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Abstract: Acute urethral injuries caused by urethral endoscopy and other mechanical injuries are
the main reasons for secondary infection and late urethral stricture. However, there are no studies
to explore the transcriptomic changes in urethral injury and the molecular mechanism of urethral
injury, which is important for the treatment and cure of urethral injury. Therefore, we used RNA-
seq and sRNA-seq profiles from normal and injured urethral tissues to identify and characterize
differentially expressed mRNAs and miRNAs. In total, we found 166 differentially expressed
mRNAs, of which 69 were upregulated, and 97 were downregulated in injured urethral tissues. The
differentially expressed mRNAs were mainly involved in the positive regulation of epithelial cell
differentiation, focal adhesion, cell adhesion molecules, protein activation cascade, complement
activation, complement and coagulation cascades, and chemokine-mediated signaling pathway.
Additionally, we found six upregulated and four downregulated miRNAs, respectively, in the injured
urethral tissues. Notably, their target genes were involved in the vascular endothelial growth factor
receptor 2 binding, PI3k-Akt signaling pathway, and Notch signaling pathway. In summary, our
results suggest that the cell damage response induced by mechanical injury activates the pathological
immune response in a variety of ways in injured urethral tissues.

Keywords: RNA-seq; sRNA-seq; urethral injury; mRNA; miRNA; inflammation

1. Introduction

The human urethra is a natural cavity directly connected with the outside world. It is
the originator of endoscopy and endoluminal surgery. However, with the development
of minimally invasive treatment methods such as endoscopic surgery and robotic surgery,
as well as the rapid development of physical therapy methods such as laser, plasma, and
radiation, patients are inevitably prone to iatrogenic urethral injury while enjoying the
advantages of minimally invasive treatment [1]. Although urethral injury itself is not
life-threatening, if it is not accurately diagnosed and reasonably treated, most urethral
injuries will turn into urethral stricture [2,3]. Once it occurs, patients must receive regular
endoscopic intervention, urethral dilation, and/or cleaning intermittent catheters, which
have been used for many years. In more advanced and recurrent stenosis, open end-to-
end anastomosis and/or free transplantation are required, and long-term rehabilitation,
including follow-up surgery [4–6], is required, which imposes severe psychological and
financial burdens on the patient and seriously affects the patient’s quality of life. More
than 12,000 patients in the United Kingdom need surgery for urethral stricture every
year, which costs about 10 million pounds a year [7]. In the United States, there have
been more than 5000 hospitalized patients with urethral stricture, with an annual cost of
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200 million dollars [8]. China’s population is about four times that of the United States and
21 times that of the United Kingdom, suggesting that the number of people suffering from
urethral stricture is much larger and the economic burden is more intensive in China [9].
Therefore, exploring the relevant molecular mechanisms that occur in urethral injury tissue
is particularly important for preventing and/or slowing down urethral stricture.

Previous studies have shown that after urethral injury, local tissues and cells undergo
degeneration and necrosis, vascular permeability increases, and leukocyte exudation [10,11].
Subsequently, lysosomal enzymes, active oxygen free radicals, prostaglandins, and a variety
of inflammatory mediators [12–14] are released to mediate vascular endothelial cell and
tissue damage. These promote the infiltration of lymphocytes, macrophages, and plasma
cells, resulting in tissue damage response and tissue repair [11]. At the same time, fibroblasts
activate and proliferate, resulting in the increase in synthetic collagen fibers [15], which
will reduce the extension and compliance of the urethral cavernous body and finally lead
to the formation of urethral lumen stenosis [16]. In summary, urethral stenosis is a complex
pathological process from urethral injury to urethral stenosis, which involves a series of
interlocking molecular mechanisms. Feng et al. [17] found that urethral injury leads to the
activation of the TGF-β1 signal, which further promotes the proliferation, activation, and
migration of urethral fibroblasts reduces the secretion of IP10 by fibroblasts, inhibits the
IP10/CXCR3 signaling pathway, accelerates the pathological process of urethral fibrosis,
and ultimately leads to urethral stricture. Although multiple mechanisms of urethral injury
to urethral stricture have been proposed, the analysis of the molecular signaling events
involved remains incomplete.

High-throughput sequencing technology, also known as next-generation sequencing
technology, is a milestone in the history of sequencing. It can simultaneously sequence
millions of DNA or RNA. After decades of development, it has been widely used in the
genome, including sequencing and epigenomics, as well as many aspects of functional
genomics research [18].

