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Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene
regulatory networks and functions of these biological processes. Recently, two algorithms, JTK CYCLE and ARSER, have been
developed to estimate periodicity of rhythmic gene expression. JTK CYCLE performs well for long or less noisy time series, while
ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is
not always feasible, andmany scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously.
In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR), is proposed. It estimates the period of
time-course experimental data and classifies gene expression profiles intomultiple rhythmic categories simultaneously.Through the
simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic
categories as compared to JTK CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to
rhythmic patterns.This new scheme is applied to existing time-coursemouse liver data to estimate period of rhythms and classify the
genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2%of the circadian profiles detected by JTK CYCLE
with 1-hour resolution are also detected by ABSR with only 4-hour resolution.

1. Introduction

Organisms from cyanobacteria to humans have robust
time-keeping mechanisms called biological clocks [1, 2]. In
mammals, for example, the suprachiasmatic nucleus (SCN)
located in the hypothalamus controls circadian rhythms
and coordinates timing information with peripheral clocks.
Collectively, these clocks regulate rhythmic physiological
behaviors such as body temperature, cardiac repolarization,
sleep/wake cycle, and metabolism [3–6]. Autonomous oscil-
lations arise from the interplay of core clock components
that form transcriptional-translational feedback loops [7].
As protein levels of clock-transcription factors oscillate,
their downstream targets also oscillate. Different clocks (e.g.,
metabolism and cell cycle) may have different patterns
of oscillation and target different output genes. Circadian
rhythms cycle with a period of about 24 hours, whereas
ultradian rhythms cycle with a period of less than 24 hours,

and infradian rhythms cycle with a period greater than 24
hours. It has been shown that circadian clocks regulate both
circadian and ultradian rhythms [8].

Circadian rhythms coordinate temporal regulation of
other cellular processes. For example, the circadian clock
regulates transcriptional activation ofWee1, a critical compo-
nent in the cell cycle that coordinates timing of cell division
[9, 10]. Thus, the study of rhythmic gene expression may
reveal individual genes (nodes) or even parts of regulatory
networks shared by different cellular processes. Finding and
characterizing periodic gene expression are a prerequisite
for determining these links amongst different oscillatory
processes, such as circadian clock, cell cycle, and metabolic
cycles.

A series of gene expression levels observed at a set of
different time points is called a gene expression profile, and
a rhythmic gene produces a rhythmic profile. In general, it is
assumed that a rhythmic gene expression profile is correlated
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with rhythmic periodicity and hence each gene expression
takes the form of a series of cosine curves:

𝑌
𝑡
=

𝑟

∑

𝑘=1

𝐴
𝑘
cos (2𝜋𝜔

𝑘
𝑡 + 𝜙
𝑘
) , (1)

where 𝑌
𝑡
is the observed gene expression at time 𝑡, 𝑟 is

the number of component cosine curves, and 𝐴
𝑘
, 𝜔
𝑘
, and

𝜙
𝑘
are the amplitude, frequency, and phase of the 𝑘th

component cosine curve, respectively. Several methods have
been developed to estimate periods as well as amplitudes
and phases (mathematically) of gene expression profiles.
Classical approaches such as Fisher’s 𝐺-test [11] and fast
Fourier transform (FFT) [12] perform well in estimating
periods for long time series, but those approaches are less
effective for short time series. Microarrays are commonly
used to investigate changes of gene expressions over a time-
course, and 4-hour resolution within a 48-hour time interval
is a typical experimental design for circadian studies. In other
words, microarray data provide short time series (e.g., with
12 time points) for each gene, which results in likely biased
outcomes using either Fisher’s 𝐺-test or FFT algorithms.
Another widespread approach, COSOPT [13], effectively pro-
vides period estimate onlywith approximately sinusoidal data
[14]. Recently, Hughes et al. [15] introduced the Jonckheere-
Terpstra-Kendall (JTK CYCLE) algorithm that applies the
Jonckheere-Terpstra (JT) test to the null distribution of
Kendall’s tau correlations. JTK CYCLE is an efficient algo-
rithm to estimate periodicity for long or less noisy time series;
however, it is less reliable (as are all other methods) when it
is applied to noisy short time series [16]. Yang and Su [17]
developed an algorithm of autoregressive spectral estimation
regression (ARSER) and showed that ARSER ismore effective
than Fisher’s 𝐺-test and COSOPT in detecting oscillations in
a variety of profile patterns, especially, for themicroarray data
in short time series. ARSER is useful to detect oscillations of
a single category, for example, the circadian rhythms, but it is
not efficient to detect multiple periods simultaneously.

