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The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to
extinction when the load of deleterious mutations is artificially increased with a mutagen, and
becomes too high for the population to be maintained. Although chemical mutagens have been
shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical
underpinnings of this process are still not clearly established. A few recent models sought to describe
lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in
two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian
fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a con-
tinuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e.
compensatory) mutations. We also include an additional class of lethal mutations. Second, we
couple this evolutionary model with an epidemiological model accounting for the within-host
dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the
system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the
genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading
to extinction. Stochastic simulations show that these predictions are accurate for a broad range of
parameter values. As they depend on a small set of measurable epidemiological and evolutionary
parameters, we used available information on several viruses to make quantitative and testable pre-
dictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal
mutagenesis as an efficient therapeutic strategy.
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1. INTRODUCTION
Classical therapeutic strategies against viral infections
rely on an arsenal of antiviral drugs that often have a
narrow range of specificity (De Clercq 2002). An
alternative and potentially generalist therapeutic strat-
egy, called lethal mutagenesis, has been proposed in
the last decade (Loeb et al. 1999) and theorized
recently (Bull et al. 2007; Bull & Wilke 2008).
Lethal mutagenesis is based on the statement that
within-host viral populations can be driven to extinc-
tion when the load of deleterious mutations is
artificially increased with a mutagen, and becomes
too high for the population to be maintained. Because
it targets a non-specific yet key feature of the pathogen
biology (DNA or RNA replication) lethal mutagenesis
could prove an efficient yet non-specific treatment
strategy, also potentially less prone to the development
of resistance (Freistadt et al. 2004).
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It has been shown empirically that chemical mutagens
can lead to important reductions of viral titres in cell cul-
tures (reviewed in Anderson et al. 2004; Bull et al. 2007).
The treatment of hepatitis C with the antiviral drug riba-
virin is also considered to act (at least partly) through
mutagenesis (Crotty et al. 2001). Theoretical predic-
tions, however, have so far not allowed us to state the
potential of lethal mutagenesis as an efficient therapeutic
treatment. Bull et al. (2007) have clarified its general
mechanism: when mutations have a deleterious average
impact on fitness, the mean fitness of a population sets
to a dynamic equilibrium between selection improving
it, and mutation degrading it. This dynamic equilibrium
is called mutation–selection balance (Haldane 1932;
Burger 1998). If the equilibrium mean fitness is too
low (i.e. in continuous time, when the mean Malthusian
fitness r becomes negative), then the population size
decreases deterministically to extinction.

A first limit to the understanding of lethal muta-
genesis is that the evolutionary dynamics of virus
populations have mostly been framed using unrealistic
assumptions for the relationship between mutation
and fitness. Indeed, most models applied to viruses
make the simplifying assumption that fitness variation
among alternative sequences is fully determined by the
This journal is q 2010 The Royal Society
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number of mutations they carry (or the ‘Hamming dis-
tance’ to a reference sequence, in sequence space).
Two influential models (especially among virologists)
fall into this category: Eigen’s (1971) quasispecies
model and all subsequent quasispecies theory (which
often further limit to only two genotypic classes: a fit
and an unfit), and Kimura & Maruyama’s (1966)
model, which served as the basis of Bull et al.’s
(2007) theory of lethal mutagenesis. By construction,
sequence space models do not allow for variation in fit-
ness among genotypes with the same number of
mutations, in contrast with all studies on the fitness
effects of single mutations (Sanjuàn et al. 2004;
Carrasco et al. 2007; Domingo-Calap et al. 2009).
Besides, this simplification also impedes any form of
compensatory mutations (that generate a fitter genoty-
pic class). An experimental evolution study with
bacteriophage T7 in the presence of a mutagen high-
lighted the importance of taking into account the
occurrence of such beneficial mutations (Springman
et al. 2009). Several recent studies attempt to take
into account the effect of compensatory mutations
with numerical simulations of mutation effects on
RNA folding (Chen & Shakhnovich 2009; Stich et al.
2010), but with the drawback of equating fitness and
protein stability (neglecting ecological aspects, gene
regulation, etc.). Travelling wave models also provide a
framework (analytical, this time) to study the effect
of compensation (e.g. Manrubia et al. 2003;
Rouzine et al. 2008). In these models mutations either
reduce or increase fitness by a constant amount (+s).
However, here too, both epistasis and fitness variation
among mutations are ignored, and usually the
occurrence of multiple mutants is neglected (i.e. low
mutation rate approximation), which may be less valid
for viruses.

