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Abstract: Porous metal membranes have recently received increasing attention, and significant
progress has been made in their preparation and characterisation. This progress has stimulated
research in their applications in a number of key industries including wastewater treatment, dairy
processing, wineries, and biofuel purification. This review examines recent significant progress
in porous metal membranes including novel fabrication concepts and applications that have been
reported in open literature or obtained in our laboratories. The advantages and disadvantages of
the different membrane fabrication methods were presented in light of improving the properties
of current membrane materials for targeted applications. Sintering of particles is one of the main
approaches that has been used for the fabrication of commercial porous metal membranes, and it has
great advantages for the fabrication of hollow fibre metal membranes. However, sintering processes
usually result in large pores (e.g., >1 µm). So far, porous metal membranes have been mainly used
for the filtration of liquids to remove the solid particles. For porous metal membranes to be more
widely used across a number of separation applications, particularly for water applications, further
work needs to focus on the development of smaller pore (e.g., sub-micron) metal membranes and the
significant reduction of capital and maintenance costs.

Keywords: porous metal membranes; membrane fabrication; water treatment; membrane filtration;
membrane bioreactors; photocatalysis; catalysis

1. Introduction

Membrane-based processes have become increasingly attractive due to their ability to reliably
remove contaminants, their affordability, and the increasing prominence of energy and water issues
necessitating efficient treatment of waste effluents. The application of membrane-based processes
is well established for municipal water treatment, with cost effective polymeric microfiltration
(MF)/ultrafiltration (UF) and reverse osmosis (RO)/nanofiltration (NF) membranes available.
Municipal water and wastewater applications are characterised by low inorganic particulate loads
and organic based water contaminants of low to moderate concentration, enabling efficient processing.
However, many emerging membrane applications involve the separation and/or the filtration of higher
strength contaminant loads or abrasive particles in waste concentrate streams or slurries, or processing
of gas and vapours, and require porous or dense membranes with robust mechanical properties,
and high thermal and chemical stability.
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Inorganic membranes prepared from materials such as carbon, silica, zeolite, and various oxides
(e.g., Al2O3, TiO2, ZrO2) and metals (e.g., Pd, Ag, and their alloys, and steel) are very attractive in
membrane separation due to their higher chemical, thermal, and mechanical resistances, exceptional
separation features, and long operational lifetime [1]. Although inorganic membrane materials cost
more than organic polymeric membrane materials, they offer some advantages such as temperature
stability, resistance towards solvents, narrow pore size distribution, and the opportunity for more
sterilisation options [2]. Therefore, they can be widely used for the chemical and pharmaceutical
industry and for many water applications, particularly for high temperature, extreme pH, abrasive
environments, and high-pressure processes that preclude the use of existing polymeric membranes.
Although important progress has been achieved in the fabrication and use of inorganic membranes
over the last two decades, extensive application has not yet been achieved when compared to polymeric
membranes that currently dominate the industry. High capital costs and low surface area packing are
generally regarded as the core hindrance for inorganic membranes [3].

While there are many widespread suppliers and uses of inorganic membranes made from ceramics,
there are limited suppliers and applications of metal membranes despite their unique advantages
over all membrane materials, including ceramics. Research on metal membranes is currently
being intensified due to their higher mechanical strength, high temperature stability, easier sealing,
and integrated processing when compared to their ceramic and polymeric counterparts [4]. Most metal
membranes are characterised by a gradient composite structure consisting primarily of a metal base
and a metal, metal oxide, or metal alloy separation layer. Metal membranes are generally categorised
into dense membranes (such as hydrogen soluble palladium membranes) and porous membranes.
This review, however, focuses on porous metal membranes. Porous metal membranes have been
studied for numerous applications related to liquid and slurry food preparation and filtration, and
for products such as dairy, fruit juice, and alcohol [5–8]. Metal membranes offer some advantages
over the polymeric membranes for these applications because the modules can be cleaned by high
pressure back-flushing, thus reducing the use and influence of cleaning chemicals [9]. Another
advantage of using metal membranes in food processing is their stability during steam sterilisation [9].
Porous metal membranes have also been applied for water applications such as MF, membrane reactors
and bio-reactors, electrolysers, and membrane evaporators [10–21]. However, no review has been
carried out on the status of application of porous metal membranes. This work aims to highlight the
various fabrication techniques that have been used to successfully fabricate porous metal membranes
and to critically review the applications of porous metal membranes. Novel fabrication techniques that
were recently investigated for potentially producing nanoscale porous metal membranes and future
research directions will also be discussed.

2. Fabrication of Porous Metal Membranes

Porous metal membranes can be generally classified into two main types: unsupported metal
membranes (metal membrane filters) and porous metal supported membranes. Unsupported metal
membranes are made from pure or alloyed metals, while supported metal membranes utilise porous
metals for the primary structure, and metal, metal oxide, or alloys are used as the membrane selective
layer. The preparation of porous metal membranes mainly utilises the techniques used for fabrication
of ceramic membranes and dense metal membranes. The morphology of porous metal membranes
such as pore size, pore depth and porosity strongly depend on the fabrication technique used for
their porous metal frameworks. There is a range of approaches for preparation of porous metal
frameworks [9]. Table 1 summaries a number of processes that are used for the fabrication of porous
metal frameworks with an achievable pore size range, and their advantages and disadvantages.
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Table 1. Techniques used for the fabrication of porous metal frameworks with different pore size range.

Pore Size Techniques Advantages Disadvantages

>100 µm

Casting [9,22] Close control of the pore size distribution. Inadequate interconnectivity of the pores.

Electroplating [22,23] High efficiency for the fast processing of rough
metal coatings.

Required to use the surface as an electrode, which
leads to pore filling and clogging within porous
structures, thus substantially reducing the surface
porosity and pore density.

Chemical vapour deposition
(CVD) [9,24–26]

Can produce a thin imprint that accurately follows
the topography and morphology of the substrate.

Usually only used to coat thin layers of pure
metals onto the substrate.

1–100 µm
Thermal sintering [27–32] Mature technology, easily scale up,

cheap to process.
Low pore connectivity and limited porosity.

50 nm–1 µm

Template-directed
synthesis [33,34]

Can deposit metals onto a template structure of
the desired pore size (e.g., colloidal arrays).

