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(i5757:3 Amendments from Version 2

We improved a sentence comparing our method to ChromoTrace,
in the Introduction section.

See referee reports

Introduction

Measurement of in vivo chromosome conformation is a major
unsolved problem in structural biology despite its known biologi-
cal importance'. The present state-of-art is to either obtain indi-
rect information about conformations using 3C-derived methods
which measure DNA-DNA contacts (typically in a cell-averaged
population)’, or else directly measure the cellular locations of
individual chromosomal loci in single cells by microscopy.
The major limitation of direct localization is one of throughput:
only ~ 3-5 labeled loci can be uniquely identified ‘by color’ in
a standard microscope image, whereas a whole-chromosome
reconstruction would involve labeling and identifying hundreds
or thousands of loci.

Several research efforts aim to remove the color limitation
either by experimental improvements or computational infer-
ences. The experimental approaches aim to allow an increased
number of labels that can be distinguished in an image*®.
Alternatively, attempts have been made to infer the identity of
labels that cannot be uniquely identified in an image, by com-
paring the image to the known label positions along the DNA
contour. The first attempt to do this was ‘by eye’’, but subsequently
two computational algorithms have been developed to automate
this inference: align3d® and ChromoTrace’. There are two
important differences between these algorithms. First, align3d
has less stringent experimental requirements than ChromoTrace,
as it allows for missing labels in the image and does not require
a uniform label spacing along the chromosome. Second,
ChromoTrace outputs explicit conformations, whereas
align3d outputs likelihoods of the various possible identities
for each labeled locus. Both approaches have their advantages:
ChromoTrace output is straightforward to interpret, whereas
align3d output gives information on the range of possible
conformational solutions along with their likelihoods.

This paper presents improvements to align3d® that allow it
to generate high-quality, chromosome-scale conformational
reconstructions. First, we briefly describe the algorithm. Using
a) the genomic locations and colors of labeled loci and b) the
spatial locations and colors of spots in a microscope image,
together with a relation tying the genomic distance between
two loci to their average spatial displacement, this method
constructs a table of ‘mapping probabilities’ p(L — ) for a given
labeled genomic locus L having produced spot s in the micro-
scope image. Each mapping probability p(L — s) is calculated
by dividing the summed statistical weights of conformations
where locus L maps to spot s, which we term a mapping partition
function and denote Z,__, by the full partition function Z that is
the summed weight of all conformations. A proper calcula-
tion of Z  and Z would consider all conformations having no
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more than one locus at any given spot in the image', similar to a
traveling salesman tour'’, but this exact calculation is intractable
for large problems. Instead, align3d counts all conforma-
tions for which adjacent loci do not overlap at the same spot
(see Figure 1), using a variant of the forward-backward
algorithm'' that can propagate between non-adjacent layers. This
is a major source of error as the vast majority of conformations
contributing to the partition function overlap at non-adjacent
loci, and one consequence is that the normalization of mapping
probabilities makes no sense for a non-overlapping conforma-
tion, as X, p(L — s) can exceed 100% for certain spots. To
recover from this error, align3d assigns a penalty to each spot
and iteratively adjusts these penalties until the spot normaliza-
tion is sensible. Although somewhat ad hoc, use of spot penalties
recovers significant information about medium-sized conforma-
tions (~ 30 labeled loci), although larger simulated experiments
(= 300 loci) have convergence problems due to the cost function
plateauing at very small or large values of the spot penalties.

The final step is to use the mapping probabilities to construct the
range of likely conformations compatible with the microscope
image. Uncertainty in the conformation results from inaccuracy
or uncertainty in the mapping probabilities due to three factors:
inaccuracy in the DNA model (the relation between genomic
and spatial distance), error in estimating the partition functions,
and the inherent uncertainty in the data even with a perfect
reconstruction algorithm. The DNA model can be calibrated by a
control experiment, and we argue that the remaining model error
can reduce our method’s confidence in its results but it generally
does not cause our method to reconstruct mistaken conforma-
tions. The main focus of this paper is on improving the partition
function estimate, using two different strategies. First, we give
an efficient method for optimizing the spot penalties when there
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Figure 1. Legal versus illegal (overlapping) conformations.
Schematic showing one legal and one illegal conformation
passing through spots A, B and C. align3d counts both legal and
overlapping conformations in estimating the partition Z (although it
is able to prevent adjacent loci from overlapping).

'Depending on how the experiment is done, two spots of the same
color sufficiently close in the image may appear as a single spot where
the conformation self-overlaps. We prefer to treat this scenario as a
missing-spot measurement error rather than relax the one-spot-per-locus
rule. If the spots have been properly localized, then the underlying
conformation visits any given spot once at most.
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are hundreds of spots in the image. Next, we provide formu-
las for the partition functions which allow them to be estimated
to arbitrarily high accuracy (given enough computation time),
without using spot penalties or any optimization. As we show using
simulations, these two methods used individually or in tandem per-
mit confident, chromosome-scale conformational reconstructions
using existing experimental technologies.

Methods

First we provide a method for efficiently optimizing the spot
penalties regardless of the number of labeled loci. This rule guar-
antees that a) the rate of missing spots is as expected, and b) the
mapping probabilities are properly normalized. Let ¢ denote
the penalty attached to spot s; then the update rule for that
spot penalty is:

1 1
IN IN
g = P(sl) N P(s) N ~qs "
1-p,, (c mm(l P(s))/N

where N is the number of loci, P(s) = X, p(L — s) is the total
probability of mapping any locus to spot s, and pﬁ,(c) is the esti-
mated rate of missing spots having color c. The justification for
this rule is given in Appendix 1 (Supplementary File 1).

We can also update a penalty g, that is associated with missing
spots of color c. This gives a faster way to enforce a desired miss-
ing spot rate because there are fewer ¢ penalties than g penalties.
An update to g_is equivalent to a reverse update to all g, for spots s
of color c, so the update rule is:

B
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Typically, we first optimize the g parameters to achieve a target
missing spot rate, then optimize the ¢ parameters to enforce
P(s) < 1 while maintaining the missing spot rate. In either case,
we apply Equation 1 or Equation 2 to bring the g or g parameters
close to their final values. When the cost function stops
improving, we switch to the steepest-descent algorithms used in
Ross and Wiggins, 2012° to polish ¢ or g.