In the past few decades, non-coding RNAs have been considered transcriptional noise
because they do not encode proteins. Studies have revealed that non-coding RNAs are
involved in many pathophysiological processes [19]. miRNAs are a kind of non-coding
single-stranded RNAs with a length of ~22 nucleotides. It is transcribed from DNA
and is not translated into protein. It is mainly involved in the expression regulation of
post-transcribed genes [20]. Studies have shown that miRNA induces gene expression
silencing by binding to their target mRNAs, blocking translation initiation, extension, or by
including the degradation of mRNAs [21]. Because miRNAs do not need to be completely
complementary to inhibit gene expression, a specific miRNA can regulate multiple gene
transcripts, and a specific gene transcript can also be inhibited by multiple miRNAs [21].
miRNA is involved in the pathophysiological process of a variety of traumatic diseases,
such as radiation-induced esophageal injury [22], acute kidney injury [23], myocardial
injury [24], and traumatic spinal cord injury [25].

The molecular mechanism of the role of mRNA and miRNA in the occurrence and
development of urethral injury is still unclear. In order to study the gene regulation
mechanism that occurs in urethral injury tissues, we used high-throughput sequencing
technology to study the differential expression of mRNA and miRNA in urethral injury
tissues. Then we predicted the biological functions of differentially expressed mRNA and
miRNA target genes using Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis
(GSEA). These results can provide new insights and potential intervention targets for early
intervention or treatment of urethral stricture caused by urethral injury.

2. Materials and Methods
2.1. Animals

Four specific pathogen-free (SPF) male Sprague Dawley (SD) rats (250–300 g) aged
6–8 weeks old were used as the research objects. They were randomly divided into an
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injured group and a normal group, with 2 rats in each group. All rats were purchased from
the Department of Laboratory Animal Science, Kunming Medical University (Kunming,
China), (Animal Quality Certificate Number: SCXK (Dian) K2020-0004). The SD rats of the
injured and normal groups were housed in two cages separately. All rats were housed in an
SPF barrier environment (experimental facility license number: SYXK (Dian) K2020-0006)
using a 12 h light–dark cycle and had free access to food and water with a temperature
range of 20 ◦C–25 ◦C, relative humidity range of 50% to 70%. All procedures had been
approved by the Experimental Animal Ethics Committee of Kunming Medical University
(approval number: kmmu2021721).

2.2. Establishment of Urethral Injury Animal Model

The rats in the injured group were anesthetized with an intraperitoneal injection of
pentobarbital sodium (50 mg/kg). After the rats were successfully anesthetized, they were
fixed on the small animal constant temperature pad on the operating table in a supine
position to expose the operation area, and the rat hair in the perineum was removed with
a rechargeable shaver. The perineal area was carefully disinfected with iodophor, and
urinary catheterization was performed. Then the abdomen was pressed to empty the urine
from the bladder as much as possible. After pulling out the urinary catheter, an elastic
tourniquet was placed at the root of the penis to reduce intraoperative bleeding. The skin
of the ventral penis was cut to expose the urethra, and a small opening was cut at the
urethral orifice with ophthalmic scissors. The urethral orifice was pulled open with three
vascular forceps, and the urethra was slightly expanded with a specific round end iron bar.
Then, the round end of an iron bar was baked on the outer flame of the alcohol lamp for
6–7 s and inserted into the urethra to make an insertion depth of about 26 mm. After each
withdrawal, the bar was baked for 6–7 s and inserted again with 2–3 repetitions to scald
the urethral mucosa. Then, the tourniquet was removed, and the skin of the penis was
sutured with 5-0 absorbable thread. After waking up, the rats were placed in the feeding
cage with a sterilized clean pad and placed in the feeding room. Drinking water and feed
were sufficient, and the rats were free to eat and drink water after surgery. The life activity
status and urethral orifice of the rats were closely observed. The surgical site of the injured
group was disinfected 3 days after the operation.

2.3. Tissue Collection

On the 3rd day after modeling the urethral injury, rats were euthanized by intraperi-
toneal injection of sodium pentobarbital (150–200 mg/kg). After checking for cardiac arrest,
we then fixed the rats on the operating table in a supine position to expose the operation
area. We removed the rat hair in the perineum with a rechargeable shaving device and cut
the skin of the ventral penis to expose the urethra. We completely removed the urethra
from the lower curve of the pubis to the distal end of the urethra with ophthalmic scissors
and placed it on ice. We carefully and quickly removed the surrounding excess tissue and
then weighed the samples and put it into the labeled enzyme-free cryopreservation tube
and soaked them in liquid nitrogen.

