finally, the DNAshells were checked for leakage by mass

spectrometry [27,30]. Capsules are 18 mm x 7 mm weighing 1.3 g. They are made from deep

drawing inox 304 with borosilicated glass inserts. This process is summarized in Fig 1.

One hundred and sixty capsules were produced (109 were used for gel electrophoresis and

47 for qPCR analysis).

DNA accelerated degradation studies

DNAshells were heated in a Thermoblock at 100˚C, 110˚C,120˚C, 130˚C and 140˚C. At each

time point of the kinetics, 2 or 3 capsules were retrieved, and stored at -20˚C. For analysis, the

capsules were opened, the DNA samples were rehydrated with 20 μL of water. Half of the

stored amount (350 ng) was immediately analyzed by electrophoresis. The remaining part of

the samples were stored at -20˚C for qPCR.

Measure of DNA degradation rates by qPCR with amplicons of two

different sizes

Two amplicons of 1064 bp and a 93 bp of the TAF1L gene (TATA-box binding protein associated
factor 1 like, Gene ID: 138474) were targeted. For both systems, PCR cycles were as follow: 10 min

at 95˚C then 40 cycles of (15 s at 95˚C; 15 s at 60˚C; 60 s at 72˚C). The primers sequences were:

For-5’ agactcggacagcgaggaa/ Rev-5’ cggagacacccagcatatca
for the 1064 pb fragment and

For-5’ tgcaggcacttgagaacaac/Rev-5’ aaccctgtcttgtccgaatg
for the 93 pb.

They were produced by Eurogenetec, Les Ulis, France.

The runs were made on the CFX96 Touch Real-Time PCR Detection System (BIO-RAD

LABORATORIES, INC).

After rehydration (with 20 μL of water), for each sample and each amplicon, we did a first 2/

7 dilution then two ten-fold dilutions to estimate the PCR efficiency and construct the reference

straight line. The diluted samples were analyzed independently and defined as “standards”.

Fig 1. Workflow of Imagene process.

https://doi.org/10.1371/journal.pone.0259868.g001
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For the heated samples, for each time point, three capsules were taken and for each capsule

qPCR determinations were done in triplicate. We used 8.35 ng aliquots for each qPCR

determination.

To determine DNA recovery and degradation rates, we used a previously developed model

[9] based on qPCR amplification of two amplicons (1 and 2) of different sizes (L1 and L2) to

measure the number of cuts per nucleotide (or the probability of breakage at a given position).

Assuming a random breakage mechanism, the probability of breakage at a given position is:

Pcut ¼ 1 � e� kt

and the probability of this position remaining unbroken is:

Puncut ¼ 1 � Pcut ¼ e� kt

From the model:

Puncut ¼
N1

N2

e
1

L1 � L2 ¼ e� kt

So, for each temperature, T, a graph of

N1

N2

e
1

L1 � L2

versus time gave us kT by curve fitting.

This method is more reliable than one-sized qPCR because it is independent of the

recovery.

Nevertheless, to determine the recovery of total genomic DNA, we used the formula:

N ¼
NL1 � 1

2

NL2 � 1

1

� � 1
L2� L1

drawn from the same model

Results and discussion

The experimental strategy is summarized in the workflow shown in Fig 2.

Measure of DNA degradation rates by qPCR with two different sizes

amplicons

The samples were heated at 100˚C, 110˚C, 120˚C, 130˚C and 140˚C for periods of time ranging from

2 min to 48 h. The Table 1 gives the number capsules used for each temperature and time point.

First, we ran electrophoresis as size controls to choose the time points corresponding to

DNA sizes small enough (< 8 kb apparent size) to give significant values by qPCR. Indeed,

when DNA size is too large, N1 and N2 are not different enough. The gels are shown in S1 File.

The qPCR curves for all the experiments are given in S2 File.