Next, we give two exact formulas for the partition functions Z, |
and the full partition function Z that determine our locus-to-spot
mapping probabilities. We focus on the full partition function Z
since the formulas for Z,  are identical. The largest term in each
formula, which we denote Z (or Z when spot penalty optimiza-
tion is used), is the original estimate from Ross and Wiggins, 2012*
calculated using a variant of the forward-backward algorithm''.
Additional terms are computed in the same way, except that certain
loci are constrained to map to certain spots. All of the constraints
we will apply are illegal constraints, in that they force multiple loci
to overlap at some spot in the image; therefore these terms only
count illegal conformations that we would like to remove from
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the baseline calculation. By computing these terms and subtract-
ing them from Z, we eliminate the overlapping conformations
and improve the calculation. It turns out that this process errone-
ously subtracts conformations with multiple overlaps more than
once and thus we have to add back in higher-order corrections (i.e.
partition functions having multiple constrained spots). Repeating
this logic leads to exact formulas for Z taking the form of series
expansions, which are dominated by the lowest-order terms as those
have the fewest restrictions on conformational overlaps. Figure 2A
illustrates an example of such a series expansion, where each
parenthetical subscript (X Y. .. ) on a term label denotes an illegal
constraint forcing loci X, Y, . . . to overlap at spot s when that term
is calculated. We use this notation throughout.

There are two ways we might remove conformations containing
overlapping loci, leading us to two different series expansions for
the true partition function Z. Suppose that we are calculating the
term Z(AC__')A_ whose single illegal constraint forces loci A, C, . . .
to overlap at spot s. One option is to forbid any of the other uncon-
strained loci from also mapping to spot s, since spot s is already
overused. This leads to series expansion 1. Alternatively, allowing

A
A
»
»
Z= Zo_ (AC)s “(BD), + Z(AB)X(BD),
B
A BC D E F G H . Y
ACE
t
K

Figure 2. Series expansions. A. Schematic showing terms in a
series expansion, in a case where series 1 and series 2 have the
same terms. The full series gives the exact partition function for
the 4-locus experiment shown where only 2 spots appeared in
the image (due to a high rate of missing spots). Cartoons show
only the constrained loci for each term (so for example each term
includes the illegal conformation visiting spots s - t - s — ).
B. An illegal conformation for which loci A, C and E overlap at spots
s, and loci Fand H overlap at spot t. Series expansion 1 includes
this conformation in terms Z~0, ZACE)’ Zw, and ZACH oy Series
expansion 2 includes this conformation in the same terms with the

addition of Z Z Z (B ZA e Z(AE)S Fr and 7 (B (i
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further overlaps with spot s from the unconstrained loci gives us
series expansion 2. Figure 2B illustrates the differences between
the two series.

Each of the two series expansions is a weighted sum over all possi-
ble illegally-constrained terms having two properties: 1) each locus
and each spot appear at most once in the indices, and 2) two or
more loci map to each constrained spot. To be formal, we use Q to
represent the set of all possible illegal constraints: each element of
Q consists of a set of two or more non-adjacent loci and a single
spot where they are forced to overlap. Each expansion thus takes
the form

Z= Z W¢Z¢ A3)

0cQ

where Z ¢ 1s zero if any two constraints share a locus or spot.
We will choose the integer weights w, so as to cancel out the
overlapping conformations. By symmetry arguments, the
weighting factor should not depend on the identities of the loci
or spots, but rather only by the number of constrained spots n,, and
the number of loci n,f involved in each k" constraint. For example,
Wace sp, 18 determined by ny =2, nf =3 and nf = 2.

Here we specify each series expansion by giving a formula
for the weights wy in terms of n, and the various n?. We also
explain how to select an appropriate set of terms i when there
are too many terms to evaluate. Our selection prohibits any
legal or overlapping conformation from contributing a negative
weight to the partition function estimate, thereby guaranteeing
positive mapping probabilities and allowing use of the recon-
struction-quality metrics given in Ross and Wiggins, 2012
Derivations of the coefficient formulas and the term-selection
criteria for each series expansion appear in Appendix 2
(Supplementary File 1).

Series expansion 1 For series expansion 1, we do not allow
the unconstrained loci to map to spots that were used in
constraints. Then the weights w, in the series formula given by
Equation 3 are:

wy=(=1)" “)

To select terms for a series approximation, we first choose a set
of illegal constraints 3 to disallow, then include all series terms
Z¢ containing only those constraints: i.e. ¢ < . This guaran-
tees non-negative mapping probabilities. In order to efficiently
evaluate the largest terms, we recommend selecting the N #
constraints having the highest product of mapping probabilities
in the baseline calculation Z, (or Zg”’ if spot penalties will be
used). For example, we would include (AC), if p(A — s5) - p(C — )
is sufficiently large.

Series expansion 2 For series expansion 2, the unconstrained

loci are allowed to map to spots that were used in constraints.
Then the weights w, in Equation 3 are:

Ty n¢7
wo=[1(-D"" @ -1). )
k=1
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To select terms for a series approximation, we first choose a set
of N single-locus-to-spot mappings W, then include all terms Z,
whose illegal constraints use only mappings in W. For example,
the constraint (AC)_ would be included if VcC{A—s, Cosh.In
order to select the largest terms, we recommend building W from
the N, largest mapping probabilities calculated from Z, or Zg"’.

Results

We tested the improved align3d method by generating random
chromosome conformations using our software tool wormulator
(version 1.1), and simulating the process of error-prone
labeling, imaging and finally producing the locus-to-spot
mapping probabilities. We considered three scenarios for our
simulations. 1) The ‘Toy’ scenario involves 10 genomic loci,
where each locus is labeled using one of 3 colors. For these
simple problems the partition function can be calculated exactly.
2) Our simulated Experiment 1 uses standard DNA labeling
methods and traditional 3-color microscopy to label 30 loci with
3 colors, thus interrogating a significant fraction of a chromo-
some contour. 3) Our simulated Experiment 2 labels 300 loci
across a chromosome-length contour. The reconstruction of
Experiment 2 is made possible by using the Oligopaints labeling
technique’ to label in 20 different colors.

For each scenario, we randomly generated 100 conformations
using a wormlike chain model (packing density n, = 0.3 kb/nm,
persistence length / = 300 kb, as suggested by the measurements
of Trask, Pinkel and van den Engh, 1989'%); applied a random
labeling at a mean density of 1 locus per megabase; and simu-
lated experimental error: 100/200-nm Gaussian localization error
in xy/z, a 10% rate of missing labels, and a 10% rate of nonspe-
cifically-bound labels. A typical simulated experiment from the
Toy scenario is shown in Figure 3A.

Next, we specified a DNA model relating the genomic dis-
tance between two loci L to their expected RMS spatial distance
R, which is used by align3d to estimate the probability
density of spatial displacement r using a Gaussian chain model:
o(r) o exp[-3|r|/2R?]. Our current implementation requires a
power relation between R and L, where the exponent may depend
on L. Since any realistic polymer model predicts straight DNA
on very short scales, we chose the model R = n, L for L < l
andR=A L"for L > 1, where A, =1 "-n, for contlnulty Ina
real experiment the three free parameters n, lp and p would be fit
to pairwise distance distributions between different pairs of loci in
a separate calibration experiment. For our purposes n, and lp were
set to the same values used to generate the wormlike chain
conformations, and since these conformations were random
walks we set p = 1/2.