In this paper, a new algorithm called the autoregressive
Bayesian spectral regression (ABSR) is proposed. Built on
ARSER, this ABSR algorithm significantly improves true
discovery rate (TDR) and reduces FDR for noisy short
time series as compared to JTK CYCLE and ARSER. One
of the features of ABSR comes from the use of posterior
probabilities for model selection rather than the Akaike
Information Criterion (AIC). In situations where the number
of model parameters is large relative to the number of
observations (e.g., the number of parameters is about one-
half of the number of observations), AIC may fail to select
the optimal model [18]. In addition, because AIC depends
on the estimates of parameters, model selection by AIC may
fail to select the most appropriate model if the parameter
estimations are biased [19]. Using posterior probabilities
for model selection overcomes the shortcomings of AIC by
averaging over the uncertainty in the parameter estimates
and leads to a more parsimonious model. Another feature of
ABSR is that all possible frequencies in the harmonic models
are considered and only the unique dominant frequency is

extracted for the period estimate. Hence ABSR is able to
classify rhythmic genes by different periods.

In Section 2, we present the model to obtain periodic
information from time-course data usingABSR algorithm. In
Section 3, simulated data and information theory are used to
assess the performance of ABSR, ARSER, and JTK CYCLE,
and these algorithms are applied to existing experimental
time-course data from mouse liver. Brief conclusions are
discussed in Section 4.

2. Methods

2.1. Overview. The proposed algorithm, the autoregressive
Bayesian spectral regression (ABSR), is developed to identify
rhythmic patterns in gene expression profiles. The proce-
dure to obtain periodic information from time-course gene
expression data is described below.

Suppose 𝑁 genes are observed in an experiment at time
points (1, 2, . . . , 𝑇) with the same lag, and the observed
profiles are considered as time series. Let the observed time
series of the 𝑖th gene be Y

𝑖
= (𝑌
𝑖1
, . . . , 𝑌

𝑖𝑇
)
. The raw profile

Y
𝑖
is then standardized, denoted by X

𝑖
, as follows:

X
𝑖
=
Y
𝑖
− Ave (Y

𝑖
)

𝑆
𝑖

, (2)

where Ave(Y
𝑖
) is the average value of the components of

Y
𝑖
and 𝑆

𝑖
is the standard error of the components of Y

𝑖
.

The standardization is needed to unify the variances of
the time series, and the unified variances can be led to
comparable spectrum densities across profiles. Note that the
standardization does not change the behavior of the time
series. Significant linear trends in experimental data are
observed broadly. They are not biologically meaningful but
may affect the periodicity estimate. So a linear regression
model is then fitted to X

𝑖
to remove the linear trend from the

time series, and the detrended time series is denoted by Ẋ
𝑖
.

The Savitzky-Golay (S-G) smoothing filter [20] with order 4
is then applied to Ẋ

𝑖
in order to reduce the noise level without

much biasing the data, and the resulting new time series is
represented by Ẍ

𝑖
. In an autoregressivemodel with order of 𝑑,

denoted byAR(𝑑), the current state of a time series is assumed
to depend on the previous 𝑑 states only. Since the longest
period of interest in this study is 24 hours and the method is
designed for 4-hour temporal resolution data, it is reasonable
to consider an AR(6) model, in which the gene expression
levels within the previous 24 hours are considered. Both Ẋ

𝑖

and Ẍ
𝑖
are modeled via an AR(6) process of order 6 and

model parameters are estimated by each of the following three
methods: Yule-Walker method [21, 22], Burg method [23],
andmaximum likelihood estimation (MLE) [24].Thus sixAR
models, (𝑀

𝑖1
, . . . ,𝑀

𝑖6
), for eachmanipulated gene expression

profile are obtained. For each AR model, spectral analysis is
then applied to obtain one set of frequencies along with their
spectral densities. Unlike ARSER, all frequencies and their
corresponding spectral densities are considered to estimate
the period and classify the genes according to their peri-
ods into three categories: arrhythmic, ultradian, and circa-
dian.
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Next, let the six sets of frequencies obtained by fitting
the AR models of the 𝑖th gene expression profile be Ω

𝑖𝑗
(𝑗 =

1, . . . , 6). For the 𝑗th set of frequencies, a harmonicmodel𝐻
𝑖𝑗

is considered as follows:
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(3)

where �̇�
𝑖𝑡
is the detrended profile of the 𝑖th gene at time

𝑡, 𝜇
𝑖𝑗

is the constant term of the 𝑗th harmonic model
for �̇�

𝑖𝑡
, (𝜔
𝑖𝑗1
, . . . , 𝜔

𝑖𝑗𝐾𝑖𝑗
) are the elements of the frequency

set Ω
𝑖𝑗
provided that there are 𝐾

𝑖𝑗
elements in that set,

(𝑝
𝑖𝑗1
, . . . , 𝑝

𝑖𝑗𝐾𝑖𝑗
, 𝑞
𝑖𝑗1
, . . . , 𝑞

𝑖𝑗𝐾𝑖𝑗
) are unknown linear parameters

of the trigonometric terms, and 𝜖
𝑖𝑗𝑡

is the error term for
the 𝑖th gene 𝑗th harmonic model at time 𝑡. The posterior
probabilities of the six harmonic models are estimated and
the model with the largest posterior probability is selected
as the optimal model. A period is defined as the dominant
period if it corresponds to the highest peak of the frequency
spectrum of the optimal model.