2.4. RNA Isolation, Library Preparation and Sequencing

Each sample contained at least 60 mg of urethral tissues for RNA extraction. In
accordance with instructions provided by the manufacturer, total RNA was extracted from
the tissues using Trizol (Invitrogen, Carlsbad, CA, USA). Subsequently, total RNA was
qualified and quantified using a Fragment Analyzer instrument (Agilent Technologies,
Santa Clara, CA, USA). For all samples, RNA integrity number values were greater than
7. RNA-seq and sRNA-seq libraries were constructed, followed by cluster formation and
sequencing using the BGISEQ-500 platform (BGI-Shenzhen, Shenzhen, China).
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2.5. Generation and Analysis of the RNA-seq Profiles in Rat Urethra

The BGISEQ-500 sequencer was used with a 2 × 150 pair-end RNA-seq strategy to
sequence the total RNAs of the four samples. We deposited the obtained sequencing
data into the NCBI GEO database under the accession number GSE182642. The genome
and annotation of rat were downloaded from UCSC (http://genome.ucsc.edu (accessed
on 12 September 2021)). The alignment was performed using the options of “-p 24 -dta-
cufflinks -q -S” within HISAT2 (v 2.1.0) [26]. StringTie (v 2.1.6) [27] was used to assemble
the transcriptomes with the options of “-p 20 -l normal_2A”. Moreover, cuffquant and
cuffnorm in the Cufflinks package (v 2.2.1) [28] were used to calculate and normalize the
expression levels of transcripts, respectively. Using the edgeR program (v 3.34.0) [29], we
compared the expression levels of transcripts in normal and injured urethral tissues in
rats. A total of 25,718 transcripts were obtained after filtering the expression levels of
transcripts with mean expression levels of at least 1 FPKM (Fragments Per Kilo basepairs
per Million sequencing reads) in two tissues of comparisons. The FPKM values of the
transcripts were compared with the edgeR program (v 3.34.0) [29]. The transcripts with
corrected p-values smaller than 0.05 and |log2(Fold Change (FC))| ≥ 1.5 were considered
statistically significant. KOBAS (v 3.0) [30] was used to obtain enriched GO terms and
KEGG pathways based on these differentially expressed transcripts. The GO analysis
exported three categories: biological process (BP), cellular component (CC), and molecular
function (MF). The p-values were corrected by the Benjamini–Hochberg procedure, and GO
terms and KEGG pathways with corrected p-values < 0.05 were considered significantly
enriched. A bi-clustering analysis of the expression levels of filtered transcripts was carried
out using the pheatmap package in R.

2.6. Gene Set Enrichment Analysis

We used HISAT2 (v 2.1.0) [26] to align the obtained RNA-seq paired-end reads to
the rat genome. Samtools (v 1.12) [31] was used to convert files from sam format to bam
format using the options of “view -bS -T” and sort reads by name with the options of
“sort”. FeatureCounts (v 2.0.3) [32] was used to calculate the expression levels of genes in
each sample with the options of “-T 24 -p -t -g -a”. The GenomicFeatures (v 1.44.0) [33]
package in R was used to convert counts to FPKM values of genes in each sample. Finally,
gene set enrichment analysis was conducted based on the Gene Ontology and KEGG
databases using the Gene Set Enrichment Analysis (GSEA) (v 4.1.0) [34] software. The ex-
pression data with a total of 32,883 normalized genes were uploaded to the GSEA software
((v 4.1.0), Broad Institute, Cambridge, MA, USA). Gene set size filters (min = 15, max = 500)
resulted in filtering out 10,084/15,760 gene sets. The remaining 5676 gene sets were used in
the analysis. The default weighted enrichment statistic was adopted to process the data
1000 times, and probes were ranked by the signal-to-noise ratio. A gene set was consid-
ered significantly enriched when the p-value was less than 0.05 and the false discovery
rate (FDR) was less than 0.25. ES (enrichment score) reflects the degree to which a gene
set is overrepresented in our dataset of differentially expressed genes. NES (normalized
enrichment score) is the ES normalized for the gene set size.

2.7. Small RNA Sequencing Profiles

At the sequencing facility, small RNAs were isolated from total RNAs and used to
prepare small RNA sequencing libraries. The obtained sRNA-seq libraries were sequenced
by a BGISEQ-500 sequencer. Our sRNA-seq profiles were deposited in the NCBI GEO
database with the accession number GSE182947. The FASTQC program (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 August 2021)) was used
to examine the qualities of the obtained small RNA sequencing profiles. Computational
analysis of sRNA reads obtained from the sRNA libraries was performed as reported
previously [35]. At first, reads with low-quality scores (<30) of the first 25 nt and shorter
than 18 nt were discarded. The remaining reads used the pipeline proposed previously [35]
to generate an sRNA tissue frequency file.

http://genome.ucsc.edu
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Genes 2022, 13, 824 5 of 17