For each simulated conformation, we fed the label positions
and colors together with the simulated 3D images and our DNA
model into the align3d algorithm to produce locus-to-spot
mapping probabilities. For example, the simulated experiment
shown in Figure 3A produced the mapping probabilities shown
graphically in Figure 3B using circles, where the size of each
circle indicates probability magnitude. Here grey circles show
the mapping probabilities computed from Z, with no use of spot
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Figure 3. Example reconstruction. A. Randomly generated and
labeled chromosome contour with simulated experimental error:
localization error (lines offsetting spots from the labeled genomic
loci) and missing labels (open circles). This example lacks
nonspecifically-bound labels (floating spots). B. Spot mapping
probabilities calculated using both the largest series term ZO
(grey circles), and the exact Z that can be computed using 2210
series terms (blue circles). The dotted red line connects the
true locus-to-spot mappings, which are used to calculate the
unrecovered information. In this example /( ZO ) = 1.54 bits/locus and
[(2) = 0.32 bits/locus. C. Unrecovered information / and entropy
S (left panel) and log Z (right panel) versus the number of terms
used in the series expansions.

penalties, and blue circles show those same probabilities com-
puted using the exact Z. This example shows how excluding
high-weight and heavily-overlapping conformations reduces
and improves the partition function estimate (see Figure 3C) and
concentrates the probability mass into the ‘true’ locus-to-spot
mappings (shown connected by the dotted red line in Figure 3B).
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Our reconstruction quality metric is the amount of unrecovered
information from the mapping probabilities, defined as
I = - (log p(L, — s)), where the average (.) is taken over the
set of true locus-to-spot mappings (L, , s,). The ideal case of
I — 0 implies a perfect reconstruction with no mistakes and zero
uncertainty, but in practice [ is always positive. In a real experi-
ment where the true mappings are not known, we use a proxy
for unrecovered information that we term entropy, defined as
S=-{L,— sj) log p(L, = s/.))[j whose average is taken over all
locus-to-spot mappings, not just the correct mappings. The goal
is to have S = I so that a real experiment will have an accurate
estimate of the reconstruction performance. The left-hand panel
of Figure 3C shows how I and S depend on the accuracy of the
calculation for the simple example shown, using either of the two
series expansions and varying the number of terms from 1 (simply
Z,) to 2210 which is the full set of terms for either series and thus
computes Z exactly. Entropy generally overestimates the amount
of unrecovered information (see Supplementary Figure S1 and
Supplementary Figure S2, Supplementary File 1), because the
large mapping probabilities should be even larger, and the small
ones even smaller, than their assigned values (see Supplementary
Figure S3, Supplementary File 1). Appendix 3 (Supplementary
File 1) argues that this miscalibration is caused by the mismatch
between the wormlike chain DNA model used to generate
the simulated conformations and the Gaussian chain model used
by align3d in the reconstruction.

Validation of Equation 1-Equation 5. We first validated each
of the two series expansions by comparing them against exact
partition function calculations for the simulated Toy experiments.
In all cases, both series expansions, when taken to their maximum
number of terms, exactly reproduced the partition function
calculations obtained by direct enumeration over all possible non-
overlapping conformations. This test validates Equation 4 and
Equation 5. We also verified that both series expansions could be
used in conjunction with spot penalty optimization (Equation 1
and Equation 2), both by numerically validating the cost func-
tion gradient calculation and by testing for convergence on these
small problems.

Improved optimization allows large-scale reconstructions.
Next, we tested whether the iterative spot-penalty optimization
rules given by Equation 1 and Equation 2 could work on large-
scale problems such as those of Experiment 2, where the old
gradient descent optimizer in align3d had difficulty®. The results
are shown in Figure 4, which compares the number of iterative
steps required to converge the ¢ (missing-spot penalty) and
q (spot penalty) parameters without/with use of our improved
optimization rules (labeled ‘old’/‘new’ respectively in the legend).
Since the spot penalties g are optimized for probability
normalization only after g parameters have been optimized to
achieve a desired missing spot frequency, we only attempted to
optimize the g parameters for simulations where ¢ converged.
There were two results from this experiment. First, more attempts
to optimize the ¢ and ¢ parameters successfully converged
when using the new optimization rules in conjunction with
gradient descent, as indicated by the greater volume of the ‘new’
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Figure 4. Comparison of old and new optimization methods.
Each panel compares the number of iterations required to achieve
convergence using the old (purple) versus new (yellow) optimization
methods. Only trials that successfully converged are counted, so
the histograms are not normalized relative to each other. The first
number in parentheses of each legend entry shows the number of
converged trials, and the second number shows the total number of
trials. Note that the second numbers in the right-hand panel equal the
first numbers in the left-hand panel, since we required convergence
in g in order to attempt optimization of the g parameters.

histogram and the correspondingly larger numbers shown in the
legends. Secondly, of the trials that did converge, our new method
required significantly fewer iterations and thus less computa-
tion time than the old method, as indicated by the relative skews
of the distributions.

Use of more colors dramatically improves reconstructions.
Our most striking result is that simulations of the ambitious
Experiment 2 produce far better results than even the Toy
scenario, despite the fact that these simulations have more loci
per color than either the Toy scenario or Experiment 1. This can
be seen in the amount of unrecovered information / shown in the
simulation-averaged plots of Figure 5A. High-quality reconstruc-
tions using ~ 20 colors were also observed by the ChromoTrace
reconstruction method” even for large numbers of labeled loci.
Our explanation is that the reconstruction quality has more to do
with the average spatial density of loci per color than the total
number of loci per color, because each ‘propagator’ evolving
one potential locus-to-spot mapping to the next sees only the
spots within some reasonable radius, as determined by the
genomic distance to the next locus. These arguments really
pertain to the information recovery of the baseline calculation
of Z,; the story is more complicated when better approximat-
ing the true Z which forbids spot reuse between loci, but a simple
heuristic is that some average fraction of the competing spots
were used earlier along the contour and should thus removed
from consideration. If our reasoning is correct, then reconstruc-
tions based on huge numbers of labeled loci (for example whole-
genome reconstructions) should be possible as long as the spot
density does not get too high.