DNA recovery. From these curves we obtained the number of amplifiable copies of both

amplicons TAF 93 (N2) and TAF 1064 (N1) for each temperature and each time point.

These results are presented in S3 File. From these values we could determine the total geno-

mic DNA recovery as previously described [9] by using the formula:

N ¼
NL1 � 1

2

NL2 � 1

1

� � 1
L2 � L1

These recoveries are given in Table 2 and Fig 3.
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Fig 2. Experimental strategy.

https://doi.org/10.1371/journal.pone.0259868.g002
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It can be seen that the recovery of genomic DNA is very good in spite of some variability in

the values. In particular, it does not seem to exist a decrease in recovery as a function of time

and temperature.

As expected, the number amplifiable copies of the 1064 amplicon decreased over time while

those of the 93 amplicon did not exhibit a significant decrease.

Degradation kinetics of DNA stored in DNAshells. For each time point, we calculated

the proportion of intact nucleotide position, Puncut, from the numbers of amplifiable copies of

the 1064 pb and 93 pb amplicons. We plotted these values as a function of the degradation

time to determine the degradation rate constants for each temperature by curve fitting (Fig 4).

Then, we plotted the logarithm of kT as a function of the reverse of the absolute temperature

(T) (Fig 5).

This plot showed that the degradation rate followed the Arrhenius law with an activation

energy of 197 kJ/mol. This is comparable to the 163 kJ/mol to 188kJ/mol previously found for

desiccated plasmid DNA [7] and to about the 155 kJ/mol for DNA stored in silica nanoparti-

cles, FTA paper or DNAstable matrix [28]. This is significantly higher than the 100 kJ/mol to

121 kJ/mol found for degradation of double strand DNA in solution (reviewed in [7]).

The Arrhenius law also made it possible to extrapolate the degradation rate at 25˚C. This

gave a degradation rate constant of 3.82x10-15 cuts /s/nucleotide, equivalent to about 1 cut/cen-

tury/100 000 nucleotides or 38 000 years of half-life for a 150-nucleotide long DNA fragment

(we chose this size for an immediate comparison with the previous works [28,29]).

This allows to calculate the time necessary for a DNA molecule to degrade down to 25

nucleotides, the average length which is the current limit for the sequencing of degraded DNA

[31] using the formula:

Lmax ¼
1

Pcut
¼

1

1 � e� kt

This gives 1,070,000 years, provided the preservation conditions are maintained.

Table 1. Number of capsules used for each temperature and time point.

Temperature Number of time points per kinetic Number of capsules per time point Total number of capsules

140 3 3 9

130 4 2 8

120 3 3 9

110 3 3 9

100 4 3 12

https://doi.org/10.1371/journal.pone.0259868.t001

Table 2. Genomic DNA recovery.

heating temperature

(˚C)

heating time

t1 t2 t3 t4

mean recovery

(%)

standard

deviation

mean recovery

(%)

standard

deviation

mean recovery

(%)

standard

deviation

mean recovery

(%)

standard

deviation

140 71% 19 88% 15 101% 10
130 139% 35 169% 8 162% 9
120 53% 1 134% 23 113% 20
110 132% 26 210% 9 115% 3
100 81% 12 175% 18 135% 9 93% 2

https://doi.org/10.1371/journal.pone.0259868.t002
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Fig 3. Amplifiable copy numbers of 1064 amplicon, 93 amplicon and genomic DNA.

https://doi.org/10.1371/journal.pone.0259868.g003
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Fig 6 compares the half-lives of a 150 nucleotides long DNA fragment stored in various

conditions at 25˚C.

So, it appears that the DNA stability at room temperature (25˚C) is over three orders of

magnitude higher in DNAshells than in any of the other currently commercialized storage

devices. This is to be expected because, first, FTA paper, trehalose or calcium phosphate leaves

the DNA samples directly exposed to the atmosphere. Second, likewise, the matrices coating

DNA: Gentegra, DNA stable and trehalose being water soluble cannot either protect the sam-

ple from moisture. Finally, silica nanoparticles, while affording protection from atmosphere,

still contain a certain amount of water [28].