Lastly, each gene is classified according to the criteria
described in Section 2.3. Figure 1 shows a flowchart describ-
ing the ABSR algorithm.

2.2. Model Selection. Model selection in ABSR proceeds by
estimating the posterior probability of each harmonic model
and then selecting the model with the largest posterior
probability as the optimal model. To calculate a posterior
probability, model (3) is presented in the matrix form:
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Normal and inverse gamma distributions are assumed as
prior distributions for the parameters and hyperparameters
as follows:
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(6)

where 𝜇
𝑖
and 𝜎2

𝑖
are the sample mean and sample variance

of the components of the 𝑖th detrended profile (𝑖 = 1, . . . , 𝑁;
𝑗 = 1, . . . , 6; 𝑘 = 1, . . . , 𝐾

𝑖𝑗
; 𝑡 = 1, . . . , 𝑇). All parameters

and hyperparameters are assumed to be independent. It
follows that the conditional distribution of Ẋ

𝑖
given 𝛽

𝑖𝑗

follows the normal distribution 𝑁(𝐺
𝑖𝑗
𝛽
𝑖𝑗
, Σ
𝑖𝑗1
), where Σ
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)
𝑖𝑗
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𝜖
)
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). Here Diag (a) indicates a diagonal

matrix with the diagonal vector a. The union of all the
parameters and hyperparameters is denoted by 𝜃

𝑖𝑗
.

In the absence of any reason to prefer one model over
the others, it is reasonable to assume equal prior probability
for each model; namely, 𝑃(𝐻

𝑖𝑗
) = 1/6. Hence the posterior

probability 𝑃(𝐻
𝑖𝑗
| X
𝑖
) is proportional to (with same rate

for all 𝑗’s) the likelihood function of the data Ẋ
𝑖
given

the harmonic model 𝐻
𝑖𝑗
, namely, Pr(Ẋ

𝑖
| 𝐻
𝑖𝑗
). Instead of

directly calculating the posterior probabilities, the likelihood
function Pr(Ẋ

𝑖
| 𝐻
𝑖𝑗
) is calculated. The likelihood function

Pr(Ẋ
𝑖
| 𝐻
𝑖𝑗
) can be written as the integral of the product of
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Figure 1: Flowchart of ABSR algorithm.Y
𝑖
is the observed profile of the 𝑖th gene expression andX

𝑖
is the standardized time profile fromY

𝑖
. Ẋ
𝑖

is the detrended profile derived fromX
𝑖
and Ẍ

𝑖
is the S-G filtered profile from Ẋ

𝑖
.TheARmodels𝑀

𝑖1
,𝑀
𝑖2
, and𝑀

𝑖3
are fitted for the detrended

data Ẋ
𝑖
by three methods of model parameter estimation: Yule-Walker method, Burg method, and MLE, respectively. The AR models𝑀

𝑖4
,

𝑀
𝑖5
, and M
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are fitted for the noise-reduced data Ẍ

𝑖
by the three above-mentioned model parameter estimation methods, respectively. The
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𝑖1
, . . . , Ω

𝑖6
) are obtained from the frequency spectra of the AR models (𝑀

𝑖1
, . . . ,𝑀

𝑖6
), respectively. The harmonic models

𝐻
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𝑖6
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𝑖
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𝑖1
, . . . , Ω
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).Ω
𝑖0
is the selected frequency set.

the likelihood function Pr(Ẋ
𝑖
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) and the probability

density function of the prior distribution Pr(𝜃
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𝑖𝑗
,
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This integral can be simplified as
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where 𝛽
𝑖𝑗0
= (𝜇
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, Σ
𝑖𝑗2
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sity function of the multivariate normal distribution with
mean b and covariance matrix 𝐶 with respect to a.

This integral cannot be simplified further but can be
estimated by Monte Carlo method. The steps of model
selection procedure are as follows:

(1) Simulate each variance parameter according to its
prior distribution.

(2) Calculate the value of the likelihood function
𝑁(Ẋ
𝑖
; 𝐺
𝑖𝑗
𝛽
𝑖𝑗0
, 𝐺
𝑖𝑗
Σ
𝑖𝑗2
𝐺


𝑖𝑗
+ Σ
𝑖𝑗1
).

(3) Repeat steps (1) and (2) 10,000 times and then take
the average of the 10,000 likelihood function values.
This average value is an estimate of the integral.

(4) Repeat steps (1) through (3) for all six models and
choose the model with the largest estimate of the
integral.