At the end of this section we revisit Experiment 2, in order to
assess the reconstruction quality when analyzing more realistic
DNA contours having tighter confinement and thus more closely-
packed spots.
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Series expansion 2 outperforms series expansion 1. Next,
we compared the convergence properties of our two expan-
sions on the three scenarios of simulated experiments. Figure 5A
gives a sense of how the amount of unrecovered information
varies with the number of terms taken in each series, without
(solid lines) and with (dotted lines) the use of spot penalties.
Each of the 3 panels summarizes all 100 simulated experiments
of that scenario, and each experiment in that scenario shows a
unique relationship between information recovery and number of
series terms computed. Representative curves of individual
experiments in each scenario are shown in Supplementary
Figure S1 (Supplementary File 1). In order to summarize these
very dissimilar curves, Figure 5A shows a median average of
all 100 individual experimental curves taken at each data point.
Note that this averaging process does not necessarily preserve
the shape of the curves from typical individual simulations.

In order to directly compare the two series expansions, we
plotted their difference in unrecovered information I, — I, versus
the number of series terms in Figure 5B. In this case, we
plotted the full distribution showing the median (50th percentile)
as well as the 10th, 25th, 75th and 90th percentile curves.
These plots show directly that series 2 almost always outper-
forms series 1 when only a few terms can be evaluated. The
reason is that the terms in series 2 are larger in magnitude owing
to their looser constraints, and thus remove the extraneous part
of the partition function more quickly than the terms of series 1
(see Supplementary Figure S1 and Supplementary Figure S4,
Supplementary File 1). Based on these results, we recommend
using series expansion 2 in all situations where the partition
function cannot be evaluated exactly.

Spot penalty optimization is the most efficient way to recover
information. Spot penalty optimization is an iterative proc-
ess where each iterative step requires the evaluation of some
number of series terms. An optimization requiring ¢ iterations thus
multiplies computation time by a factor of ¢ relative to the
simple evaluation of the series. Alternatively, one could spend the
extra computation time on taking the series to a higher order with-
out spot penalty optimization. Figure 6A plots the unrecovered
information when a) taking series 2 to a certain order without
optimization, versus b) using spot penalty optimization on only
the first term yielding Zg”’. The dotted line in each panel shows
the median number of terms requiring the same computation time
as Zg”’ . The Toy scenario shows that, if the series E:xpansion is
carried deep enough, it becomes more accurate than Z;*': in other
words the difference 7 - 15" becomes negative. However, for the
practical scenarios of Experiments 1 and 2 this crossover point
requires taking more terms than would be needed to match the
computational cost of calculating Z(‘)’P’ (the dotted line). Based
on these results, we recommend always performing spot penalty
optimization, especially for larger reconstructions.

Series expansions can improve optimization information
recovery. Although spot penalty optimization is the most
efficient way to recover information, that process alone can only
extract a certain fraction of the recoverable information: once
the cost function is zero, optimization can proceed no further
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Figure 5. Comparison of the convergence rates of series expansion 1 and series expansion 2. A. Median unrecovered information
| as a function of the number of terms used in each series expansion, without using spot penalty optimization (solid lines) versus with
optimization (dotted lines), and over the three simulation scenarios (panels left-to-right). Each curve was derived from the 100 individual
curves corresponding to the 100 simulations in each scenario using a simple point-by-point median average. B. Percentile distribution of the
difference between the unrecovered information using series 2 minus the unrecovered information using series 1; the fact that this difference
quickly drops below zero in nearly all individual simulations shows that series 2 recovers more information in the first few terms than does

series 1.

despite the problem not having been solved exactly. At this point,
the only way forward is to go higher in the order of series terms
used; we can still apply spot penalties to this sum of terms
and iteratively optimize them as before using Equation 1 and
Equation 2. Figure 6B plots the difference in unrecovered infor-
mation when applying spot penalty optimization between a) a
variable number of terms in series expansion 2, and b) only
ZO (the first series term). This figure shows that including
additional series terms in the optimization improves the infor-
mation recovery, albeit at a slow rate (especially for large
problems).

20-color labeling leads to near-perfect reconstructions. As
shown in Figure 5A, the unrecovered information for the whole-
chromosome Experiment 2 averages around 0.2 bits per locus,
implying near perfect mapping probabilities. However, because
these results were based on randomly-generated unconfined
conformations, they do not establish whether such good informa-
tion recovery is possible with real chromosomes which are likely
to be more compact. To test Experiment 2 on realistic chromo-
some conformations, we generated four plausible conformations
of human chromosome 4 by running the GEM software package'

on the smoothed human Hi-C data set provided by Yaffe and
Tanay, 2011'* and using a 3D spline interpolation to increase the
resolution from 1 Mb to 50 kb. These conformations were then
virtually labeled at 300 randomly-selected loci and simulated
experimental error was added in as before. One set of experi-
ments assumed diffraction-limited 100/200 nm localization error
in xy/z, and a second set of experiments assumed superresolution
30/50 nm localization error in xy/z; in both sets the missing-
and extra-spot rates were 10%. For this experiment we determined
the DNA model parameters n, and lp by fitting pairwise locus
distributions, as one would do in an experiment, and for L > lp
we set p = 1/3 as that has been reported in the literature for locus
separations under 7 Mb*. Mapping probabilities were recon-
structed by taking series expansion 2 to the lowest order that
included at least 1000 terms, then applying and optimizing spot
penalties. Compared with the random-walk conformations used to
test the Experiment 2 scenario, the diffraction-limited reconstruc-
tions did somewhat worse (~ 0.4 versus ~ 0.2 bits of unrecovered
information per locus) owing to fact that physical confinement
of chromosomes increases the density of competing spots in the
image. The superresolution reconstruction quality was unchanged
at ~ 0.2 bits of unrecovered information.
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Figure 6. Optimization in conjunction with series expansions. A. Comparison of unrecovered information using series expansions without
iteration, denoted /, to the unrecovered information obtained by optimizing spot penalties using only the first series term, denoted I(‘)"”, over
three experimental situations. Vertical dotted lines indicate the median number of series terms computable with the same computational
time as was required to obtain I(‘)"”. For Experiments 1 and 2 the difference I—Igp’ is typically positive at the intersection of the dotted
line, indicating that spot penalty optimization method is the more efficient way of recovering information. B._Comparison of unrecovered
information using spot-penalty optimization in conjunction with multiple series terms versus optimization of Z, alone, showing the added

benefit of including more terms in the series.