The uniform deposition of metals into colloidal
arrays is challenging.

De-alloying [8,35–39] Could lead to very homogeneous structures with
narrow pore size distribution.

Difficult to form ultra-thin films of fine grain
size alloys.

Electro-spinning [40–46] High up-scalability and low cost. Mechanical strength needs to be enhanced by
post-treatments.

Wet casting/coating [47–49] Easy to implement. Relatively large pores (~1 µm) may exist in the
final membranes.

Ink-jet printing [50–59] Cost effective, form multi-material components,
precisely fabricate intricate layers, able to cover
3D surfaces.

Need post-treatments, still immature.

Electrical sintering [60,61] Creates finer structures than thermal sintering. Only can achieve very thin films (<250 nm).

1 nm–50 nm

Electroless deposition [62–67] Highly controllable structures with nano-scale
pore distribution, able to simultaneously
co-deposit multiple metals.

Very low deposition rate, a careful analytical
control of the plating bath is required, high cost.

Block co-polymer (BCP) [68–71] Fine control of the nanoparticle distribution,
can result in highly crystallised and
ordered structures.

Using expensive BCPs prohibits their expansion to
a large scale.
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Although a range of techniques as listed above can be potentially used for the fabrication of porous
metal membranes, one of the main approaches that has been used for fabrication of unsupported
porous metal membranes is particle sintering. Sintering of particles is derived from traditional powder
metallurgy technology, which involves the hot-compression of micron-sized metal particles or fibres
at the softening temperature of the metal to produce a semi-porous network. The major principle
of sintering is to bring the particles together forming necks arising from slow coalescence of the
soften metals at high temperatures [72]. Stainless steel (SS) is the most commonly used for producing
porous metal membranes by particle sintering. Other metals such as gold, silver, copper, nickel,
aluminum, magnesium, titanium, chromium, tungsten, and molybdenum can also be used [4]. A range
of conditions (e.g., particle size, sintering atmosphere) has a significant impact on the products from
the sintering process [4]. Larger particles not only limit neck formation due to the slow rate of mass
transport, but also lead to a mechanically weak membrane due to the favourable formation of finger-like
macrovoids [73]. The properties of the metal powders (e.g., size, compressibility and reactivity) used
for sintering must be well known to determine the most appropriate heating technique and avoid
densification by over-heating [74,75]. The pore size formed using this technique is controlled by the
average particle deformation induced by the process and the remaining distance between the particles
after sintering [9]. Changing the sintering atmosphere in the sintering process can also result in different
morphological features [73]. This technique typically leads to large pores (e.g., >1 µm) [27–32,76].
Sintering process has been widely used to produce commercial metal filters/membranes [27–32,76].
For example, Porvair Filtration manufactures porous SS membrane filters (Sinterflo®) from sinter
bonded metal powders [29]. Pall Corporation’s AccuSep™ sintered SS filters have a removal rating of
2–5 µm [31], and PMM® metal membrane filters with 2 µm pores [32]. Most recently, a rolling-sintering
process was also reported by Park and co-workers [77] to fabricate porous metal membranes with a
pore size of ~4.5 µm.

The sintering technique has great potential to fabricate hollow fibre metal membranes [73,78].
The first metallic hollow fibre membrane was fabricated by Liu et al. [79] by extruding a polymer
solution with suspended Ni particles to green hollow fibres, followed by sintering at elevated
temperature under an argon atmosphere. Several research groups [73,78,80–84] have recently fabricated
SS hollow fibres by micron-sized SS particles. SS hollow fibres can be fabricated by extruding a
suspension of SS powders in a polymer solution through a spinneret, followed by coagulating in a
phase-inversion process. Once the phase-inversion process is complete, the hollow fibre precursors are
sintered at a high temperature. By combining the phase-inversion process with the sintering technique,
large amounts of hollow fibres can be continuously produced in one step, and the microstructure
of the membranes can be adjusted for targeted applications. Some studies [73,83,84] have been
carried out to investigate the effects of sintering conditions on the properties of SS hollow fibres.
Schmeda-Lopeza et al. [73] reported that during stainless steel hollow fibre membrane preparation
by the sintering process, sintering of fibres in a nitrogen atmosphere resulted in large pores >200 µm,
and small pores of 3–5 µm and 0.01–0.1 µm, whilst hollow fibres prepared in an argon atmosphere
showed distinct pores in the range of 50–70 µm. Sintering in an argon atmosphere led to the
development of some large pores that propagated cracks resulting in lower flexural strain. Sintering
with inert gases led to the mass transfer of residual carbon from the binder to the stainless steel
powders, resulting in the formation of carbide-rich regions. The sample sintered in argon contained
more carbide-rich regions (by area) than the hollow fibres prepared under nitrogen. However,
the chemical changes mentioned here did not have an impact on the mechanical properties of the final
materials [73]. Rui et al. [84] fabricated SS hollow fibres in a variety of sintering atmospheres (air, carbon
dioxide, nitrogen, helium, hydrogen). The prepared SS hollow fibres (Figure 1 (1)) showed different
exterior colours, which was attributed to the formation of different composition of membrane materials
under various sintering atmospheres, and the hollow fibres prepared under hydrogen displayed the
largest shrinkage among the fabricated hollow fibres (Figure 1 (2)). They found that sintering with
hydrogen can assist in removing the polymer binder and could eliminate oxidation on the metal
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surface. The sample (mean pore size 2.1 µm) sintered at 1100 ◦C in H2 showed a bending strength of
384 MPa, which was greater than that of most of ceramic hollow fibres reported in the literature [85–88].
Wang et al. [83] developed SS hollow fibre membranes with a three-channel structure (Figure 2) and
demonstrated a further improvement in the mechanical properties of the membrane. Most recently,
Li’s research group used this technique to develop dual-layer composite hollow fibres [89].
The fabricated dual-layer SS/SS-ceramic composite hollow fibres have an inner SS layer and an
outer layer composed of a mixture of SS and yttria-stablilised ZrO2 (YSZ) (Figure 3), with a mean
pore size of ~0.3 µm and an enhanced bending strength (>400 MPa). Although the mechanical
strength has been much enhanced, the SS hollow fibres still display relatively large pores (in the µm
range) [78,83,84], which has restrained their practical applications such as MF. In addition, very
limited studies [89] have been carried out to develop SS hollow fibres with smaller pore sizes.
The influence of sintering conditions including temperature, time, and atmosphere on SS hollow
fibres is still not well known [73]. Further work is necessary to precisely control sintering conditions by
carefully considering the properties of the materials used (e.g., size and size distribution of particles,
binder thermal stability), coupled with the atmosphere, temperature, and time used for the sintering
process [73]. Using precursor materials with smaller particle size (e.g., nano-particles) is also necessary
to possibly achieve smaller pore (e.g., sub-micron) metal membranes for MF applications [78].