2.3. Criteria of Rhythmic Categories. Given the optimal
model, as determined by maximizing the posterior probabil-
ity, the following values can be calculated: the highest peak
of the spectral densities, the 𝑝 value of the 𝐹-test for the cor-
responding period, and the estimate of the dominant period.
Yang and Su [17] apply Storey and Tibshirani’s approach [25]
to calculate the 𝑞-values to determine the significance of a
period. However, when the 𝑝 values are not distributed in the
full range of [0, 1], Storey and Tibshirani’s 𝑞-value may not be
appropriate. For this reason, Benjamini-Hochberg (BH) [26]
𝑞-value is applied in this proposed method. According to our
simulation study, it is found that the maximum value of the
spectral densities of a noisy signal is on average less than that
of an oscillating signal with the same variance. Therefore, a
threshold for the spectral density is considered and a gene
is assigned into one of the rhythmic categories (ultradian,
circadian, and arrhythmic) according to the following sorted
criteria:

(i) If the maximum value of the spectral densities is less
than a preselected spectrum threshold (e.g., 10 or 5)
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or the dominant period is not significant (𝑞-value ≥
0.05), the gene is classified as arrhythmic.

(ii) Otherwise, the gene is classified by the estimate
of the dominant period. User-defined intervals for
ultradian and circadian categories are used to classify
the profiles. In particular, the rhythmic categories are
defined as follows: if the estimated period is greater
than or equal to 6 hours and strictly less than 10 hours,
denoted by the time interval of [6, 10), the gene is
classified as ultradian8. Similarly, the gene is classified
as ultradian12 for the period interval of [10, 14) and as
circadian for [20, 28). All the other genes are classified
as arrhythmic.

The value of the spectrum threshold needs to be selected.
By calculating the number of rhythmic profiles for each value
of the spectrum threshold in consideration (e.g., from 10 to
0 with step of 0.5), the correspondence of the number of
rhythmic profiles and the value of the spectrum threshold
can be studied, and the value of the spectrum threshold
can be selected according to prior knowledge and research
purpose. For example, if the research goal is to discover as
many rhythmic genes as possible, then the value of threshold
with the maximum number of rhythmic profiles can be
selected. In the case of searching for a less conservative
result, the spectrum of threshold can be selected to be the
largest value that the number of rhythmic profiles does not
change significantly as the threshold value reduces. If one can
assume the data with less noise or is interested in conservative
detection of rhythmic profiles, a large value of the threshold
could be applied. For example, a threshold of 10 is used in the
simulation studies.

3. Results and Discussion

3.1. Simulation Study

3.1.1. Periodicity Estimate for Fixed Period Settings. To assess
the performance of the ABSR algorithm, sequences of sinu-
soidal data to represent profiles with a length of 48 hours that
consists of 4-, 2-, or 1-hour resolution are generated. Four
periodic behaviors are considered: periods of 8 and 12 hours
(ultradian rhythms), period of 24 hours (circadian rhythm),
or aperiodic (arrhythmic profiles). It is noticed that gene
expression profiles with a linear trend are common in the
experimental data, so both patterns of cosine function with
and without a linear trend (Table 1) are considered. For each
combination of resolution and period, 1,000 sequences are
simulated, among which 500 sequences are cosine waves, and
the other 500 sequences are cosine waves with a linear trend.
The amplitude is set to be 5.0 and standard normal error is
integrated to the data. These simulated data can be down-
loaded from the website http://homepages.uc.edu/∼songso/.
JTK CYCLE and ARSER are also applied to the simulated
data to compare their performances with ABSR.

In order to describe the performance of the three algo-
rithms, the following five terms are defined. A discovery
implies that a gene is classified to be ultradian or circadian.
A discovery is a true discovery if a gene is classified as its true

Table 1: Formula used to simulate data.

Pattern Function
Noise 𝑦

𝑡
= 𝜖

Cosine 𝑦
𝑡
= 𝐴 ⋅ cos(2𝜋𝑡/𝑝 + 𝜙) + 𝜖

Noise with linear trend 𝑦
𝑡
= 𝐶 ⋅ 𝑡 + 𝜖

Cosine with linear trend 𝑦
𝑡
= 𝐶 ⋅ 𝑡 + 𝐴 ⋅ cos(2𝜋𝑡/𝑝 + 𝜙) + 𝜖

A = 5; p = 8, 12, 24; 𝜙 = 0.5; 𝜖 ∼ 𝑁(0, 1); 𝐶 = 0.1.

category. The percentage of genes within a category (either
ultradian or circadian) that are classified correctly is called
the true discovery rate (TDR). For example, in our simulation
study, the TDR of the circadian category is the percentage of
all 1,000 circadian profiles classified as circadian. A discovery
is a false discovery if a gene is discovered but classified as
a category other than its true category. The false discovery
rate (FDR) is the percentage of all discoveries of a category
that are false discoveries. Notice that since in this study
four categories, instead of typically binary decisions, are
considered, the definition of FDR here is different from the
classical definition. Higher TDR implies higher ability to
detect oscillations, and lower FDR implies higher reliability
in discovering rhythmic gene expression.