Fig 4. Degradation kinetics of DNA stored in DNAshells. The lines are the fit to the data points by Microsoft Excel

software.

https://doi.org/10.1371/journal.pone.0259868.g004

Fig 5. Arrhenius plot for DNA degradation in DNAshells. The degradation rate constants, k, were plotted as a

function of the reverse of the absolute temperature T.

https://doi.org/10.1371/journal.pone.0259868.g005
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It must be noticed that the experiments conducted here mainly detect chain breaks, so,

other degradations events not preventing elongation by the polymerase could go undetected.

More seriously, these undetected modifications could induce errors in the decoding step.

However, this should not be a concern, first because DNA alterations are dependent on water

Fig 6. Half-lives of a 150 nucleotides long DNA fragment stored in various conditions. The half-life of a DNA

sample left unprotected from the atmosphere at room temperature (a) or in an Eppendorf closed tube (b) has been

calculated from our previous work [7]. The one of a sample encapsulated in silica nanoparticles (g), deposited on FTA

card paper (i) or included in Biomatrica DNAstable (h) has been estimated from [28] (Fig 2B). The half-life of DNA

dried with calcium phosphate (e) and encapsulated in magnetic silica nanoparticles (f) have been estimated,

respectively from [29] (Fig 3B) and [19] (Fig 5) assuming an exponential decay and an activation energy of 155 kJ/mol.

The half-life for DNA stored in Gentegra (d) or trehalose (c) was taken from [29] (Fig 2B). In grey: Current

commercialized procedures.

https://doi.org/10.1371/journal.pone.0259868.g006
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and much slower than depurination and chain breaks [32]. Second controls have been done by

Organick et al ([29]) who sequenced DNA samples stored at 85˚C for 4 weeks. As a whole,

they found that that the number of sequencing errors did not increase with storage and that

these errors were stochastic and could be "dealt with easily with various means of error correc-
tion such as Reed–Solomon codes".

As a conclusion, this procedure, allowing a standalone storage is well suited for long term

preservation of DNA samples because of the high percentage of DNA retrieval and DNA sta-

bility. This is especially useful for the recently developing DNA data storage procedures. Our

figures make it possible to give an estimation of the lifetime of the data stored that way. Indeed,

according to a recent estimation by Organick et al [33], 10 is the lowest copy number necessary

for a faithful data storage and retrieval. This means that if one starts with 20 copies, the data

could faithfully be retrieved after 30 centuries of storage.

Another advantage is the volume of the capsule which can accommodate large amounts of

DNA. With a 200 μL useful volume and a DNA density of 1.4 g/mL [34], a single capsule could

store 0.28 g of DNA. According to [35] estimating at about 17 exabytes/g the data density in

DNA, this corresponds to 4.76 exabytes of data per DNAshell, equivalent to 1.6x1012 files

(assuming an average file size of 3 MB). Of course, it may look difficult to recover a specific file

among this mass of data, however, this seems possible as described recently by Tomek et al

claiming that, by using a combination of N primers, it could be possible to select a given file in

a population of 27 999 N files [36].

So, according to these figures, the 64 zettabytes of data produced in 2020 [37] could theoret-

ically be coded in 3 765 g of DNA which could be stored in 13,445 capsules packed in a suitcase

weighing 21 kg.

This procedure could also allow the long-term room temperature preservation of very large

DNA molecules which is particularly interesting in the context of genome sequencing, as a

recent paper by Nurk et al described for the first time the sequencing of a complete human

genome thanks to the use of very long DNA stretches [38].

Supporting information

S1 File. Gel electrophoresis.

(DOCX)

S2 File. qPCR curves.

(PPTX)

S3 File. qPCR results.

(XLSX)
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