Rattus norvegicus mature miRNA sequences were downloaded from the miRBase
((v 22.1), accessed on 12 September 2021) [36], and the unique mature miRNA sequences
were obtained. Finally, the frequencies of mature miRNAs in different small RNA sequenc-
ing profiles were calculated by aligning the sRNA tissue frequency file to unique mature
miRNAs using NCBI BLASTN (v 2.2.26) [37] with the options of “-S 1 -m 8 -e 0.01” and
normalized to Reads Per Ten Million (RPTM) sequencing tags. In all, 526 miRNAs were
identified after filtering expression levels of miRNAs that had at least one RPTM in two
tissues of comparison. The RPTM values of miRNAs were compared with the edgeR
program (v 3.34.0) [29]. miRNAs with p-values smaller than 0.05 and |log2(Fold Change
(FC))| ≥ 0.5 were considered statistically significant. By using the pheatmap package in R,
the bi-clustering analysis of the expression levels of filtered miRNAs was performed.

2.8. Identification of miRNA Targets and GO and KEGG Enrichment Analysis

To better understand the functional ramifications of the identified miRNAs, we pre-
dicted the miRNA targets with the HitSensor ((Release 4), Shanghai, China) [38] pipeline.
The HitSensor algorithm searches miRNA complementary sites in coding regions with a
modified Smith-Waterman algorithm [39]. It scores these sites by giving rewards to key
sequence-specific determinants, including seed region, 12–17 nt region, local-AU content
around the seed region, and ≤3 mismatches. After calculating the scores of the 5 deter-
minants for each alignment site, it will add these individual determinant contributions to
the alignment score to find the total score of a miRNA complementary site. Finally, sites
with total scores larger than 472 are outputted. Because miRNAs normally repress the
expression of their targets in a mild way [21], we choose targets whose expression levels
show opposite change to the expression change of miRNAs. By using KOBAS (v 3.0) [30],
enriched GO terms and KEGG pathways were obtained for the miRNA targets. We used
Fisher’s exact test to find the p-values. GO terms and KEGG pathways with p-values < 0.05
were considered significantly enriched. miRNA:target relations were visualized using
Cytoscape (v3.8.2) [40].

3. Results
3.1. Quality Examination of RNA-seq Data

To obtain expression patterns of genes in different conditions of rat urethra, normal
and injured urethral tissues of male SD rats were collected. The total RNA from the four
samples was isolated and used to prepare Ribo (-) RNA-seq libraries, which were then
sequenced on a BGISEQ-500 sequencer (BGI-Shenzhen, Shenzhen, China). The sequencing
quality of these RNA-seq libraries was examined by FASTQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 1 August 2021)) (Supplementary Figure S1).
A total of almost 40 million clean reads were obtained for each of these four RNA-seq
profiles (Supplementary Table S1). Moreover, these samples have the average GC content of
the reads of 50% and 51% in the normal and injured urethral tissue groups, respectively. The
FASTQC results indicated that the sequencing clean data were of good quality, which was
crucial to the next step of the analysis. HISAT2 was then used to align the sequencing reads
to a rat genome reference. In total, at least one end of the 72,955,661 (90.2%) and 73,348,269
(90.6%) reads for the normal and injured urethral tissues, respectively, was successfully
mapped back to the reference genome, indicating the good quality of the sequencing
libraries as well as excellent credibility of the results in the downstream analysis.

3.2. Gene Expression Patterns of Injured Rat Urethra

The RNA-seq profiles were aligned to the rat genome, which was downloaded from
UCSC (http://genome.ucsc.edu/ (accessed on 12 September 2021)) with HISAT2 [26].
Following alignment, transcriptomes were assembled, and gene abundances were calcu-
lated using StringTie [27] and Cufflinks [28], respectively (Supplementary Table S2). After
filtering out lowly expressed transcripts, a total of 25,718 genes with mean expression levels
of at least 1 FPKM in two tissues of comparisons were used in further analysis. The edgeR

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://genome.ucsc.edu/
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program [29] was used to identify the differently expressed genes (DEGs) in the injured
rat urethra. A total of 166 differentially expressed genes in injured tissues were identified
when compared with normal tissues (Supplementary Table S3). Among these DEGs, 69
were found to be upregulated while 97 were downregulated (Figure 1a). In the bi-clustering
analysis, gene expression profiles from the same groups were clustered together using the
DEGs, as shown in Figure 1b.
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Figure 1. Expression patterns of genes in different groups of rat urethra. (a) Deregulated genes
in injured tissues when compared to those in normal tissues. Red dots indicate the upregulated
genes, blue dots indicate the downregulated genes and black dots indicate the non-differential genes
(|log2(Fold Change (FC))| ≥ 1.5 and FDR value < 0.05); (b) The bi-clustering of genes expression
profiles in different groups of rat urethra samples. The log2(FPKM + 1) of the transcripts were used
in the analysis.