The two ultradian datasets (with true period = 8 and
12) are denoted by ultradian8 and ultradian12, respectively,
and the combined dataset of the 4,000 profiles from the
four categories (arrhythmic, ultradian8, ultradian12, and
circadian) is used to calculate TDRs and FDRs. To make
this comparison reasonable, the window of period of 6 to
28 hours (8 to 28 hours for 4-hour resolution) is considered
for JTK CYCLE, and the period windows of 6 to 14 hours
and 20 to 28 hours are considered for ARSER. Since ARSER
and JTK CYCLE estimate the period of gene expression but
do not classify genes into rhythmic categories, comparing
of the classification is done based on the period estimates
and their significance. A profile is considered as ultradian8
if its period estimate is significant (𝑞-value less than 0.05)
and within the interval of [6, 10), ultradian12 for [10, 14), and
circadian for [20, 28). ARSER may provide more than one
significant period estimate and these estimates may fall in
different windows of interest. In such case the classification
of the profile is not definite and is denoted by “undefined.”

Table 2 shows the comparisons of classification among
ABSR, ARSER, and JTK CYCLE for the data with 4-, 2-,
and 1-hour temporal resolutions. Columns 3 to 6 of the table
contain the numbers of profiles that are in the correspond-
ing intersection of categories. Across all resolutions, ABSR
obtains high TDR of more than 90% and low FDR of less
than 8%, while JTK CYCLE shows low TDR with 4-hour
resolution and ARSER classifies a large portion of the profiles
as undefined.

Among the 539 (bold in Table 2) discovered circadian
profiles with 4-hour resolution by JTK CYCLE, 426 profiles
are found without linear trend, and the other 113 are with
a linear trend. It is also observed that as the proportion
of profiles with a linear trend increases, TDR of circadian
profiles tends to decrease by JTK CYCLE. However, ABSR
provides the results unchanged.
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Table 2: Classification comparisons for fixed period data.

Resol. Result category True category TDR FDR
Arrhy. Ultra.8 Ultra.12 Circa. (%) (%)

ABSR
Arrhy. 818 1 75 29 — —
Ultra.8 72 999 0 0 99.9 6.7
Ultra.12 76 0 925 0 92.5 7.6
Circa. 34 0 0 971 97.1 3.4
ARSER
Arrhy. 0 0 0 0 — —
Ultra.8 236 493 0 0 49.3 32.4

4 hr Ultra.12 226 0 760 0 76.0 22.9
Circa. 101 0 0 592 59.2 14.6
Undef. 437 507 240 408 — —

JTK CYCLE
Arrhy. 998 964 943 461 — —
Ultra.8 0 36 0 0 3.6 0.0
Ultra.12 0 0 57 0 5.7 0.0
Circa. 2 0 0 539 53.9 0.4
ABSR
Arrhy. 993 0 1 0 — —
Ultra.8 6 1000 0 0 100.0 0.6
Ultra.12 0 0 999 0 99.9 0.0
Circa. 1 0 0 1000 100.0 0.1
ARSER
Arrhy. 67 0 0 0 — —
Ultra.8 241 487 0 0 48.7 33.1

2 hr Ultra.12 71 0 413 0 41.3 14.7
Circa. 80 0 0 383 38.3 17.3
Undef. 541 513 587 617 — —

JTK CYCLE
Arrhy. 993 0 0 0 — —
Ultra.8 2 1000 0 0 100.0 0.2
Ultra.12 3 0 1000 0 100.0 0.3
Circa. 2 0 0 1000 100.0 0.2
ABSR
Arrhy. 1000 0 0 0 — —
Ultra.8 0 1000 0 0 100.0 0.0
Ultra.12 0 0 1000 0 100.0 0.0
Circa. 0 0 0 1000 100.0 0.0
ARSER
Arrhy. 201 0 0 0 — —
Ultra.8 139 496 0 0 49.6 21.9

1 hr Ultra.12 115 0 572 0 57.2 16.7
Circa. 80 0 0 776 77.6 9.3
Undef. 465 504 428 224 — —

JTK CYCLE
Arrhy. 996 0 0 0 — —
Ultra.8 1 1000 0 0 100.0 0.1
Ultra.12 1 0 1000 0 100.0 0.1
Circa. 2 0 0 1000 100.0 0.2
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In addition to the TDRs and FDRs of periods, Figure 2
shows boxplots of period and amplitude estimates by each
method applied to the simulated data with 4-, 2-, and 1-
hour resolutions. The reference lines show true values of
periods and amplitudes, and the black bold bar inside each
box indicates the median estimate for the corresponding
rhythmic profiles.

Although the period estimates by JTK CYCLE with 4-
hour resolution are shown to be less biased, the majority of
the estimates are not statistically significant. On the other
hand, ABSR results in significant period estimate for more
than 90% of the rhythmic profiles with the bias of at most
0.55. Notice the circle above the JTK CYCLE box of the
ultradian12 profiles represents 63 ultradian12 profiles, while
the bench of circles above and under theABSR box represents
36 profiles.The standard error byABSR is slightly greater than
by JTK CYCLE (2.64 versus 2.08). Since ARSER provides
period estimate in diversewindows for a large portion of data,
the standard errors by ARSER are much larger than by ABSR
and JTK CYCLE for various rhythmic categories with various
resolutions.