In fact, an important class of models in evolutionary
theory allows for both epistasis and variation in the
fitness effects of mutations: phenotypic landscape
models with an infinite pool of allelic effects, such as
Fisher’s geometric model (Fisher 1958). A main goal
of this paper is thus to use this approach as an analytic
framework that accounts for continuous fitness
variation among mutants (including compensatory
mutations), in a way compatible with available data.
To do so, we borrow results from classical quantitative
genetics theory. Following Kimura (1965) and Lande
(1980), we consider that single mutations have a
continuum of effects (normally distributed) on an
arbitrary set of traits (continuum-of-allele model).
These traits in turn determine fitness through stabiliz-
ing selection around an optimal trait value. Note that
although this landscape has a single phenotypic opti-
mum, it yields a very rugged genetic landscape with
pervasive epistasis, following a pattern quantitatively
consistent with available data on several microorgan-
isms (Martin et al. 2007). Additionally, we also
introduce a class of lethal mutations, absent from
these models. In this context, the mutation load con-
forms to the Haldane–Muller principle (more
precisely L ¼ U) but only in the limit of low mutation
rates (Burger 1998). However, when the mutation rate
is high, simple predictions also exist for the distri-
bution of standing genetic variation for the traits at
Phil. Trans. R. Soc. B (2010)
mutation–selection balance (Lande 1980). As the
assumption of high mutation rates seems reasonable
in the presence of a mutagen, we propose to use this
framework to describe the evolutionary dynamics of
mean fitness under high mutation pressure.

A second limit to our understanding of lethal muta-
genesis is that existing models for virus evolutionary
dynamics have scarcely been set in an explicit demo-
graphic or epidemiological context. Usually, these
models assume a constant population size, which
is clearly incompatible with typical within-host
dynamics. Only very few attempts have been made
to couple evolution with the within-host dynamics
(Boerlijst et al. 1996; Gerrish & Garcia-Lerma 2003;
Bull et al. 2007; Bull & Wilke 2008) and they always
relied on numerical simulations or on simplified
description of the fitness effects of mutations (i.e.
sequence space models described above). Therefore,
another goal of this paper is to set the phenotypic land-
scape described above within an explicit demographic
context. To do so, we use a simplified model that
describes virus demography within a population of
immunologically naive host cells (Anderson & May
1991; Nowak & May 2000).

In this paper, we present an analysis of the joint
epidemiological and evolutionary dynamics of
within-host infections. We show how epidemiology
feeds back on the intensity of selection via the density
of uninfected host cells (resources), and we show how
in return evolution affects within-host dynamics via
a reduction in mean fitness (mutation load). We
derive the state of the system at epidemiological and
evolutionary equilibrium, and show that the corre-
sponding densities of infected cells follow a
surprisingly simple linear relationship with mutation
rate. We retrieve a simple closed form expression for
the critical mutation rate at which within-host extinc-
tion should occur. Our predictions rely on several
simplifying assumptions, but comparisons with indi-
vidual-based stochastic simulations of within-host
dynamics show the robustness of the analytical results.
Following the approach of Bull et al. (2007), our
results are expressed in terms of a few measurable
quantities. The corresponding predicted values for
the critical mutation rate in several viruses (based on
available data on the distribution of fitness effects of
mutations) suggest that an efficient reduction in viral
titres could be achieved at realistic mutagenic levels.
Finally, we discuss the implications of our results
regarding the potential efficiency of lethal mutagenesis
and the factors affecting it.
2. THE MODEL
(a) Within-host dynamics and fitness landscape