3.3. Functional Enrichment Analysis of Differentially Expressed Genes

Using these DEGs, we applied KOBAS (v 3.0) [30] to identify enriched GO terms
and KEGG pathways in different groups (Supplementary Tables S4–S7, respectively). The
results revealed that the upregulated genes in injured tissues were associated with nega-
tive regulation of cytosolic calcium ion concentration, the release of sequestered calcium
ion into the cytosol by the sarcoplasmic reticulum, positive regulation of epithelial cell
differentiation, positive regulation of membrane protein ectodomain proteolysis, inner cell
mass cell proliferation, extracellular space, stress fiber, actin filament binding, lipoteichoic
acid binding, peptidase activator activity, and lipopolysaccharide binding (Figure 2a). On
the other hand, downregulated genes in injured tissues mainly consisted of the GO terms,
such as the synaptic signaling, negative regulation of endopeptidase activity, regulation of
sensory perception of pain, retina homeostasis, kinocilium, extracellular matrix, endopepti-
dase inhibitor activity, small molecule binding, and WW domain binding and scavenger
receptor activity (Figure 2c). The majority of the upregulated genes in injured tissues
belong to the phagosome, focal adhesion, ECM-receptor interaction, cellular senescence,
and cell-adhesion molecule pathways (Figure 2b), which are closely related to inflammatory
response, tissue damage, and repair. However, downregulated genes in injured tissues were
associated with the tight junction, salivary secretion, endocytosis, and allograft rejection
pathways, including graft-versus-host disease with the highest Rich Factor (Figure 2d).
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Figure 2. Enriched GO terms and KEGG pathways in deregulated genes when comparing RNA-
seq profiles of the injured and normal tissues of rat urethra. (a) GO terms of upregulated genes
in injured tissues; (b) Enriched KEGG pathways of upregulated genes in injured tissues; (c) GO
terms of downregulated genes in injured tissues; (d) Enriched KEGG pathways of downregulated
genes in injured tissues. In Part (a) and (c), the BP, CC and MF represent biological process, cellular
component and molecular function, respectively. In Part (b) and (d), the Rich factor is calculated by
dividing the number of input genes with the KEGG pathway by the total number of genes within the
same pathway.
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3.4. The GSEA Analysis

To study the molecular mechanism related to injury of the urethra tissues, we per-
formed the gene set enrichment analysis using the GSEA [34] software (Supplementary
Tables S8 and S9, respectively). The GSEA analysis showed that the gene sets of the protein
activation cascade, complement activation, antigen processing and the presentation of
peptide or polysaccharide antigens via MHC class II complement and coagulation cas-
cades, positive regulation of vascular endothelial growth factor production, phagocytosis,
engulfment, chemokine-mediated signaling pathway, cellular response to interferon-γ, and
monocyte chemotaxis were significantly enriched in the injured group (Figure 3). These
results were highly related to the activation of an inflammatory response, the release of
inflammatory factors, tissue damage, and repair. On the other hand, keratin filament,
oxidative phosphorylation, mitochondrial protein complex, respiratory chain complex,
inner mitochondrial membrane protein complex, and the respiratory electron transport
chain were the most relevant gene sets to the normal group (Supplementary Figure S2).
This indicated that there were more biological processes related to mitochondrial activity in
normal tissues, which seemed to mean that mitochondria were involved in the maintenance
of the normal tissues.
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Figure 3. GSEA analysis of nine representative significantly enriched gene sets in phenotype injured.
Enrichment plots comparing injured toward normal phenotype were depicted with following sets
of genes: (a) GOBP protein activation cascade; (b) GOBP complement activation; (c) GOBP antigen
processing and presentation of peptide or polysaccharide antigen via MHC class II; (d) KEGG
complement and coagulation cascades; (e) GOBP positive regulation of vascular endothelial growth
factor production; (f) GOBP phagocytosis, engulfment; (g) GOBP chemokine-mediated signaling
pathway; (h) GOBP cellular response to interferon-γ and (i) GOBP monocyte chemotaxis. Comparison
of samples, NES, nominal p-value, and FDR q-value were determined by the GSEA software and
were indicated within each enrichment plot.