Supported metal membranes are commonly fabricated by coating a thin layer of ultrafine metal
oxides such as TiO2, Al2O3, or ZrO2 onto a porous metal substrate (generally porous stainless steel)
followed by a sintering process. The Sol–gel process is one of the conventional methods used to
coat the thin layer onto the porous SS substrate [90]. Li et al. [90] used this technique to introduce
an α-Al2O3 intermediate layer onto a porous SS substrate, and then they fabricated a top layer of
TiO2, SiO2, or TiO2-SiO2 on the α-Al2O3 intermediate layer by the same technique. By using this
2-step approach, they successfully reduced the pore size from 1.5 µm (porous SS substrate) to 0.7 µm
(α-Al2O3 intermediate layer), and further down to ~0.3 µm (top layer of TiO2, SiO2, or TiO2-SiO2).

Metal membranes supported on porous metal alloys substrates such as Ti–Al or Fe–Al have also
been studied [91–94] as potential functional materials for molecular separation at high temperature or in
corrosive environments. Wang [91] fabricated a porous Ti–Al-supported Ni using a dip-coating process
followed by sintering. The prepared Ni/Ti–Al membrane showed an average pore size of 0.83 µm and
a pure water flux of 6782 L·m−2·h−1. Zhou et al. [92] prepared a MF TiO2 membrane supported on a
planar porous Ti–Al alloy by combined electrophoretic deposition and dip-coating process followed
by sintering in argon atmosphere at 1050 ◦C. The fabricated TiO2/Ti–Al showed a defect-free surface
and an average pore size of 0.28 µm, and achieved a pure water flux of 3037 L·m−2·h−1. Yang and
co-workers [94] developed a Ti–48Al–6Nb porous MF coating (Figure 4) on a high Nb–TiAl porous
alloy support using cold gas spraying followed by reactive sintering. The porous high Nb–TiAl alloy
support used in their study had the same composition as the coating and was prepared using the
same procedures as described by Wang et al. [95]. The prepared porous Ti–48Al–6Nb coating had an
average pore size of 1.8 µm, and showed high permeability and sufficient strength for potential MF
applications in extreme environments. Shen et al. [93] fabricated Fe–Al alloy supported membranes
with graded pores (Figure 5) by Fe and Al elemental reactive synthesis. An Fe–Al alloy with large
connecting open pores and permeability used as a support was formed using powder metallurgy
techniques. The coating was achieved by spraying slurries containing mixtures of Fe particles and
Al particles (both 3–5 µm in diameter) onto Fe-Al alloy support followed by sintering at 1100 ◦C.
The prepared membranes showed a mean pore size of coating is 2.5 µm (maximum pore size 6 µm,
minimum pore 1.7 µm).
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Figure 1. (1) Stainless steel hollow fibres prepared under various atmospheres; (2) Scanning electron 
microscopy (SEM) measurements on the cross-sections and surfaces of samples before and after 
sintering under various atmospheres: fibre precursor (a,b), with air (c,d), with CO2 (e,f), with N2 (g,h), 
with He (i,j), and with H2 (k,l). Reprinted from “Effects of sintering atmospheres on properties of 
stainless steel porous hollow fiber membranes” [84], © 2015, with permission from Elsevier. 

Figure 1. (1) Stainless steel hollow fibres prepared under various atmospheres; (2) Scanning electron
microscopy (SEM) measurements on the cross-sections and surfaces of samples before and after
sintering under various atmospheres: fibre precursor (a,b), with air (c,d), with CO2 (e,f), with N2 (g,h),
with He (i,j), and with H2 (k,l). Reprinted from “Effects of sintering atmospheres on properties of
stainless steel porous hollow fiber membranes” [84], © 2015, with permission from Elsevier.
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Figure 2. SEM images of the single-channel precursor hollow fibres (SPHF), three-channel precursor 
hollow fibres (TPHF), single-channel hollow fibres (SCHF), and three-channel hollow fibres (TCHF). 
1, full views; 2, enlarged cross-sections (200×); 3, outer surfaces (500×); 4, outer surfaces (1000 and 
3000×). Reprinted from “Fabrication, characterization and separation properties of three-channel 
stainless steel hollow fiber membrane” [83], © 2016, with permission from Elsevier. 

 
Figure 3. (a) Photo of a dual-layer stainless steel (SS)/SS–yttria-stablilised ZrO2 (YSZ) hollow fibre. 
SEM measurements for the SS/SS-YSZ hollow fibres: (b,c) outer surface (d) cross-section, and (e) inner 
surface. (Scale bars: (a) 5 mm, (b) 4 µm, (c) 1 µm, (d) 20 µm, (e) 4 µm). Reprinted from “High 
performance stainless steel-ceramic composite hollow fibres for microfiltration” [89]. 

Figure 2. SEM images of the single-channel precursor hollow fibres (SPHF), three-channel precursor
hollow fibres (TPHF), single-channel hollow fibres (SCHF), and three-channel hollow fibres (TCHF).
1, full views; 2, enlarged cross-sections (200×); 3, outer surfaces (500×); 4, outer surfaces (1000 and
3000×). Reprinted from “Fabrication, characterization and separation properties of three-channel
stainless steel hollow fiber membrane” [83], © 2016, with permission from Elsevier.
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Figure 3. (a) Photo of a dual-layer stainless steel (SS)/SS–yttria-stablilised ZrO2 (YSZ) hollow fibre.
SEM measurements for the SS/SS-YSZ hollow fibres: (b,c) outer surface (d) cross-section, and (e) inner
surface. (Scale bars: (a) 5 mm, (b) 4 µm, (c) 1 µm, (d) 20 µm, (e) 4 µm). Reprinted from “High
performance stainless steel-ceramic composite hollow fibres for microfiltration” [89].
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Figure 4. SEM image of the Ti–48Al–6Nb alloy coating surface (inset presents the cross-section of the 
coating skeletons). Reprinted from “Innovative fabrication of Ti–48Al–6Nb porous coating by cold 
gas spraying and reactive sintering” [94], © 2012, with permission from Elsevier. 