Considering the amplitude estimate, ABSR performs
better with less bias and smaller standard error than ARSER
and JTK CYCLE for all categories and temporal resolutions.

Figure 3 shows the receiver operating characteristic
(ROC) curves for the three rhythmic categories. In these
plots, the test is done for binary decision of categories: rhyth-
mic (ultradian8, ultradian12, and circadian) and arrhyth-
mic. Since the period estimate is taken into consideration
when testing the rhythmicity, the specificity is far below
1 in this study. The color represents the 𝑞-value threshold
used to calculate the sensitivity and specificity. The plots
for ultradian12 and circadian categories show clearly that
ABSR performs better than the other two algorithms. In
the plot for ultradian8 category, JTK CYCLE shows higher
sensitivity and lower specificity than ABSR but with large 𝑞-
value threshold.With typically used 𝑞-value threshold (0.05),
JTK CYCLE is not sensitive (sensitivity = 0.036).

3.1.2. Periodicity Estimate for Random Periodicity Settings.
In the above-mentioned simulation study, three fixed val-
ues of period, amplitude, phase, and signal/noise ratio are
considered. To assess the performance of ABSR on more
flexible parameter settings, two more simulation studies
are performed. Since both ABSR and JTK CYCLE provide
one single periodicity estimate for one profile, compari-
son between ABSR and JTK CYCLE only is performed.
In the first simulation, 1000 extra profiles are generated
with uniformly distributed periods, amplitudes, and phases.
Periods are within 6 to 26 hours, amplitudes are within 1
to 6, and phases are within 0 to the corresponding period.
Again the profiles are simulated for 48-hour course with 4-
hour resolution. Standard normal errors are added to the
sinusoidal waves. ABSR considers all positive values for
the period estimate, but very large estimates are not of
interest. Hence 58 profiles with very large period estimate
(>35 hours) are removed, and comparison of period and
amplitude estimates with JTK CYCLE is done. By providing
continuous period estimates, ABSR shows stronger linear

correlation than JTK CYCLE for both period and amplitude
estimates (Figure 4). In the range of 8 to 20 hours for the
true period, ABSR clearly provides less biased period estimate
than JTK CYCLE and, in the range of 20 to 24, both ABSR
and JTK CYCLE may provide a period estimate with a bias.

Besides period and amplitude estimates, the phase infor-
mation is also an important aspect of rhythmicity. To clearly
show the performance of phase estimate, in the second
study, 500 ultradian profiles and 500 circadian profiles are
simulated. The profiles are generated with sinusoidal pattern
with the parameters uniformly distributed: period from 8
to 12 for ultradian profiles and from 22 to 26 for circadian
profiles, amplitude from 1 to 6, linear slope from −0.1 to 0.1,
and phase from 0 to the length of the cycle. Standard normal
error is added to each profile. It is noticed that when the
true phase is close to zero or the true period, both ABSR
and JTK CYCLE sometimes result in a noticeable bias in
phase estimate. This may be caused by the low temporal
resolution. By removing those profiles, it is found that the
correlation coefficients are similar by ABSR and JTK CYCLE
for circadian profiles, but much higher by ABSR than by
JTK CYCLE for ultradian profiles (Figure 5).

The settings in the first study provide the broad testing of
wide range of period anddifferent ratios of the amplitude over
noise, and the settings in the second study provide the broad
testing of wide range of phase. It is found that ABSR performs
well in both studies, so it can be used in diverse situations.

3.1.3. Detection of Circadian Rhythms for Nonsinusoidal
Patterns. Though cosine wave is typically assumed, some
experimental data exhibits nonsinusoidal pattern. So a good
method should be able to detect the rhythms for nonsi-
nusoidal patterns as well. The performance of ABSR to
detect nonsinusoidal circadian rhythms when both ultradian
and circadian rhythms are of interest is then assessed. Five
different circadian (period = 24) patterns [17, 27] (rigid,
spike, two box-like patterns and cosine wave) are considered
(Figure 6(a)). Twenty-four profiles are generated from each
pattern, adding standard normal error, with hourly lag from
0 to 23. Again the same ultradian and circadian windows
are applied as in previous simulation studies for ARSER
and JTK CYCLE. Figure 6(b) shows the number of detected
circadian rhythms by each algorithm. It is found that, among
the five patterns, all three algorithms perform well for rigid,
box2, and cosine patterns. For the patterns of box1 and
spike, ABSR detects 10 and 14 out of 24 circadian rhythms,
respectively, whereas ARSER and JTK CYCLE can hardly
detect any circadian rhythm. This implies that ABSR is more
robust and insensitive to rhythmic patterns, in general.