Despite the drop in performance when localizing spots at the
diffraction limit, 0.4 bits of unrecovered information per locus is
still an extremely strong reconstruction, implying that the correct
locus-to-spot mappings are assigned p-values averaging around
204 = 76%. Starting from such accurate and confident mapping
probabilities, one can infer a reasonable conformation simply by
assigning each locus to the unassigned spot to which it maps with
the highest probability (or calling a missing spot if 1= . p, . >
any p, ), repeating the process for overlapping loci, and draw-
ing a line in the image that connects these spots in genomic order.
The conformations produced by this simple rule are shown in
Figure 7: the correct conformation is shown with a blue line and
errors in the inferred conformation are shown in red. The recon-
structed conformations are ~ 90% accurate at diffraction-limited
resolution and ~ 96% accurate at superresolution, as determined
by an alignment between the true and inferred spot sequences
traveling along the DNA contour. Most mistakes are of a sort
that does not change the large-scale structure. For example, one
common error is to erroneously skip one or more spots in the
image, thus ‘looping out’” a small part of the conformation and
effectively lowering the resolution.

Figure 7 shows that the benefit of superresolution is two-
fold: 1) the locus-to-spot mapping quality improves relative to
diffraction-limited resolution (i.e. fewer red lines), and 2) the
small-scale structure of an ideal mapping (blue line) more faith-
fully traces the underlying contour (grey line). This shows the
importance of measuring spot locations to sub-pixel resolution,
even in experiments where normal-resolution microscopes
using standard fluorophores are used to localize spots sepa-
rated by two pixels or more. In our GEM conformations 23 spots
were closer than 200 nm to another spot of the same color,
which would indicate problems localizing these spots, but this
is inconsistent with the data shown in Wang et al., 2016" which
indicates that virtually all spots in our experimental scenarios
should be well-separated in at least in some cell lines.

Discussion

We have developed and evaluated two improvements to the
align3d method for reconstructing chromosome structure.
Both of these improve the partition function estimates that
determine the locus-to-spot mapping probabilities, which can
provide the basis for (probabilistic) reconstructed conformations.
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Figure 7. Simulated reconstructions of 4 plausible conformations of human chromosome 4. The left-hand reconstruction of each
conformation was obtained using a simulated image from diffraction-limited microscopy (shown in inset; localization error is shown as
lines connecting spots to DNA), and the right-hand reconstruction used a simulated superresolution image. Grey shaded lines indicate
the underlying DNA contours; blue lines trace the ideal reconstructed contours given the measured spot positions; red lines show our
reconstructed contours where they deviate from the ideal contours. Captions above each reconstruction indicate the amount of unrecovered
information / per locus after/before the reconstruction process; captions below indicate the number of alignment errors between the spot ID
sequences read along the true versus inferred conformations. For both superresolution reconstructions 2 and 3 we calculated / excluding a
single locus whose true spot mapping was given 0 probability; including that locus sends | — .

The first improvement is a more robust spot-penalty optimizer
that allows for large-scale reconstructions involving hundreds
of labeled loci, such as will be needed to uncover whole-
chromosome conformations. The second improvement is two
series expansion formulas for the partition functions, which
in principle allow the mapping probabilities to be solved to
arbitrary accuracy within the limitations of the experiment and
the underlying DNA model. In practice, the series approach is
difficult for two reasons: 1) there are a huge number of terms in
each series expansion, and 2) the lowest-order approximation ZO
overestimates Z by many orders of magnitude, unlike other series
expansions where the initial approximation is close to the final
answer. Despite the difficulties, the series formulas that we give

offer some way forward to improve on the original estimate Z(‘;” "
Of the two formulas, we recommend using series expansion
2, which has the larger-magnitude terms and thus recovers the
most information when only a few terms can be evaluated.

Our problem of finding likely (i.e. low-free-energy) DNA
conformations passing through a set of imaged spots is simi-
lar to the well-known traveling salesman problem (TSP), in
which a salesman must find the shortest route connecting a set of
cities. Somewhat more closely related is a generalization of
the TSP called the time-dependent traveling salesman problem
(TDTSP)'?, where the intercity distances change every step on
the tour; this is analogous to our situation where the free energy
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needed to thread DNA between two spots depends not only on their
separation but also on the length of DNA used to connect them.
In our case, the presence of missing and extra spots generalizes
our problem still further: in the TDTSP analogy the salesman
would be allowed to skip stops and cities for a penalty. Our
main finding is that the partition function of this generalized
TDTSP (which encompasses traditional TSP and TDTSP prob-
lems) can be expressed as a sum of terms computable using a
(modified) forward-backward algorithm, a result which should
also apply to other route-finding applications where research
has historically focused on route optimization rather than route
inference.

Both our mapping p-values and our entropy proxy for informa-
tion recovery show a systematic bias, which comes from the use
of a different DNA model for reconstruction than was used to
create the simulated DNA contours. The fact that our reconstruc-
tions were nonetheless quite strong shows that the reconstruction
method itself is quite robust to model error. This is very for-
tunate given the uncertainty in the true in vivo biological model
describing the cells in a real experiment. For our results to be
accurate, we had to calibrate our model so as to reproduce the
peak in the distance distribution of pairs of distinguishable
loci. An experimenter would perform this calibration by imag-
ing distinguishable pairs of loci in a parallel experiment. Due to
align3d’s use of a very permissive Gaussian chain DNA
model, both systematic biases work in the direction of causing the
method to underestimate its performance: high p-values should
be higher (and low p-values lower) than reported, and the unre-
covered information tends to be less than the entropy estimate.
Thus the results are at least as good as they appear to be.

From a genomic standpoint, our most exciting result is that the
combination of our computational improvements together with
20-color labeling technology gives almost perfect reconstructions
at the whole-chromosome scale. Out of ~ 4 bits per locus of
uncertainty inherent in the reconstruction problem, our method
recovers ~ 3.6-3.8 bits. Such confident mapping probabilities
allow for the direct construction of individual conformations
that are = 90% accurate. High-quality piecewise reconstruc-
tions are likewise possible with two overlapping copies of the
same chromosome (data not shown), although sometimes the
fragments cannot be assembled. We want to emphasize that our
reconstructions require only a few parameters that would be
known experimentally with proper controls: the 3 DNA model
parameters which in a real scenario would be calibrated using a
control experiment, and the correct average rates of missing and
extra spots averaged over all experiments, used by align3d
to estimate the actual number of missing spots per color in each
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experiment. The robustness of the analysis to experimental
unknowns gives evidence that reconstructions using real-world
experimental data will be of similar quality to those in our
simulations, and if so then direct measurement of chromosome
conformations is possible today with current technology.

Data availability

The simulated conformations and labelings used to generate
the plots in this paper, together with the output of the align3d
analysis, can be found at: https://github.com/heltilda/align3d/blob/
master/seriesExpansions/a3dRawData.zip

Software availability

Results in this paper were generated using version 1.1 of
align3d, built using version 1.1 of Cicada scripting language.
Simulated conformations and labelings were generated using
version 1.1 of wormulator.