 
Figure 5. SEM images of cross-section of Fe–Al-alloy supported membranes with different 
thicknesses: (a) 10 µm and (b) 120 µm. Reprinted from “Development of a new graded-porosity FeAl 
alloy by elemental reactive synthesis” [93], © 2009, with permission from Elsevier. 

Figure 4. SEM image of the Ti–48Al–6Nb alloy coating surface (inset presents the cross-section of the
coating skeletons). Reprinted from “Innovative fabrication of Ti–48Al–6Nb porous coating by cold gas
spraying and reactive sintering” [94], © 2012, with permission from Elsevier.
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3. Commercial Porous Metal Membranes

There are more than 30 companies producing metal membranes [4]. Top sellers of global
metal membranes market include GKN Sinter Metals, Metalmembranes, Sterlitech Corporation,
Pall Corporation, Porvair Filtration Group, and Mott Corporation. Most of the top players are located
in United States, Europe, and Japan. Materials used for producing commercial metal membranes
include SS, Ti, Ni, metal alloys (e.g., Hastelloy, Alloy 20), and SS-supported metal oxide (e.g., TiO2,
ZrO2). Commercial porous metal membranes generally come in three basic configurations—tubular,
disc, and flat sheet. Table 2 lists a wide range of porous metal filters/membranes that are currently
commercially available. It can be seen from Table 2 that sintering is the main technique used for
fabrication of commercial porous metal filters/membranes.
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Table 2. Summary of commercial porous metal filters/membranes.

Manufacturer Trademark/Brand Material Technique Configuration Pore Size (µm) Main Applications

GKN SIKA-R . . . IS [96] SS, nickel-based
alloys, Ti

Cold isostatic
pressing–sintering Tubular 0.5–200

• Catalyst separation and recovery
• Refinery applications
• Gas filtration (e.g., hot off-gas or superheated steam)
• Aerosol separation

GKN SIKA-R . . . AS [96] SS, nickel-based
alloys Coating–sintering Tubular and disc 0.1–3

• Catalyst separation and recovery
• Refinery applications
• Gas filtration (e.g., hot off-gas or superheated steam)
• Aerosol separation

GKN SIKA-R . . . AX [97] SS, nickel-based
alloys, Ti

Co-axial
pressing–sintering

Disc, cylinder,
plate, cone 0.1–200

• Polymer filtration
• Gas filtration (e.g., hot off-gas or superheated steam)
• Liquid filtration (e.g., catalyst recovery)
• Sparging

GKN SIKA-FIL [98] SS, FeCrAl alloy Powder metallurgical
process–soft sintering Sheet 1–100

• Aerosol separation
• Polymer filtration
• Gas and liquid filtration
• Hot gas filtration

GKN SIKA-B [99] Bronze Moulding–sintering Disc, cylinder,
plate, cone 8–200

• Aerosol separation
• Polymer filtration
• Gas filtration (e.g., hot off-gas or superheated steam)
• Liquid filtration (e.g., catalyst recovery)
• Autogenous welding (as flame

arrestors)/Explosion protection
• Sparging

Pall PMM® [32] SS Sintering Tubular 2–25 • Filtration

Pall PSS® [100] SS Sintering Tubular 5–55 • Filtration

Pall AccuSep™ [101] SS, nickel-based
alloys, ZrO2

Sintering or
coating-sintering Tubular 0.1–5

• Microfiltration
• Gas and liquid filtration
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Table 2. Cont.

Manufacturer Trademark/Brand Material Technique Configuration Pore Size (µm) Main Applications

Mott [76] - SS, nickel-based
alloys, Ti Sintering Tubular 0.2–100

• High temperature liquid or gas filtration for
catalyst recovery

• Corrosive chemical filtration

Porvair Filtration Sinterflo® [29]
SS, nickel-based
alloys, FeCrAl Alloy,
Bronze

Sintering Cylindrical 3–50
• Filtration and separation for food and beverage, water

treatment etc.

Graver
Technologies, LLC Scepter® [102] TiO2/SS Coating–sintering Tubular 0.1 or 0.02 • Filtration (MF, UF)

Hyflux FerroCep® [103] TiO2/SS Coating–sintering Tubular 0.1 or 0.02
• Filtration (Fermentation broth clarification, starch

processing, emulsified oil wastewater treatment, juice and
syrup clarification)

Metalmembranes
[104] - Metal oxide/Ti or Al

Plasma electrolytic
oxidation–electrochemical
machining

Plate 0.01–0.15 • Detection and diagnostic applications

Sterlitech Sterlitech™ [105] Ag Sintering Disc 0.2–5

• Analytical laboratory (XRD, SEM)
• Industrial hygiene
• Liquid clarification or sterilisation

Advanced
Material Solutions
(AMS) [106]

- Ti Coating–sintering Tubular 0.05–5 • Cross-flow filtration (MF, UF)

AMS [106] - Ti Coating–sintering Flat sheet 0.05–20 • Filtration

AMS DuraSter© [30] SS, high nickel alloys Coating–sintering Tubular - • Filtration (MF)
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3.1. Porous Metal Membranes Based on Stainless Steel (SS)