From the above-mentioned simulation studies, it is found
that ABSR performs best among the three algorithms with
low resolution (4-hour) by being highly sensitive in detecting
rhythmic profiles with low FDR and produces period, ampli-
tude, and phase estimates which are close to the true values
independent of the temporal resolution. ABSR is capable
of discovering harmonic ultradian and circadian profiles
simultaneously, and the performance is not affected by the
proportion of profiles with a linear trend. As the temporal
resolution increases, ABSR and JTK CYCLE perform better
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Figure 2: Boxplots of period and amplitude estimate for data with different temporal resolutions. Three outliers (one in each rhythmic
category by ABSR) are excluded from (a). One arrhythmic profile by ABSR is excluded from (c). Forty-five arrhythmic profiles by ABSR are
excluded from (e). Those outliers represent infinitely large period estimates, which imply arrhythmic property.



BioMed Research International 9

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

Specificity

Se
ns

iti
vi

ty

ABSRJTK ABSRTKKKKKKKKKKKKKKKKKKKKKK

ARSER

1.0

0.05
0.0

(a) Ultradian8

0.00 0.02 0.04 0.06 0.08 0.10
Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

1.0

0.05
0.0

ABSR

JTK

ABSR

JTK

ARSER

(b) Ultradian12

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

Specificity

Se
ns

iti
vi

ty

1.0

0.05
0.0

ABSR

JTK

ABSR

JTK

ARSER

(c) Circadian

Figure 3: ROC plots for data with 4-hour resolution.

with respect to FDR and TDR, but JTK CYCLE is more
beneficial in high temporal resolution.

3.2. Application to Experimental Data. Hughes et al. [28] per-
formed experiments on mouse livers (GSE11923) to observe
transcriptional oscillations with high accuracy of 1-hour
temporal resolution within 48-hour time-course and found
the existence of harmonics of circadian gene expression in
mice.They argued that the increase of sampling resolution of
rhythmic gene profiles allows detecting cycling genes better
as compared to experimental data with 4-hour temporal
resolution, which is typical in gene expression profiling.
To explore the performance of the ABSR on the typically
designed experimental data, the data is coarsened with 4-
hour temporal resolution by selecting a subset of the original
data for every 4 hours, and ABSR, ARSER, and JTK CYCLE
algorithms are applied to the coarsened data for comparison.

Spectrum thresholds from 0 to 10 with increment of 0.5
are considered, and since the goal is to discover as many

rhythmic genes as possible, the threshold of 2.5 is selected.
Figure 7 shows the classification of circadian and ultradian
categories. JTK CYCLE is not able to detect either circadian
or ultradian profiles; however, ABSR discovers 2,787 ultra-
dian8, 3,806 ultradian12, and 4,817 circadian profiles and
ARSER discovers 6,019 ultradian8, 8,265 ultradian12, and
16,802 circadian profiles.

In addition, the three algorithms are applied to the
original data, and the spectrum threshold of 1 is selected.
Figure 8 shows the classification results. With 1-hour reso-
lution, JTK CYCLE captures 4,528 circadian profiles. It is
found that, among the 4,817 circadian profiles classified by
ABSR from the data with 4-hour resolution, 2,226 profiles are
classified as circadian by JTK CYCLE from the data with 1-
hour resolution (Figure 9). Therefore, 49.2% of the circadian
profiles detected by JTK CYCLE with 1-hour resolution are
also detected by ABSR with 4-hour resolution.

To further understand the result, the linear trend in each
profile for both temporal resolutions is examined. Figure 10
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Figure 5: Phase estimate for randomized rhythmicity.

shows the distribution of the linear slopes of the profiles for
the mouse liver data with both 1- and 4-hour resolutions.
Among the 45101 profiles, 67% and 68% of the profiles are
with a linear slope more than 0.1 far away from 0 for the
data with 4- and 1-hour resolutions, respectively. As found in
the simulation study, ABSR is not affected by the proportion
of profiles with a linear trend, but when the time series is
short, JTK CYCLE discovers fewer rhythmic profiles as the

proportion of profiles with a linear trend increases. Hence,
for experimental short time-course data, ABSR can be amore
appropriate algorithm to detect rhythms.

4. Conclusions

In this paper, we present a new algorithm, ABSR, to deter-
mine the rhythmicity of a gene expression profile with short
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time series. For noisy short time series (e.g., profiles within
48 hours with 4-hour resolution), ABSR performs well in
estimating period and amplitude and substantially reducing
the FDR of ARSER and increasing the TDR of ARSER and
JTK CYCLE. To apply the JTK CYCLE algorithm, a user-
defined window of period is required, and it is observed that
different user-defined windows might obtain inconsistent
estimates. However, there is no such constraint in ABSR,
and the estimates are consistent even with sparse observing
temporal resolution relative to the true period. Moreover,
the single period estimate without a preset window enables
ABSR to discover any harmonic and circadian rhythms
simultaneously. Since ABSR manipulates the data to treat the
linear trend and unwanted noise, ABSR can be applied to
data with less consideration of the quality. Inheriting from
ARSER, ABSR is also a joint strategy to analyze data through
both frequency and time domains.Though experiments with
duration of more days and high resolution may help us study
the rhythms better, the cost and feasibility are not always
realistic. Due to the cost of experiments, most of the time-
course experiments designed to study rhythms are performed
for 48 hours with 4-hour resolution. In this particular case,

ABSR is a better choice, and, with the tunable thresholds, the
trade-off can be small.