All source files used in preparing this paper are available from
the GitHub page for this paper: https://github.com/heltilda/align3d/
tree/master/seriesExpansions.

License: GPL 3.0

Archived code at time of publication:

align3d: https://doi.org/10.5281/zenodo.2580342"
License: GPL 3.0

wormulator: https://doi.org/10.5281/zenodo.1411503'°
License: GPL 3.0

Cicada
1411505"

scripting  language:  https://doi.org/10.5281/zenodo.

License: MIT License
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In the manuscript “Improved inference of chromosome conformation from images of labeled loci", Ross
and Costello present a computational inference method to reconstruct genome conformation from
measurements of the positions of m labelled loci of known coordinates with n<<m colored fluorescent
foci. The presented tool is a new version of their computational tool "align3d" with multiple improvements.
The tool has the aim of inferring the polymer conformation of chromosomes in-vivo, starting from images
of fluorescently-tagged genomic loci, where each color tags different loci at the same time.

The authors provide a test of the algorithm with data that are generated computationally, in a simple (short
polymers) or more complex (longer polymers, more colors) setting. Finally they provide a simplified (and
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limited - see point 5 below) test using data that are derived from empirical data.

The question appears interesting due to its experimental motivation, although probably the method is not
yet close to something with concrete applicability to experimental data. We think that this could develop
into a useful tool for the global effort of understanding the chromosome conformation of organisms in-vivo.
As physicists, we are concerned with some aspects related to the representation (modelling) of the
polymer and the experimental situation. Our observations might be useful for the authors or for other
scientists that intend to analyse this kind of experimental data.

1. The authors state that the inaccuracy of the DNA (conformation) model, i.e. how the physical
distance of two loci scales with arclength distance along the genomic coordinate is a major factor
of error (more precisely, this is a conditional distribution of distances given distance along the
chain). They further state that nothing is known about this. However, this is not really the case, as
both Hi-C and FiSH experiments with labelled loci give information about these quantities
(Lagomarsino et al., 2015' and Fudenberg and Mirny, 2012°).

In particular, the assumption that the polymer is a Gaussian chain seems very restrictive. A much
less restrictive (though still limited) assumption would be that this scaling relation is a tuneable
power-law. This assumption is particularly interesting because in this case the scaling law relating
physical distance to distance along the genome is related to the contact probability measured in
Hi-C data (Fudenberg and Mirny, 20122). Indeed, in this scenario the contact probability
(sometimes called “P(s)”, where s is the arclength distance) and the connection between genomic
distance and typical spatial distance R(s) are related by a scaling (Polovnikov et al., 2018°). Thus
Hi-C data could be used to directly constrain the inference, or to compare with the results.

In this last scenario one could use the inference to learn the scaling from data. It seems quite
reasonable to us that this scaling should be one of the main observables to infer from the data.
Imposing this scaling appears like imposing a specific behaviour on the configurations that we are
attempting to infer. In this regard, one big question is whether the observable “scaling of physical
distance with arclength distance” can be inferred from the data without making the problem
under-determined. We would like to stimulate the authors to spend some words to address this
question.

As we suggest above, there are multiple possible approaches to this practical issue, such as the
use of the observable quantity “P(s)”, the contact probability measured with Hi-C, or the use of an
ansatz, such as a power law (Marie-Nelly et al., 2014%), accompanied by a procedure to optimize
the parameters.

2. The authors’ main hypothesis is that only one locus can map to each identified spot in the image,
and, for this reason, the solution proposed is a heuristic method to solve the traveling salesman
problem for the polymer on those loci. We observe that this might be a good practical assumption
but it is not necessarily a good one for the chromosome, and for polymers in general. Polymers can
have loops, even randomly. The definition of those loops depends on the resolution of observation
(which experimentally will be limited by diffraction). The frequency of loops in chromosomes
depends on important physical and biological parameters such as active looping (Fudenberg et al.,
2016°), the presence of different solvent phases and the balance between steric and other kinds of

interactions (Scolari and Lagomarsino, 2015°) as well as from steps of the experimental protocols
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(Scolari et al., 2018). Hi-C experiments, measure loops and quantify their specific and generic
properties. In terms of the genomic distance, it has been shown that at small distances the
chromosomes are very compact, and the amount of this compaction varies widely across
conditions (Lazar-Stefanita et al., 2017° and Muller et al., 2018°) even for the same organism. For
increasingly longer distances, generally, the probability of making a loop normally decreases
monotonically with genomic distance. Thus, we think that the authors’ approach should be
applicable to an increasing number of cases by increasing the scale of observation and modelling,
under the condition that the relation that ties the genomic distance to the three-dimensional
distance is chosen correctly.

3. The algorithm is focused on a single chain conformation and does not exploit ensembles. Typically
in such experiments one expects to have fairly low precision of localisation, but almost arbitrarily
large amount of realisations (different cells). Each will be different but will also have common
properties, and relaxing the question could make the inference process much easier. After all,
inferring precisely a single configuration is not so relevant, because it will change in time due to
natural fluctuations of the system. It is more useful (and well defined) to infer some ensemble
properties (at fixed conditions for the cells such as time and phase into the cell cycle), and then
quantify the cell-to-cell diversity with respect to such average behavior.

4. These images will come from microscopy and they will likely be 2D projections, or have lower
resolution in the z direction. The authors do not address this issue (and in general the issue of
resolution seems underestimated), but we expect it to be quite important in any concrete situation.

5. Inregard to the final example, we notice that the data is binned at 1mb and then interpolated at
100kb with a spline, we wonder if this resolution improvement introduces any alterations in the
reconstructed conformations of the polymer. For this reason, it seems reasonable to perform a
more thoughtful statistical analysis with different levels of interpolation to support this choice.
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expertise to confirm that it is of an acceptable scientific standard, however we have significant
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Author Response 11 Mar 2019
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We wish to thank Reviewers 2 for their many helpful comments and insights. To address their
comments as well as several concerns of our own, we have made a number of changes to our
analysis, our results and the content of the main paper, and added a new appendix. The changes
made to the code required us to regenerate all 9 figures that show results, although only Figure 7
changed significantly. We have also updated our GitHub repository containing all our code and
example data.