Although a wide range of materials is available for production of commercial porous metal
membranes, the majority of current commercially available porous metal membranes are made of SS
or based on SS. Most of the top players in the global metal membranes market, such as GKN Sinter
Metals, Pall Corporation, Mott Corporation, and Porvair Filtration Group, provide SS or SS-supported
porous metal membranes. Figure 6 shows a typical porous SS filter and SS-supported metal membrane
from GKN [96]. The highly porous SS filter (Figure 6a) is prepared by cold isostatic pressing followed
by sintering, while the metal membrane (Figure 6b) is fabricated by coating a layer of extremely
fine metal powder onto a support of coarser porosity (e.g., sintered SS filter (Figure 6a)) followed by
sintering process. SS or metal alloys such as Inconel 600, Inconel 625, and Monel 400 can be used as a
membrane coating material. Pall Corporation manufactures tubular SS filters such as PMM® [32] and
AccuSep™ [31] by sintering, and SS-supported ZrO2 [101] by depositing a yttria stabilised zirconia onto
a Pall AccuSep™ SS tubular element followed by sintering. Mean pore size of 0.1 µm can be achieved
by coating a ZrO2 membrane layer onto an AccuSep™ SS tubular support. Mott Corporation provides
standard porous SS filter elements [76] for a variety range of applications such as chemical processing,
food and beverage and wastewater treatment, and also developed sterilising grade all-metal (e.g., SS)
filtration membranes [107] for medical filtration applications. The all-metal sterilising grade membrane
meets or goes beyond a 200 nm filtration challenge and meets ASTM F838-05 for bacterial retention.
Porvair Filtration Group also fabricates porous metal materials and structures (Sinterflo®) from
finely divided metal powders such as SS for filtration applications in a wide range of industries [29].
Both Graver Technologies, LLC (Scepter®) [102] and Hyflux (FerroCep®) [103] offer SS-supported TiO2

membranes (nominal pore size ~0.1 µm or ~0.02 µm) for many industrial filtration (MF, UF) needs.
Both Scepter® [102] and FerroCep® membranes [103] are fabricated using a similar approach, in which
a TiO2 membrane layer is permanently bonded to the porous SS substrate by sintering. The sintering
technique can create a smooth and foulant-resistant membrane layer with sharp pore size distribution
suitable for precise MF and UF separations.
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Figure 6. SS-based porous metal membranes from GKN [96]: (a) high porous SS filter (the outer surface
of the filter has an effective layer of 0.2 mm with a typical length of 1500 mm and an outer diameter of
64 mm, flow configuration: outside-inside); (b) metal membrane coating (~200 µm thick) on porous SS
filter. Reproduced with permission from GKN.

3.2. Porous Metal Membranes Based on Alloys

Apart from SS, a variety range of metal alloys have also been used for the fabrication of commercial
porous metal filters/membranes by many companies due to their unique characteristics including low
density, good thermal conductivity, high mechanical strength, and corrosion resistance. The majority
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of metal alloy based porous metal filters/membranes on the market are made from nickel-based
alloys including Hastelloy, Inconel, and Monel 400 (Table 2). GKN Sinter Metals, Pall Corporation,
Mott Corporation, and Porvair Filtration Group are the main user of nickel-based alloys for their
membranes. Other metal alloys such as bronze and FeCrAl alloy are also used for manufacturing
porous metal filters/membranes (Table 2). GKN uses nickel-based alloys (e.g., Hastelloy C276,
Hastelloy X, Inconel 600, Monel 400) as standard materials for its SIKA-R . . . IS sintered porous
metal filters [96] and the SIKA-R . . . AX series [97]. Inconel 600 and Monel 400 are also used by GKN
for manufacturing SIKA-R . . . AS high porous asymmetric metallic membranes [96], while bronze
(89/11 AK) powder is used for its SIKA-B high porosity sintered elements [99]. Mott [76] uses a
variety of nickel-based alloys including Hastelloy B, Hastelloy B-2, Hastelloy C22, Hastelloy C276,
Hastelloy N, Hastelloy X, Inconel 600, Inconel 625, Inconel 690, Monel 400, Nickel 200, and Alloy 20
for the fabrication of sintered porous metal filter elements. Porvair Filtration Group offers a broad
range of materials (Inconel 601, Inconel 600, Hastelloy X, Monel, NiCrMo Alloy 59, FeCrAl Alloy,
Bronze) for its Sinterflo® range [29]. Pall also uses Hastelloy X and Inconel 600 for manufacturing
AccuSep™ [101] membranes.

3.3. Porous Metal Membranes Based on Other Metals

Other metals used for manufacturing commercial porous metal filters/membranes include
titanium, nickel, silver, and aluminium. Titanium has superior industrial performance properties
such as exceptional strength, fouling-resistance, non-corrosive, pH-resistant, and it is able withstand
temperature and pressure fluctuations. This makes it ideal for use as a separation material. GKN uses
Ti as a standard material for production of SIKA-R . . . IS [96] and SIKA-R . . . AX [97] sintered
high porosity metal filter elements. Mott also uses Ti for sterilising grade all-metal filtration
membranes [107] in addition to SS. AMS [106] also offers titanium filtration membranes for wastewater
treatment. Metalmembranes also uses titanium as a base material to produce supported metal oxide
membranes [104,108]. Metalmembranesdeveloped a unique process to produce metal membranes
from tough metal materials, e.g., titanium or aluminium. The membranes have a highly porous metal
oxide (ceramic) layer coated on one surface of the support material (titanium or aluminium) by a
plasma oxidation process, while the other surface of the support consists of porous metal (titanium
or aluminium) with straight, channel structures created after the metal was partially removed by an
electrochemical machining (ECM) process (Figure 7) [108]. The membrane pore size is tunable from
150 nm (aluminium) to 10 nm (titanium), making the membranes especially suitable for detection and
diagnostic applications [104,108]. Other metals such as Ni are used by Pall [101] to produce membranes
for gas separation, and silver is used by Sterlitech for its Sterlitech™ membrane filters [105].Membranes 2018, 8, x FOR PEER REVIEW  14 of 28 
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Figure 7. SEM images of membranes developed by Metalmembranes: (a) The outer surface of the
ceramic layer before electrochemical machining (ECM), (b) after ECM flow channels in aluminium
membrane, showing the metal support bars and the inner surface of the ceramic layer, (c) magnification
of the pores (100–150 nm) on the inner ceramic layer of an aluminium membrane, (d) magnification
of the pores (2–10 nm) on the inner ceramic layer of a titanium membrane. Reproduced from Novel
hybrid ceramic metal membrane [108] with permission from Metalmembranes.