3.5. Small RNA Sequencing Profiles of Different Tissues of Rat Urethra

Using a BGISEQ-500 sequencer, we obtained four small RNA-seq (sRNA-seq) profiles
from the same samples of rat urethra that were used for RNA-seq. The sequencing quality
of these sRNA-seq reads was examined by FASTQC (Supplementary Figure S3). After the
removal of the low-quality reads and the 3′ adaptors, an average of 33 million clean reads
with ≥18 nt for each of these four sRNA-seq profiles were obtained (Supplementary Table
S10). In these four sRNA-seq libraries, we examined the length distributions of the small
RNA reads and unique sequences. The peak at 22 nt was found in all libraries for reads,
suggesting the good quality of these libraries (Supplementary Figure S4).

3.6. Conserved miRNAs and Their Expression Patterns in Different Tissues

A pipeline proposed previously [35] was used to generate an sRNA tissue frequency
file for the four sRNA-seq libraries. The frequencies of mature miRNAs in different small
RNA sequencing profiles were then calculated by aligning the sRNA tissue frequency file
to unique mature miRNAs available at the miRBase (v 22) [36] and normalized to Reads
Per Ten Million (RPTM) sequencing tags. After filtering out lowly expressed miRNAs, a
total of 526 miRNAs with mean expression levels of at least 1 RPTM in one of the groups
were used in further analysis (Supplementary Table S11). The edgeR program [29] was
used to identify differentially expressed miRNAs (DEMs) in different tissues of rat urethra.
An analysis of these data revealed a total of 10 miRNAs that were differentially expressed
in injured tissues (Supplementary Table S12). Among these DEMs, six were found to be
upregulated, while four were downregulated (Figure 4a). The bi-clustering was performed
for the DEMs. As shown in Figure 4b, samples of the same groups were clustered together
in the clustering analysis of the miRNA expression profiles.
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Figure 4. Expression patterns of miRNAs in different groups of rat urethra. (a) Deregulated miRNAs
when comparing their expression levels in injured tissues to those in normal tissues. Red dots indicate
the upregulated miRNAs, blue dots indicate the downregulated miRNAs and black dots indicate the
non-differential miRNAs (|log2(Fold Change (FC))| ≥ 0.5 and p-value < 0.05); (b) The bi-clustering
of miRNAs expression profiles in different groups of rat urethra in sRNA-seq profiles. The values
shown are the log2(RPTM + 1) of the miRNAs.

3.7. Target Gene Prediction and Functional Regulatory Network of DEMs

As miRNAs may regulate protein-coding genes, we further predicted the target genes
of the identified DEMs using the HitSensor algorithm [38]. A large number of putative
targets for conserved miRNAs were identified (Supplementary Tables S13 and S14). Because
miRNAs normally repress the expression of their targets in a mild way [21], we chose targets
whose expression levels show opposite change to the expression change of miRNAs. By
filtering these miRNAs: target pairs in the edgeR results of RNA-seq analysis, a total of
six upregulated miRNAs corresponding to 59 downregulated genes (logFC < −0.19) and
two downregulated miRNAs corresponding to 23 upregulated genes (logFC > 0.1) were
used for further analysis (Supplementary Tables S15 and S16). We thus obtained complex
regulatory networks between miRNAs and their target genes, as illustrated in Figure 5a,b.

These target genes of DEMs were applied to KOBAS (v 3.0) [30] to identify the en-
riched GO terms and KEGG pathways (Supplementary Tables S17–S20, respectively). The
results revealed that genes corresponding to upregulated miRNAs in injured tissues com-
pared with normal tissues were associated with the vascular endothelial growth factor
receptor-2 signaling pathway, positive chemotaxis, tube formation, regulation of p38MAPK
cascade, cytoplasm, cytosol, vascular endothelial growth factor receptor 2 binding, platelet-
derived growth factor receptor binding, and protein kinase binding (Figure 6a). On the
other hand, genes corresponding to downregulated miRNAs in injured tissues mainly
consisted of the GO terms, such as the cAMP response element binding protein binding,
mRNA 3′-UTR binding, nucleus, positive regulation of cell adhesion molecule produc-
tion, multicellular organismal reproductive process, and the regulation of mRNA stability
(Figure 6c). The majority of the genes corresponding to the upregulated miRNAs in injured
tissues belong to the PI3k-Akt signaling pathway, Apoptosis and Cell adhesion molecules
(CAMs) pathways (Figure 6b). However, genes corresponding to downregulated miRNAs
in injured tissues were associated with RNA transport, RNA degradation, Notch signal-
ing pathway, Metabolic pathways, HIf-1 signaling pathway, and Glutathione metabolism
pathways (Figure 6d).
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Figure 6. Enriched GO terms and KEGG pathways in deregulated miRNA target genes when
comparing sRNA-seq profiles of the injured and normal tissues of rat urethra. (a) GO terms of
upregulated miRNA target genes in injured tissues; (b) Enriched KEGG pathways of upregulated
miRNA target genes in injured tissues; (c) GO terms of downregulated miRNA target genes in injured
tissues; (d) Enriched KEGG pathways of downregulated miRNA target genes in injured tissues. In
Part (b) and (d), the Rich factor is calculated by dividing the number of input genes with the KEGG
pathway by the total number of genes within the same pathway.
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4. Discussion