We use a classical model of virus dynamics (e.g.
Nowak & May 2000): we follow only the density of
susceptible and infected cells, S(t) and I(t), respect-
ively, which in turn fully determine the dynamics of
the viral titre V(t). This model relies on the fact that
the viral titre is approximately proportional to I(t),
with V(t) ¼ I(t)kv/uv, where kv is the virus’s burst size
and uv is the death rate of free virus particles outside
host cells. This approximation is always valid at the
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epidemiological equilibrium, and is valid in the expo-
nential phase (early infection) provided that the
lifetime of an infected cell is much larger than the life-
time of a free virus particle (Nowak & May 2000).
Transmission of the infection from cell to cell is then
fully determined by a single parameter: the cell-to-
cell transmission rate b ¼ bvkv/uv, where bv is the
rate of entrance of free virus particles into new suscep-
tible cells (Nowak & May 2000). This transmission
rate is thus a synthetic measure of viral fitness over a
large portion of its life cycle within the host. Note
that we do not model coinfection here. This implies
that both recombination and complementation
between genotypes are not accounted for in the
model. All these parameters and their definitions are
summarized in the electronic supplementary material
table.

We identify a given genotype by the vector g ¼
[g1, . . . , gn] describing the genotypic value of this gen-
otype at a set of n unknown viral traits that determine
fitness and that may vary by pleiotropic mutation.
The genotypic value g determines each genotype’s
cell-to-cell transmission rate b(g) via the following
multivariate Gaussian function:

bðgÞ ¼ bo exp �gT � Sb � g
2

� �
: ð2:1Þ

This corresponds to stabilizing selection around
some optimum genotype set to g ¼ 0. Sb is an arbi-
trary positive semi-definite matrix describing the
strength of stabilizing selection on all traits in g, and
bo ¼ b(0) is the maximal transmission rate of the opti-
mum genotype. The choice of b(g) in equation (2.1)
guarantees that b is always positive (a negative b

would have no biological meaning), and allows us to
model mutation–selection balance in the classic con-
text of stabilizing selection. Under the condition that
the distance to the optimum ð�gT � Sb � gÞ remains
small, however, the above fitness function is well
approximated by the quadratic fitness function:

bðgÞ � bo 1� gT � Sb � g
2

� �
: ð2:2Þ

We now link this genotype-dependent transmission
rate to fitness in order to define a fitness landscape.
Denote by I(t, g) the density of cells infected by geno-
type g, and S(t) the density of susceptible cells. Denote
by IT ðtÞ ¼ SgIðt; gÞ the total density of infected cells,
and �bðtÞ ¼ SgIðt; gÞbðgÞ=IT ðtÞ the mean transmission
rate in the population. It can be shown (Gandon &
Day 2009) that even when there is phenotypic vari-
ation among viruses, the dynamics of S(t) and each
genotype specific I(t, g) are given by the following
differential equations:

@tSðtÞ ¼ l� dSðtÞ � �bðtÞSðtÞIT ðtÞ
and @tIðt; gÞ ¼ bðgÞSðtÞIðt; gÞ � vIðt; gÞ

)
ð2:3Þ

where l and d are the birth and death rates of suscep-
tible cells and n is the death rate of infected cells. The
fact that all viruses are assumed to have the same death
rate implies that fitness differences among viruses are
Phil. Trans. R. Soc. B (2010)
only owing to differences in their transmission rates
b(g).

Let us now focus on the key quantity linking evol-
ution and demography: Malthusian fitness r(t, g) (for
genotype g at time t). In our model, the Malthusian
fitness of the viral genotype g is (using equations
(2.3) and (2.2))

rðt;gÞ¼@tIðt;gÞ
Iðt;gÞ ¼bðgÞSðtÞ�n�roðtÞ�

gT �St �g
2

; ð2:4Þ

where St ¼ SðtÞboSb is the matrix of selective covari-
ances and roðtÞ ¼ boSðtÞ � n is the Malthusian fitness
of the optimal genotype (g ¼ 0) at time t. This form
of stabilizing selection where Malthusian fitness (log
fitness) is approximated by a quadratic function of
genotypic values recalls the classical Gaussian multi-
variate fitness landscape used in quantitative genetics
(Lande 1979). We will thus be able to use known
results on the equilibrium distribution of g in this con-
text. From now on, we will use the term fitness to
denote Malthusian fitness.