4. Applications of Porous Metal Membranes

Metal membranes have been widely used for food and beverage applications [8,27,30,76,106,109,110].
However, the first large-scale use of microporous metal membranes was back in the 1940s for gas
separation of U235F from U238F as part of the Manhattan project [111]. Porous metal membranes were
later developed for use in food, drug, and beverage industries in the 1960s [8]. During the past few
decades, various new porous metal membranes have been developed for use in not only food/beverage
applications, but also in a range of other fields such as chemical/petrochemical processing,
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liquid/solids, and gas/solid separation, and biofuel processing [23,27,29–31,76,106,110]. Porous metal
membranes have also been used for medical filtration applications [107], solid-phase extraction [112],
catalyst recovery [113], and a number of studies related to water applications [10–20,106,114]. However,
commercially available porous metal membranes are mainly used to filter solid particles from liquids,
and the application of porous metal membranes in water treatment is reviewed here.

4.1. Porous Metal Membrane Filtration

Metal membranes have been studied for their filtration in a number of water applications such as
drinking water treatment [10,21], rainwater purification [114,115], wastewater reclamation [11], and the
treatment of wastewater from industries (e.g., meat processing) [116]. Leiknes and co-workers [10,21]
studied the feasibility and potential of using microfiltration metal membranes (pore size 0.2 µm, Hitachi
Metal Ltd., Tokyo, Japan) in a submerged membrane configuration with coagulation pre-treatment for
producing drinking water. They achieved >95% true colour removal, ~85% removal of UV-absorbing
compounds, 65–75% TOC reduction, and <0.2 NTU turbidity. These results showed that the process
of using MF metal membranes with coagulation pre-treatment offers good technical potential as an
alternative to the commonly used methods (e.g., sand filtration in coagulation/direct filtration using
polymer membranes) for drinking water production. However, process costing and comparison with
other membrane processes is needed for further feasibility studies. Kim, et al. [114,115] used metal
membranes (pore size of 1 µm and 5 µm, FiberTech, Seoul, Korea) in combination with ozonation
to remove contaminants from rainwater. The metal membranes demonstrated excellent chemical
stability when used with ozone and high efficiency for the reduction of microbial and particulate
pollutants in rainwater. Metal membrane MF was also integrated with electrodialysis for wastewater
reclamation [11]. This integrated system used a metal membrane (made from SS, effective membrane
area 0.12 m2, pore size 0.1 µm) supplied by Hitachi Metals Co., Ltd., Tokyo, Japan. The integrated
system achieved good rejections for bacteria, suspended solids and ionic nutrients, and stable water
quality over 6 months of operation. Cross-flow filtration systems incorporating AMS tubular titanium
membranes with 0.2 µm pores have also been attempted on a range of feed solutions [106]. The system
is able to provide liquid/solid separation to 0.05 µm (UF) under a variety of testing conditions (e.g.,
temperature, pressure, pH). The performance test of the AMS 0.2 µm titanium membrane filtration
system on feed solutions from the textile, poultry, dairy processing, and meat processing industries has
demonstrated that a single pass through the 0.2 µm titanium membrane system achieved a reduction
of 96.5–99.9% for suspended solids, fats, oil and grease, and 36.3–96.5% for COD [106]. Titanium
membranes can be cleaned easily by caustics, HNO3, NaClO or steam, and membrane flux can be
recovered upon cleaning.

Most recently, metal membrane filtration (MMF) was used to remove fats and COD from
wastewater from meat rendering operations as pre-treatment for membrane distillation (MD) [116].
Meat processing produces stick water containing high amounts of fats and proteins that foul and
wet hydrophobic polymeric MD membranes. The AMS BT500-65 MMF system, consisting of a
pack of metal membranes (pore size 0.5 µm, active area 0.26 m2), was supplied by AMS, Australia.
The filtration experiments were conducted in a cross-flow setup with the feed solution being fed on
the inside and permeating to the outside of the membrane. MMF pre-treatment removed 92% of
fats and 35% of proteins, and led to superior MD performance, demonstrating the potential of metal
membrane filtration for fat removal and recovery. Flux reduction during MD of the MMF pre-treated
stick water was minimal compared to the MD of raw stick water, indicating that MMF pre-treatment
can significantly reduce fouling of the polymeric MD membrane. The flux of the metal membrane can
be recovered upon cleaning using caustics.

4.2. Porous Metal Membrane Contactors for Membrane Evaporation

Membrane contactor processes use a porous membrane to carry out aqueous solutions
concentration. There are two main membrane contactor processes: osmotic evaporation and membrane
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distillation. Osmotic evaporation [117] is a process in which a porous membrane is used to separate
feed and osmotic solution. The driving force of this technique is the difference of water vapour
pressure between both sides of the membrane. MD [118] is another concentration process based on the
use of a porous membrane as a barrier between the feed and the distillate. The driving force of this
technique is the vapour pressure difference caused by the temperature difference between both sides
of the porous membrane. These two processes possess a higher selectivity for non-volatile compounds
(100% retention of ions, macromolecule, colloids, and cells) than other membrane processes, and less
energy consumption than the traditional water distillation in a single step [19]. However, osmotic
evaporation with metal membranes has corrosion problems due to the use of brine, and MD requires
relatively high temperatures. These drawbacks have limited the generalisation of these two techniques
for the concentration of fluids [19]. Membrane evaporation (ME) represent an emerging technology
in which an aqueous solution is concentrated by continuous evaporation through a porous and
heat-conductive membrane [19,119]. This process is midway between osmotic evaporation and MD
and governed by the difference of water vapour pressure between the feed and a downstream flow
of dry gas (generally air) (Figure 8) [19]. In contrast to MD, the flow of water vapour in ME process
is not condensed, but taken away by the extracting phase. ME can be operated at room temperature,
which possesses the potential of ME for heat-sensitive solutions [19].
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Porous metal membranes have recently been studied for use as membrane contactors for the
ME process [19,20,119–121]. Sanchez’s group has developed a complete mass and heat transport
model [121] and tried a number of metal membranes for the ME process [19,119,120]. Their initial
work [19,119] was conducted on SS sheet membranes (M020 and FH050, Pall) modified by a silicon-type
material to obtain hydrophobic properties. The results obtained from this initial work validated the
concept of ME process on a metal membrane contactor. The most attractive evaporation fluxes were
achieved on FH050 which has larger pores (5 µm) and higher porosity (75%) compared to M020
(pore size 2.6 µm and porosity 30%). After a complete mass and heat transport model [121] was
developed, they conducted further studies on the influences of a range of operating conditions such
as air velocity, feed temperature, and air pressure on the ME process [120]. Three different flat
macroporous metal (ASI 316L stainless steel) membranes were evaluated in their study, and the
results revealed that higher air velocity and higher temperature of the feed solution resulted in
greater water evaporation flux. The study also found that the geometry of the experimental flat
sheet device restricted the range of operating conditions, and suggested changing to a configuration
with multi-tubular membranes. Using porous, hydrophobic metallic membranes allowed the heat
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to be applied directly to the membrane, and then it was transferred to the liquid gas interface [19],
thus leading to significant energy savings [19,20]. However, future work is necessary to compare the
metal membrane-based ME processes with those using polymeric membranes. Analysis on the thermal
efficiency of these systems is also needed for comparison with MD processes.