Using RNA-seq, we investigated how mechanical injury induced whole transcrip-
tome alterations in injured and normal urethral tissues. We identified 166 differentially
expressed genes between the injured and normal groups, including 69 upregulated and
97 downregulated genes. The functional annotation of injury-altered expression genes
shows that the significantly upregulated genes included the inflammatory and immune
response (Ccl6, Casp1, Anxa2, Rnf7, Plaur, Anpep, LOC100911413, App, C4b, RT1-A1, Sptan1,
and Tuba1a), wound healing and tissue regeneration (Plaur, LOC100911413, Lamb1, Col14a1,
and Mylk), and cell apoptosis (Sptan1, Tuba1a, Ccl6, App, Igfbp3, and Casp1). The aberrant
expression of some of these genes was previously reported to be important in the develop-
ment of inflammatory cascade. This evidence suggested that injured urethral tissue showed
a heavy inflammatory response and coexistence of tissue regeneration, as described in
previous studies concerning neuroprotection of traumatic brain injury [41]. However, Pygm,
Pdcd4, Atp5pf, Rpl5, Ca3, Adgrf5, Smarca2, Eef1a2, Aplp2, and Myh1, which were involved in
metabolic processes and ATP synthesis, were downregulated after injury, indicating that
those mitochondrial functional associated genes might be highly sensitive to the injury
of the urethral tissue. Zhou et al. [42] found that damaged mitochondria release reactive
oxygen species, which further activate the NLRP3 inflammasome. NLRP3 inflammasome
is a molecular complex that triggers innate immune defense through the maturation of
pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) in response to danger
signals, such as from infection and metabolic disorders [43,44]. This was also consistent
with our GSEA results, and we speculated that the clearance of damaged mitochondria
might be a potential intervention target to deal with injury-induced inflammation.

Next, the functional enrichment analysis of the differentially expressed genes was
performed by GO and KEGG pathway analysis. We found that the release of sequestered
calcium ions into the cytosol by sarcoplasmic reticulum, positive regulation of epithelial cell
differentiation, inner cell mass cell proliferation, peptidase activator activity, WW domain
binding, phagosome, focal adhesion, and ECM-receptor interaction could be meaningfully
related to the regulation of mechanical damage treatment in urethral tissues. Indeed, some
of these GO terms and KEGG pathways have also been reported in esophageal injury
induced by ionizing radiation [45].

Our GSEA results showed that the protein activation cascade, complement activation,
complement and coagulation cascades, positive regulation of vascular endothelial growth
factor production, phagocytosis, chemokine-mediated signaling pathway, cellular response
to interferon-γ, and monocyte chemotaxis were the most significantly enriched gene sets in
injured group. Complements serve as an initial defense mechanism against unwanted host
elements or nonself cells [46]. Complement-mediated functions range from direct cell lysis
to the regulation of humoral and adaptive immunity [47]. Moreover, this system also regu-
lates many inflammatory and immunological processes [48]. Angiogenesis is a hallmark
of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory
diseases. Vascular endothelial growth factor (VEGF) is an interesting inducer of angiogene-
sis and lymphangiogenesis; it binds to tyrosine kinase receptors and results in endothelial
cell proliferation, migration, and new vessel formation [49]. In our GSEA analysis, we
found that the expression of complement C5 (C5) was upregulated after injury. According
to its functional annotation, we found that it was highly correlated with the production of
vascular endothelial growth factors. In addition, it was also correlated with complement ac-
tivation, inflammatory response, and regulation of chemotaxis. Sinno et al. [50] found that
complement C5 has been shown to be chemotactically active for monocytes and polymor-
phonuclear leukocytes. It strengthens the inflammatory response by promoting the release
of free radicals and tissue digestive enzymes by inflammatory cells [51]. On the other hand,
the increase in inflammatory cells stimulates epithelialization, fibroblast activation, and
collagen deposition, which further increases the breaking strength of the wound [11,12].
In general, the results of GSEA suggested that in mechanically induced injured tissues,
genes related to complement activation and angiogenesis were activated, leading to the
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occurrence of inflammatory response and accelerating tissue repair. We speculated that
early activation of C5 was helpful for tissue repair of mechanically induced injury.