Note, however, one important distinction with the
classical fitness landscape. Although the transmission
rate b(g) is constant for any genotype, the overall Mal-
thusian fitness is not: it depends on the demography
(through S(t)) generating a form of density-dependent
selection. Increased availability of resources (unin-
fected cells) tends to (i) increase the maximal fitness
attainable by the population (roðtÞ) and (ii) increase
the strength of selection between alternative genotypes
(St).
(b) Mutation models

Mutations affect fitness in two ways. First, a portion pL

of mutations deemed ‘true lethals’ destroy the ability of
the virus to be transmitted (b! 0). Second, a portion
(1 2 pL) of mutations affect fitness in a continuous
manner by altering the viral phenotypic traits g.
Hence, in contrast to true lethals, this second type of
mutations stands a non-zero chance of surviving to
the next generation and they can be compensated by
a second mutation, if the latter moves the genotype
back towards the optimum. The continuous effects
of all mutations except true lethals are modelled fol-
lowing Kimura’s (1965) continuum-of-allele-model:
mutations create a random multivariate displacement
in genotypic value g! g þ 1g, distributed as an
unbiased multivariate Gaussian with arbitrary positive
semi-definite covariance matrix M. As we are neglect-
ing coinfection, we ignore the possibility of
recombination and consider the viruses as asexuals,
so that M describes the distribution of effects of
mutations scattered over the genome. This Gaussian
assumption for mutation effects on g, together with a
quadratic Malthusian fitness function relating g to fit-
ness (equation (2.4)), naturally accounts for variation
in fitness among single mutants and for fitness epista-
sis (and therefore compensation), contrary to
sequence space models. By contrast, true lethals
cannot be modelled in the continuum-of-allele-
model. The occurrence of true lethals is described by
a simple unidirectional mutation process towards the
lethal class (no compensatory mutations are allowed).
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We considered two alternative models to describe
the process of mutation, further detailed in the elec-
tronic supplementary material, appendix S1. First,
we use a model (Constant mutation model) where
mutations appear randomly as a Poisson process,
evenly distributed over time and among genotypes.
The number of mutations per genome per unit time
follows a Poisson distribution with parameter U.
Second, we use an alternative model (Infection–depen-
dent mutation model) where mutation in any genotype g
is conditional on the event of an infection of a new cell
by this genotype. Indeed, one may argue that it is more
realistic to assume that viruses can only mutate when
they undergo an infectious cycle. When such an
event occurs, the number of mutations produced by
the infecting genotype follows a Poisson distribution
with parameter m, the mutation rate per infectious
cycle. In this model, the mutation rate now depends
on the probability of undergoing an infectious cycle,
which varies among genotypes and over time (depend-
ing on cell densities). We show in the electronic
supplementary material, appendix S1, that this
model can be equated to the standard Poisson process
(Constant mutation model), simply replacing U by a
time-dependent effective mutation rate Ue(t) ¼
m(r̄t þ 2n). Therefore, under this mutation model,
the effective mutation rate depends on the growth
rate of the population and on the duration of the cell
infection via the parameter n. At demographic equili-
brium, the mean growth rate of the population is
rt ¼ 0 and the effective mutation rate is simply Ue ¼

2mn. As for demographic parameters, all genetic par-
ameters and their definition are summarized in the
electronic supplementary material table.
(c) Relating the landscape to empirical measures

of effects of mutations on fitness

The n-dimensional phenotypic space of g described
above corresponds to a set of unknown (and somewhat
idealized) phenotypic traits that affect viral fitness. In
order to parameterize the model in terms of measure-
able quantities, as in Martin & Lenormand (2006), we
relate mutation effects on g to distributions of
mutation effects on fitness components, that are
amenable to experimental measurements. Viral fitness
is typically estimated as a growth rate on a layer of sus-
ceptible cell cultures or within a naive host. Therefore,
selection coefficients are typically estimated by the
relative growth rate of a mutant in competition with
its wild-type parent, the latter being usually well
adapted to the study environment (genotype g � 0).
The mutant phenotype is thus given by g0 ¼ g þ 1g ¼