4.3. Porous Metal Membrane Bioreactors

The membrane bioreactor (MBR) has been widely used in wastewater treatment. By replacing
the secondary sedimentation tank used in the conventional activated sludge process (CASP) with
a membrane separation unit, MBR has overcome many disadvantages of CASP, including poor
solid-liquid separating efficiency, low levels of mixed liquor suspended solids, and a slow biochemical
reaction rate, and this results in good quality effluent [122]. Since a membrane is the key component
in the MBR, the material used for membrane fabrication is critical. Most membranes used in MBR
are made of low-cost organic materials; however, it is well known that they are weak and cannot
withstand prolonged exposure to extreme acidity or alkalinity, temperature, and high-pressure
operations. Inorganic membranes made from ceramic or metals have also been studied for the
MBR. Zhang, et al. [13] studied the use of a flat SS membrane (nominal pore size 0.2 µm, Hitachi
Metals, Tokyo, Japan) in an aerated submerged MBR for the treatment of synthetic domestic sewage.
The metal membrane achieved a steady flux of >17 L·m−2·h−1 and a mean COD removal efficiency of
97% (typically 96–99% from polymer membrane-operated MBRs [123]).

There are more cleaning methods available for metal membranes than polymer membranes [13].
Zhang et al.’s study demonstrated that membrane fouling could be effectively eased using on-line
backwash and intermittent running mode, and could almost entirely be eliminated using off-line
cleaning by 0.25 wt % NaClO solution. Xie, et al. [15] also used a stainless steel sheet membrane
(pore size 0.4 µm) supplied by Hitachi Metals, Tokyo, Japan in a submerged MBR for treatment of
synthetic domestic sewage under two different modes: an aerobic membrane bioreactor (AMBR) and an
anoxic/aerobic membrane bioreactor (A/O-MBR). The experiment was continuously run for 270 days,
and the AMBR achieved a mean removal of 96.7% for COD and 32.1% for TN, while the A/O-MBR
showed a mean rejection of 92.2% and 72.4% for COD and TN respectively. The Hitachi Metals
flat stainless steel membrane (pore size 0.2 µm) was also studied for a calefactive aerobic MBR for
treatment of simulated distillery wastewater with a COD of ~1000 mg·L−1 at 30–45 ◦C [14]. The process
achieved a mean removal efficiency of 94.7% for COD, and 84.4% for TN. These results implied that
metal membranes could be an alternative to organic membranes for MBRs for wastewater treatment.
Metal membranes offer some advantages over polymer membranes, such as high mechanical resistance,
extended working lifetime, and easy cleaning, especially their high heat durability, making them more
attractive for wastewater treatment at higher temperature [14]. However, limited work so far has been
carried out on the use of metal membranes in MBR processes due to their relatively high cost [13].

4.4. Photocatalytic Metal Membranes

Photocatalytic technologies have been extensively studied for the removal of organic contaminants
in wastewaters [124–127]. However, the use of aqueous suspensions of photocatalysts (e.g., TiO2)
requires separation following treatment, which has constrained their practical applications in water
treatment. Many studies have been carried out to develop TiO2 thin films and membranes for use
in a range of applications [128,129]. Recently, Choi, et al. [130] used an anodisation method for
the development of self-organised, nanostructured photocatalytic TiO2 metal membranes with the
combined advantages of TiO2 photocatalysis and membrane filtration. In their study, nanostructured
photocatalytic TiO2 metal membranes (Figure 9) were fabricated on microporous (nominal pore
size 0.5 µm) tubular-type pure titanium filters, and their photocatalytic activity was evaluated for
decomposing organic contaminants (humic acid). The prepared TiO2 metal membranes demonstrated
high efficiency in the photocatalytic decomposition of organics, and good membrane permeability.
Photocatalytic TiO2 metal membranes are able to overcome the photocatalytic activity and long-term
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durability limitations of the catalyst-polymer composite membranes that tend to result in the
degradation of the polymer matrices due to the formation of hydroxyl radicals produced from
the photocatalyst (e.g., TiO2). However, future work needs to be focused on reducing the cost of
photocatalytic TiO2 metal membranes to make them more compatible with the membranes made from
other materials (e.g., composite, ceramic).Membranes 2018, 8, x FOR PEER REVIEW  18 of 26 
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4.5. Catalytic Metal Membranes

Catalytic membranes containing the catalytic metals (e.g., Pd, Cu) have been studied for the
denitrification (hydrogenation of nitrate) [17,131,132] and oxidation of organic components [133] in
water. Catalytic hydrogenation reduces nitrates into harmless nitrogen; thus they can be used as an
alternative and eco-friendly approach for water denitrification. In 1989, catalytic hydrogenation using
bimetallic Pd-based catalysts was proposed as a new process to remove nitrates in drinking water [134].
Supported-Pd catalysts with Cu or Sn acting as promoter have been identified to be the most suitable
systems for the reduction of nitrate in aqueous solutions [131,132,135,136]. Nitrate conversion can be
dramatically enhanced by using supported Pd catalysts with promoters. For example, Ilinich and
co-workers [17] compared the catalytic behaviour between Pd–Cu catalysts supported on γ-Al2O3