Since ABSR assumes continuous values for the period
estimate, it can estimate any rhythms, not limited to ultradian
or circadian rhythms. Estimating the period is the first step,
and classification is the second step. If one is only interested
in the first step, the classification step can be skipped.

In this study, the longest period in consideration is 24
hours, and the temporal resolution is focused on the typical
4-hour resolution, so the AR(6) model is used to obtain
candidate periods. For other experimental design settings,
the ABSR model can be extended to another order, where
the order is in the form of longest period of interest/temporal
resolution.

The value of threshold for the spectral density may affect
the classification results, so the choice of threshold is crucial.
As a consequence of choosing a large threshold, the results
could be conservative. In otherwords, some rhythmic profiles
might not be detected, while the detected rhythmic profiles
could be accepted with more confidence.

Since ABSR is a Bayesian algorithm, inevitably, the
computing time is a concern. The likelihood functions are
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estimated independently across different profiles, so the data
can be partitioned and the algorithm can run in parallel
to increase the computational efficiency. Our computer is a
workstation with technical specification as Intel Xeon E5-
2687W (2 processors), 3.10 GHz, 256GB RAM, Windows 7
Ultimate, and R version 3.1.2. The computation efficiency is
tested with 4-, 2-, and 1-hour temporal resolutions within
48-hour time-course data. Running the algorithm with 30
threads in parallel, it is observed that, for one single thread, 3
to 4 profiles are analyzed perminute for the 4-hour resolution
data, 2 to 3 profiles are analyzed per minute for the 2-hour
resolution data, and about 2 profiles are analyzed per minute
for the 1-hour resolution data.

Although ABSR performs best among the three algo-
rithms for short noisy time series, it is not the best choice
for all situations. For example, ABSR is useful for users who
would like to maximize the discovery of rhythmic genes with
4-hour temporal resolution data. As the length of the time
series increases, the number of parameters to be sampled
in estimating the posterior probability also increases, so the
convergence of the estimate could be a concern. In case of
long time series, JTK CYCLE would be a better choice to
identify the classification of time-course gene expression pro-
files rather thanABSR.Therefore, userswill need to choose an
optimal algorithm based on their experimental conditions.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank Professor John Hogenesch
for his comments and sharing synthetic and experimental
data. This work was supported by the Defense Advanced
Research Projects Agency (D12AP00005) and Charles Phelps
Taft Research Center. Additional support was provided
by Department of Mathematical Sciences at University of
Cincinnati.

References

[1] D. Bell-Pedersen, V. M. Cassone, D. J. Earnest et al., “Circadian
rhythms from multiple oscillators: lessons from diverse organ-
isms,” Nature Reviews Genetics, vol. 6, no. 7, pp. 544–556, 2005.

[2] T. Bollinger and U. Schibler, “Circadian rhythms—from genes
to physiology and disease,” Swiss Medical Weekly, vol. 144,
Article ID w13984, 2014.

[3] Z. Gerhart-Hines, D. Feng, M. J. Emmett et al., “The nuclear
receptor Rev-erb𝛼 controls circadian thermogenic plasticity,”
Nature, vol. 503, no. 7476, pp. 410–413, 2013.

[4] D. Jeyaraj, S. M. Haldar, X. Wan et al., “Circadian rhythms gov-
ern cardiac repolarization and arrhythmogenesis,” Nature, vol.
483, no. 7387, pp. 96–101, 2012.

[5] Y. Xu, Q. S. Padiath, R. E. Shapiro et al., “Functional conse-
quences of a CKI𝛿 mutation causing familial advanced sleep
phase syndrome,”Nature, vol. 434, no. 7033, pp. 640–644, 2005.

[6] B. Marcheva, K. M. Ramsey, E. D. Buhr et al., “Disruption of
the clock components CLOCK and BMAL1 leads to hypoinsuli-
naemia and diabetes,” Nature, vol. 466, no. 7306, pp. 627–631,
2010.

[7] E. E. Zhang and S. A. Kay, “Clocks not winding down: unravel-
ling circadian networks,”Nature ReviewsMolecular Cell Biology,
vol. 11, no. 11, pp. 764–776, 2010.

[8] M. E. Hughes, H.-K. Hong, J. L. Chong et al., “Brain-specific
rescue of Clock reveals system-driven transcriptional rhythms
in peripheral tissue,” PLoS Genetics, vol. 8, no. 7, Article ID
e1002835, 2012.

[9] T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda, and
H. Okamura, “Control mechanism of the circadian clock for
timing of cell division in vivo,” Science, vol. 302, no. 5643, pp.
255–259, 2003.
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