Reviewers 2 pointed out that the we were too strong in our language stating that 'nothing is known'
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about the DNA model. We agree and we have removed this wording from the last paragraph in the
Introduction. They also suggest the use of contact probabilities as a basis for inferring the distance
function used in the model. This would be possible, but there is actually a direct measurement of
the distance function (Wang et al., 2016) which we have decided to use instead. Wang et al. found
a 1/3 scaling exponent between L and R at the relevant length range, which we incorporated into
our model for analyzing the Hi-C reconstruction (but not the random chains, whose exponent is
1/2) and then reran the results shown in Figure 7. The results did not change very much because
most adjacent loci are close enough that R = k*L, i.e. the exponent is 1. The reviewers point out
this could be due to our spline interpolation used to increase the resolution of the conformation.
Unfortunately we were not able to directly infer higher-resolution conformations because the Hi-C
data set recommended by Zhu et al., 2018 (the Hi-C inference method called 'GEM") is binned at 1
Mb resolution, and this sets the resolution of the GEM conformations. We do not believe this is a
problem for 2 reasons: 1) our average label spacing is ~2/3 Mb, not far below the 1 Mb GEM
conformation subunit length, and 2) the inferred conformations seem to have a persistence length
somewhat above the length of a subunit, although we cannot rule out that this might change with a
different bin density. We agree that it would be ideal to have a higher-resolution structure (although
bin sampling would become an issue using this Hi-C data set), but we suspect that the errors in
Hi-C inferences probably overwhelm the resolution issue.

We want to point out that our use of a Gaussian chain for reconstruction (but not for producing the
DNA chains) is not incompatible with the scaling relations mentioned by Reviewer 2, because
these scaling relations determine average spatial separation R of two loci based on their genomic
separation L, but not the form of the distribution p(rIR). We have chosen to model p(rIR) with a
Gaussian (partly for convenience since it is easy to factor in localization error, but partly for other
reasons; see below) having = R*2, but R is in turn calculated as R = LApower. In our earlier draft
this power was fixed at 1/2 for distances above a persistence length, but as Reviewers 2 pointed
out recent experimental data show exponents of 1/3 - 1/5. To address this issue, we generalized
our program to accept more general DNA models consisting of different power laws at different
inter-locus distance regimes, and our new results use exponents of either 1/2 and 1/3 for long DNA
segments, depending on the simulated experiment. To make this clearer, we have added a new
paragraph to the Results section (2nd paragraph) explaining the model selection in our
simulations, as well as how a model would be chosen in a real experiment.

In our initial submission we claimed that a systematic error seen in the mapping probabilities was
due to overestimation of the missing-spot rate. Since then we have both fixed the missing-spot rate
estimation and made major progress in figuring out the real cause of the error, which we explain in
detail in a new Appendix 3 and refer to in several places in the text. The error comes from the fact
that the Gaussian chain model used for reconstruction differs significantly from the wormlike chain
model used to generate our simulated contours. While Reviewers 2 were concerned that the use of
a 'wrong' model would skew the results, we believe that the opposite interpretation is more
accurate: the fact that we obtain high-quality results even when the reconstruction model differs
from the model used to produce the conformations shows that our approach is robust to model
error. Appendix 3 justifies this intuition, by showing that model error causes our results to appear
less certain than they are, but does not cause reconstruction errors if the reconstruction model is
less sharply-peaked than the true model. This is the other justification for using the Gaussian chain
model, which is quite permissive of unexpected behavior that we may find given that the true
in-vivo DNA model may behave unexpectedly sometimes which may be very difficult to measure
exactly in calibration experiments. We have also added a new 3rd paragraph to the Discussion
explaining this.
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We agree with Reviewers 2 that loops certainly can happen and, to the extent that they can be
distinguished by microscopy, our algorithm is certainly capable of finding looped conformations
(even if the loop is over 2 adjacent loci -- our Gaussian model peaks at r = 0). If two loci of the
same color happen to overlap in a microscope image, one may be missed -- this is considered a
missing-spot or false-negative error, as mentioned in the footnote in the Introduction. Since our
algorithm is capable of handling both false negatives and false positives (extra unbound spots), we
do not anticipate loops to be a problem. If there are many points of overlap coming from an
identical color sequence (e.g. if two copies of the same chromosome overlap) then the
reconstruction fragments can become fragmented, with ambiguity as to which piece goes with
which other piece -- we have added a brief note about this to the Discussion section.

Reviewers 2 point out that align3d is a single-cell method, not an ensemble method, and we
completely agree. We believe that aggregating single-cell conformations will give many interesting
insights that one could not get by aggregating, for example, pairwise distances. Our method
should be seen as one possible means of obtaining these cell conformations.

Finally, Reviewers 2 raise the issue of resolution in the z dimension: we certainly do consider
localization error in z, both in generating the spot localizations (which have z error as well as x/y
error) and in the reconstructions (where the errors in x/y/z are required inputs). In all simulations we
set the z localization error higher than x/y error (200 vs 100 nm in normal resolution, 50 vs 30 nm in
superresolution), reflecting the fact that axial resolution is worse in most setups. We have updated
the main text to more explicitly give the localization error in the various simulations.
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In this paper the authors update and build on a method they have previously published known as
‘align3d’. This method attempts to infer the chromosome conformation based on images of fluorescently
tagged genomic loci. The authors claim that this updated method increases the accuracy of the inferred
conformation as well as allowing the method to run on larger instances of the problem. They then go on to
demonstrate where the method allows for the near perfect reconstruction of larger scale, simulated,
labelled images. We believe that the article is worthy of indexing on the condition that some minor issues,
outlined below, are addressed.

In the introduction the authors mention a couple of other methods attempting to resolve similar problems. |
think that this section should be expanded as there is no critical comparison of how this method compares
to each of those mentioned. In particular the computational methods should be compared and contrasted
so it is clear to the reader how this method differs from others.

Whilst reviewing this paper we were unable to access the supplementary data. This must be made
available before the paper can be indexed. Some things the authors could include in the supplementary
section that would be useful from the computational perspective would be the type of series expansion
being used and any information on how quickly the series expansion converge to the original formula. The
authors have experimentally checked on the convergence properties but sometimes it's quite simple to
determine theoretically how quickly some approximation converges. This information could be useful in
determining better expansions and would explain more concretely why they get some of the results they
see.

In the experimental section of the paper the authors generate three different types of simulation that they
denote 'Toy', 'Experiment 1' and 'Experiment 2'. In the discussion of the results the authors make the
following comment:

‘Use of more colors dramatically improves reconstructions. Our most striking result is that simulations of
the ambitious Experiment 2 produce far better results than even the Toy scenario, despite the fact that
these simulations have more loci per color than either the Toy scenario or Experiment 1. This can be seen
in the amount of unrecovered information shown in the simulation-averaged plots of Figure 5A. Thus a
push to 20-color labeling could prove critical for genomic reconstruction at the chromosome scale and
beyond. At the end of this section we revisit Experiment 2, in order to assess the reconstruction quality
when analyzing more realistic DNA contours having tighter confinement.’

The authors should make some attempt to explain this situation. Actually if you increase the number of
colours and also increase the number of loci with the same colour then you would not obviously assume
that the problem should be harder. It very much depends on how each is increased within proportion to
each other.