1g which is distributed as a multivariate Gaussian
1g�N(0, M). This selection coefficient s(t, g0) ¼ r(t,
1g) 2 roðtÞ is a difference in Malthusian fitness and,
in our model, depends on resource availability S(t)
(see equation (2.4)). In order to avoid this time-depen-
dence, it is usual to measure the relative growth during
the exponential phase of the infection characterized
when the availability of the resource is maximal. In
our simple model, the maximal density of susceptible
cells is S ¼ Smax ¼ l/d. Thus, when resources are not
limiting so that S(t) � Smax remains constant over a
Phil. Trans. R. Soc. B (2010)
period of time, the selection coefficient remains
roughly constant through time. For a mutation arising
on an optimal parent genotype the selection coefficient
is (from equations (2.3) and (2.4))

sðt; g0Þ ¼ rðt; 1gÞ � roðtÞ!
S!Smax

s

� �
1T

g Smax1g

2
; ð2:5Þ

where Smax ¼ bo Smax Sb is the matrix of selective
covariances at the maximal host cell density. All
along, note that ro (without time variable) will
denote the growth rate of the optimal genotype at
maximal host cell density (S(t) ¼ Smax).

Defined in this way and under the additional
assumptions on fitness landscape (i.e. quadratic fitness
function) and on mutations (i.e. small Gaussian
mutation effects on g) detailed above, the predicted
effects of mutation on s are well approximated by a
gamma distribution, in agreement with available distri-
butions in viruses (Domingo-Calap et al. 2009). We
use this relationship between landscape parameters
and s to express our predictions in terms of the par-
ameters of the distribution of s among single random
mutants: its mean (in absolute value) s̄ ¼ jE(s)j � 0
and its shape a ¼ 1/CV(s)2, where CV(s) is the coeffi-
cient of variation of s among mutants. This is detailed
in the electronic supplementary material, appendix S2.

We have defined above true lethals which cannot
transmit to new cells. It is worth distinguishing this
type of mutant from ‘apparent lethals’ that refer to
viruses with a non-zero transmission rate but with
negative growth. Indeed, the transmission rate of
apparent lethals is so low that it cannot compensate
for the death rate of infected cells, even at the highest
cell density r(g) ¼ b(g)Smax 2 n , 0. Note that
with the Gaussian function relating transmission to
g (equation (2.1)) no mutation can lead to exactly
b ¼ 0 as is the case for true lethals. In a typical exper-
iment, however, these two types of mutations would be
undistinguishable, as none of these mutants would
grow from a small inoculum. In contrast to true
lethals, however, apparent lethals may be rescued
and become viable in a context with a higher avail-
ability of resources (higher Smax). This latter type of
lethal may or may not form an important portion of
lethal mutations observed empirically in viruses, but
only true lethals are counted in the proportion pL. In
the electronic supplementary material, appendix S3
we show how to estimate the proportion of apparent
and true lethals from empirical distributions of fitness
effects.
(d) Stochastic simulations of within-host

dynamics

We made various approximations in our derivations of
the model presented above. In order to test the robust-
ness of our analysis we used exact individual-based
stochastic simulations, describing the fate of compet-
ing asexual virus genotypes in the demographic
context described above (detailed in the electronic
supplementary material, appendix S4). These simu-
lations avoid several approximations that were made
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in the analytical derivations: they allow for demo-
graphic stochasticity (as opposed to the deterministic
model presented above) and thus also encompass sto-
chastic fluctuations in allele frequencies, i.e. genetic
drift. They also allow for any strength of selection,
whereas weak selection is assumed in our derivations
(quadratic term on the right-hand side of equation
(2.1)). Finally they allow checking of our analytical
treatment of the infection-dependent mutation model
(the electronic supplementary material, appendix S1,
Ue ¼ m(r̄t þ 2n)). These exact simulations thus allow
a full test of the validity of our various approximations.
All simulation codes were developed with the software
R (R Development Core Team 2007) and are available
upon request.
a mutation load in the fitness landscape model is illustrated
below in one dimension, in a case where a single trait g