Through sRNA-seq, we found that there were 10 differentially expressed miRNAs
between normal and injured samples, of which six (rno-miR-212-5p, rno-miR-339-5p,
rno-miR-31a-3p, rno-miR-34b-3p, rno-miR-532-3p, rno-miR-31a-5p) were upregulated and
4 (rno-miR-486, rno-miR-503-5p, rno-miR-376a-3p, rno-miR-410-3p) were downregulated in
the injured samples. In our study, we found that Tp53inp1 was targeted by one upregulated
miRNA, miR-339-5p (Figure 5a,c). Tumor protein p53-inducible nuclear protein 1 (Tp53inp1)
is a proapoptotic, stress-induced p53 target gene that has the ability to interact with p53 and
modulates its transcriptional activity [52]. He et al. [53] found that the overexpression of
miR-155 in acute myocardial infarction (AMI) induced cardiac fibrosis by directly targeting
the Tp53inp1 gene and inhibiting its expression, while downregulated Tp53inp1 dramatically
promoted the mRNA and protein expression levels of collagen I/III and increased the
expression level of α-SMA in cardiac fibroblasts. We speculated that the upregulated
miR-339-5p inhibited the expression of Tp53inp1 in injured urethral tissues, resulting in the
deposition of fibrin in urethral tissue and promoting urethral remodeling.

Duan et al. [54] demonstrated that the overexpression of Dab2ip can inhibit the pro-
liferation, migration, and apoptosis of pancreatic cancer cells. In our results, Dab2ip was
targeted by one upregulated miRNA, mir-31a-5p (Figure 5a,c). We speculate that the up-
regulated mir-31a-5p in injured tissues targets Dab2ip, resulting in the decrease in Dab2ip
expression and promoting the proliferation and migration of urethral epithelial cells.

Tp53inp1 and Dab2ip are tumor suppressor genes [52,54]. According to the GO and
KEGG function annotation of Tp53inp1 and Dab2ip, we found that they are involved in
the negative regulation of cell population promotion, positive regulation of the apoptotic
process, negative regulation of fibroblast promotion, and positive regulation of the apop-
totic signaling pathway. In injured urethral tissues, we found that they were targeted by
one upregulated miRNA, mir-339-5p and mir-31a-5p, respectively, and their expression
decreased, resulting in the opposite effect. We can speculate that the inhibitory effect of
related tumor suppressor genes is weakened after urethral injury.

In our study, mir-486 was found to be downregulated after urethral injury. We further
found that mir-486 targeted Wdr35, Radil, Csdc2, and Galnt11, respectively, and they were
all upregulated (Figure 5b,d). Some of these genes were annotated with GO and KEGG
functional analysis, and we found that they were involved in positive regulation of the
apoptotic process, positive regulation of the release of cytochrome c from mitochondria,
substrate adhesion-dependent cell spreading, transcription factor binding, regulation of
mRNA stability, metabolism of proteins, and the regulation of Notch signaling pathway.
Previous studies have shown that upregulated mir-486 plays a protective role in PM2.5-
induced human lung alveolar epithelial A549 cells by reducing cell apoptosis, preventing
ROS production, and reducing cell injury [55]. Moreover, upregulated mir-486-5p inhibited
the hyperproliferation and excessive production of collagen in hypertrophic scar fibroblasts
via the IGF1/PI3K/AKT pathway [56]. Various studies suggest that mir-486 is a protective
miRNA. Altogether, we speculate that the mir-486 can be used as a biomarker for the early
diagnosis of urethral injury, and the regulation of mir-486 may be a potential intervention
target in injured urethral tissues.

Despite this potential, there are several limitations of this study that should be ac-
knowledged. First, although using animal models is a powerful tool for obtaining valuable
bioinformatics evidence, the results cannot be extrapolated directly to humans because
of species differences. Second, in addition to miRNAs, other non-coding RNAs, such as
long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), also play important
roles in the process of gene regulation induced by injury, which is worthy of compre-
hensive exploration in this regard. Finally, our results provide a number of candidate
biomarkers or intervention targets; however, these candidates can only be predicted using
available informatics analyses or literature, so further research is needed to validate their
specific roles.
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5. Conclusions

We provide the first identification of DE mRNAs and miRNAs in the urethra of rats
with simulated clinical urethral injury using RNA sequencing and small RNA sequencing.
Moreover, bioinformatics analysis identified promising candidate target genes and miRNAs
and the target regulatory network were constructed. These findings provide valuable
insights into the molecular mechanism of urethral injury and open up new possibilities for
the development of novel therapeutic strategies for effective treatments.
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