An increase in the number of unique colours available should lead to the problem being exponentially
easier as you are effectively exponentially decreasing the ambiguity in the data set. Should you also
increase the number of loci labelled with the same colour then you wouldn't expect the problem to
become harder unless that increase was large enough to outweigh the effects of the increase in the
number of available colours. In this sense it could be argued that many instances of the 'Toy' example are
fundamentally more challenging than the (on the face of it) more complicated 'Experiment 2'. This should
somehow be addressed by the authors.

Also in the discussion of the experimental results the authors note that '20-color labelling leads to
near-perfect reconstructions.' This result is consistent with our results reported by Barton et al. (2017"). It
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would be good to mention this as although the computational methods are different, the simulations are
generated in different ways and the resolution simulated is different, both methods suggest that if ~20
colours are available then near perfect reconstruction is possible. The authors should also point out the
similarity of the number of colours needed in both their method and ours.

The differences in computational methodology yet similarity in the numbers of colours needed for near
perfect reconstruction perhaps suggests to me that both methods are in some sense 'naive'. There must
exist a minimum number of colours required for a certain average reconstruction performance (with the
appropriate caveats) but we would be surprised if it was as high as 20. It could be interesting to see the
authors add some discussion about this connection and any insight they might have into it.

Finally there have been a number of different attempts to simulate super resolved images of the type used
in this and other computational methods. If the authors can use this data as input or the data can easily be
coerced into an appropriate format for this method then the paper would be much stronger with the
addition of results of using the method against these datasets. In this way the authors can clearly
demonstrate that the method they propose is not simply good on their own simulated data, but also
performs robustly on other independently generated simulations.
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Brian Ross, University of Colorado, Anschutz Medical Campus, Aurora, USA

We wish to thank Reviewers 1 for their many helpful comments and insights. Based on these
comments and those of Reviewers 2, we have made some changes to our analysis, updated our
results (particularly those shown in Figure 7) and the content of the main paper, and added a new
appendix.

We apologize for the problems Reviewers 1 had in accessing the Supplemental Material. The
material was uploaded and available (to us), but the 'Appendix x' links lead nowhere in the
published version. These seemingly dead links have been removed.

Reviewers 1 suggested that in the Introduction we compare our align3d method to the other
published method that we are aware of (ChromoTrace) to highlight their differences. We agree that
this is indeed a useful addition, and so we have added several sentences to the Introduction (2nd
paragraph) contrasting the two algorithms. We are not experts on ChromoTrace, and if we have
mischaracterized it in some way we apologize and hope the reviewers will correct us.

Reviewers 1 also inquired about the exact series expansion formulas we used. The expansion
formulas are in the Methods section of the main text, not the Supplemental material. To make this
clearer we have added an equation number to the series definition preceding the coefficient
formulas (this is the new Equation 3), and referenced that equation explicitly in the two coefficient
formulas (which are now Equations 4-5). Thus the series definitions are fully in the main body of the
paper, and only their derivations are in Appendix 2.

One technical detail is that our original code could not use our series expansions in conjunction
with the preexisting capability to 'fix' certain loci to map to certain spots in the image, in order to
obtain mapping probabilities that are conditional on the fixed loci. This has been addressed in the
new version of the code. This oversight did not affect the results shown in the paper, but it did
require us to add a explanatory paragraph to the end of Appendix 2.

Reviewers 1 asked about the finding that our simulated Experiment 2 reconstructions came out
much better than the Experiment 1 reconstructions, despite having more labeled loci of a given
color. We have added several sentences to the Results section ("Use of more colors dramatically
improves reconstructions" section) explaining that we believe that it is the spatial density of labeled
loci rather than the absolute number that determines the reconstruction quality. Reviewers 1
noticed the same finding in Barton et al. (2018); we have added this citation. We have not
systematically tested performance as a function of the number of colors; we chose 20 simply
based on the fact that 10 sequential hybridizations is reasonable for our planned experiment based
on conversations with our collaborator (Wang et al., 2016, demonstrate 17 rounds). Since we
haven't noticed a plateau in reconstruction performance versus number of colors, as evidenced by
the fact that the 20-color reconstructions still have some uncertainty, we do not see a reason to go
towards fewer colors.

A final question raised by Reviewers 1 concerned the issue of superresolution in the simulated
images. Since our spots are presumed well-separated (based on the data of Wang et al., 2016) we
believe we can get super-resolved spot localization without having to use special microscopes or
fluorophores, and without having to resolve individual fluorophores. Thus the superresolution
comes for free on normal images at the scale we consider here. We have added text explaining
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this (new final paragraph of Results), and also a second set of conformational reconstructions to
Figure 7 showing explicitly the benefit of superresolving the spot locations. If we were to push to
higher-genomic-resolution labeling (say, 10s-100s kb locus separation; current simulations are at
~600 kb) then we would indeed need superresolution microscopes, but since those are not the
experiments simulated here we did not try to simulate those images. In fact this is why we chose to
label these simulations at the 600 kb resolution.

Although we were not able to increase the Hi-C inferred resolution, we did discover that we had
misinterpreted the scale of the Hi-C-derived conformations of Figure 7, thus underestimating the
relative magnitude of microscope error in these simulations. Our new plots have corrected this
error. Owing to the larger microscope error our new reconstruction quality is somewhat worse as
measured by our information metric. To compensate we improved our script that estimates a likely
conformation from our output (mapping p-values), and as a result these likely conformations are
roughly of the same quality as before. We also added a parallel set of superresolution
reconstructions to this figure, in order to show explicitly the benefit of reducing microscope error.
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Comments on this article

Peter Rogan, University of Western Ontario, Canada

Having had the opportunity to recently see Oligopaint data and speak with a number of practitioners of this
technique, reproducibility remains a significant issue. The simulations described in this paper cannot be
practically applied for chromosome conformation analysis until convincing data are obtained:

"The robustness of the analysis to experimental unknowns gives evidence that reconstructions using
real-world experimental data will be of similar quality to those in our simulations, and if so then direct
measurement of chromosome conformations is possible today with current technology."

FISH using short single copy DNA probes is the underlying basis of this technique (PMID 11381034). We
successfully labeled single copy oligonucleotides by ligation or hybridization of fluorescent detection
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reagents, but it was technically challenging (PMID 16460913). Considerable effort is required to ensure
low fluorescence background for clinical applications of single copy probes (PMID 12923866), because
Cot-1 repeat blocking DNA can produce artifacts in short probe hybridization (PMID 23376933). Expertise
in human cytogenetic identification of hybridized chromosomes (e.g. reverse DAPI banding patterns)
would also to convincingly demonstrate accuracy of Oligopaint results. .
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