granules and the catalytic membranes (macroporous ceramic (Al2O3) membrane containing Pd–Cu),
and found that forced flow of nitrate-containing water through the catalytic membrane promoted a
multi-fold increase in the catalytic activity. Significant improvement in catalytic activity by using the
catalytic membranes (e.g., ceramic membranes deposited with Pd and Cu or Sn) was also confirmed
by other research groups [131,132,135]. Despite porous catalytic membranes significantly improving
catalytic activity of the denitrification process, a problem with the formation of ammonium due to
over-hydrogenation still exists. Catalytic nitrate reduction process still cannot achieve very high
selectivity for nitrogen without substantially losing activity [131]. The catalytic membrane process has
also been recently tested for the oxidation of aromatic components in water-based and seawater-based
synthetic solutions by Kumakiri and co-workers [133]. Pt as the catalyst was deposited onto a porous
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ceramic tube supports with a top zirconia layer (thickness 6 µm, pore size 50 nm). The catalytic
membrane process achieved a 97% removal for C2-phenol (catalytic oxidation removed 72%, while
evaporation contributed to 25% of the removal). Although these results showed that the processes
using catalytic metal membranes seemed promising for both denitrification and catalytic oxidation
of aromatic components in water, operating costs were high as the catalysts are made from noble
metals (e.g., Pt, Pd), and they need to be replaced once they have lost their catalytic activity. Therefore,
from an economical point of view, these catalytic metal membranes need to be considered for higher
value applications than the above mentioned purposes. Most recently, Allioux and co-workers [137]
developed nickel (Ni) and nickel-copper (NiCu) alloy hollow fibre membranes for the electrocatalytic
degradation of small organic molecule contaminants from model wastewater effluents (salicylic acid
(SA)). The novel metal hollow fibre membranes were found to be highly stable and reusable, while the
kinetics of SA electro-oxidation were 9–20 times greater than with pure platinum wire electrodes.

5. Research Opportunities

An increasing number of studies related to porous metal membranes has underlined the potential
of using these membranes more widely in separation applications. Porous metal membranes are more
suitable and competitive than the existing membrane materials for the purification of abrasive or
corrosive streams where polymers degrade too rapidly or ceramics are too brittle. However, current
commercial porous metal membranes are mainly produced by sintering process, which has restricted
their practical applications, such as in water applications, as the sintering technique typically produces
large pore size (>1 µm), limited pore connectivity and relatively low porosity (<50%) [28]. Smaller
pore size metal membranes, therefore, offer clear opportunities that should be thoroughly investigated
to reveal their full potential. Size exclusion is directly related to the membrane pore size, so nanoscale
pores should be preferred to achieve selective rejection of smaller particles that cannot be otherwise
removed from the contaminated stream. In addition, backwashing of a filter cake from a stiff porous
material (e.g., metal) is known for being enhanced compared to that of a soft material (e.g., polymer).
The smaller pores of metal nano-filters will provide enhanced pore cleaning, as opposed to pore
constriction and the difficult cleaning issues reported for polymeric membranes.

Recent work has demonstrated the feasibility of approaches to design metal nanoscale
porous networks including sintering of nano-composites [60], metal-terminated block-copolymer
self-assembly [33,71], metal nano-foaming, de-alloying [138], electroless deposition [139,140],
electro-spinning of metal nano-fibre webs [40,42], or metal oxide reduction into porous
nano-structures [141]. Electro-spinning is of particular interest as it provides very high throughput
and permits for the fabrication of a large range of fibre orientations and diameters, leading to a
range of pore size and porosity [142]. Electroless deposition is also a very promising technique for
producing functional nano-porous networks as deposition of metal can be achieved onto a large variety
of supports to offer specific pore morphology [62]. The recent investigation of electroless deposition
of stable metal alloys may also lead to multi-scale porous structures beneficial to the treatment of
complex industrial waste solutions [143]. Most of the techniques mentioned above are versatile and
scalable, and therefore offer clear opportunities to scale up for the fabrication of membranes. However,
their commercial production has yet to be proven.

The accurate control of the surface energy is also a recurrent key point in membrane science
to optimise both selectivity and permeation. The functionalisation of metal surfaces has been a
strong research area over the past 20 years. Routes to adapt surface energy and functional groups
to significantly reduce corrosion and alter hydrophobicity of metal surfaces have been successfully
demonstrated [9,144,145]. However, research in the surface chemistry of porous metal membranes is
relatively poorly documented. The optimisation of the surface properties of commercially available
metal membranes has yet to be carefully examined. A fundamental understanding of the chemistry
between the membrane surface and the contaminants in solution also needs to be improved. Therefore,
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there are opportunities for the development of new processes for preparation of highly porous metal
membranes with tuned nano-scale pore morphology and chemistry.

Although the commercially available porous metal membranes are claimed to have high corrosion
resistance and can handle wide-ranging corrosive environments, little work has been carried out on
corrosion resistance studies on porous metal membranes [146]. It is known that a porous material can
be more easily corroded than a corresponding solid material of the same chemistry due to its high
exposed surface area [146]. More work needs to be done to enhance the fundamental understanding
of corrosion mechanisms on metal membranes, and develop new materials with enhanced corrosion
resistance property.

Cost is another important area that needs to be explored. As mentioned earlier, high capital costs
are one of the main drawbacks that hinders the wide use of inorganic membranes [3]. Therefore,
in order to target niche markets in water applications, further research in to the feasibility of novel
fabrication routes is needed for economic production of nanoporous metal membranes to reduce
capital and maintenance costs.

6. Conclusions and Prospects

In this review, we have presented an overview of the state of the art in preparation and potential
applications of porous metal membranes. Although most commercially available porous metal
membranes are made by sintering or foaming methods and have been mainly used for the filtration
of liquids to remove the solid particles, porous metal membranes offer some advantages (e.g., high
mechanical strength, high temperature and pressure capability) over polymeric membranes and have
a great potential in water applications. Despite porous metal membranes having been less well studied
compared to polymeric and ceramic membranes, metal membrane surfaces offer a versatile array of
potential chemistries, and they possess great prospects through novel fabrication and functionalisation
routes such as de-alloying and electroless deposition. Recent research on the functionalisation of metal
nano-particles has also opened routes for the precise modification of metal surfaces, leading to the
control of membrane surface energy and hydrophilicity. For porous metal membranes to be widely used
across a number of applications, in particular for niche markets in water applications, the preparation
of functional nanoscale porous metal membranes is desired, and capital and maintenance costs need
to be significantly reduced by using economical approaches for fabrication. Significant breakthrough
can occur if sufficient efforts are focused on the combination of these different areas of investigation.
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