determines (Malthusian) fitness, r(g) ¼ b(g)S 2 n. Fitness

depends on within-host transmission rate, b(g), which is
assumed to be a Gaussian function (full line) which can be
approximated by a quadratic function (dashed line) near
the optimum (see equations (2.1) and (2.2)). Fitness
depends also on the density of susceptible cells, S, and the

death rate of infected cells, n. In the grey area, fitness is nega-
tive. Mutations that fall in this grey area are thus called
apparent lethals. In addition we allow a fraction pL of
mutation to be true lethals (not represented on this figure).
Mutation produces phenotypic variance around the mean

phenotype, which lies close to the optimum (g ¼ 0), while
selection reduces this variance. This sets an equilibrium dis-
tribution for g to which corresponds an equilibrium
distribution for r(g). When r(g) , 0 the population
decreases, which may ultimately lead to its extinction (i.e.

lethal mutagenesis).
3. RESULTS
(a) Eco-evolutionary feedbacks and equilibrium

The strength of selection St which determines the
equilibrium distribution of g depends on the host
cell density S(t) (see equation (2.1)). This host cell
density itself sets the value of the mean transmission
rate b̄(t) (as described in the electronic supplementary
material, appendix S2) which in turn influences S(t)
and IT(t). These feedbacks make it difficult to derive
the time dynamics of the system, but the final equili-
brium state can be derived. This state is
characterized by two mutually dependent equilibria:
(i) an evolutionary equilibrium for the distribution of
g and the corresponding mean transmission rate b̄*,
and (ii) a demographic equilibrium for cell densities
S* and IT*. This paired equilibrium, hereafter denoted
eco-evolutionary equilibrium, is jointly solved in
equation (A2.8) of the electronic supplementary
material, appendix S2.

The mean transmission rate at equilibrium b̄* and
the equilibrium density of susceptible cells S* jointly
verify the evolutionary equilibrium (equation A2.7 in
the electronic supplementary material, appendix S2)
and the demographic equilibrium: S*b̄* ¼ n (equation
(2.3)). Solving this system yields expressions in terms
of the basic mutational and demographic parameters.
The mean transmission rate of the viral population is
decreased relative to the optimal genotype by an
amount:

b�
bo

¼ n

nþUepL

w½x�; ð3:1Þ

where w½x� ¼ 1þ x=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1þ x=4Þ

p
and

x ¼ ðUesað1� pLÞÞ=ððnþ roÞðnþUepLÞÞ depends on
the mutation rate Ue, which depends on the mutation
model: Ue ¼ U, while Ue ¼ 2 mn in the infection-
dependent mutation model. The function w[x]
decreases from 1 in the absence of mutation (x ¼ 0),
to 0 when the effective rate of mutation becomes
very large (x!1), so that the average transmission
rate varies between bo and 0 as the mutation rate
increases. The corresponding equilibrium densities
are given by the equilibria of the epidemiological
model (from equation (2.3)). At eco-evolutionary
equilibrium, the density of susceptible cells is S* ¼ n/
b̄*, and the density of infected cells is: IT* ¼ l/n 2 d/
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b̄* where b̄* is given by equation (3.1).

IT � ¼ Io �
d

bo

nþUepL

nw½x� � 1

� �
; ð3:2Þ

where w[x] is defined as above, and Io ¼ l=n� d=bo is
the equilibrium density of infected cells in the optimal
genotype. Recall that the corresponding virus titre in
the free stage (blood, organ, etc.) is approximately pro-
portional to this density.

A simple approximation to the above results can be
found whenever the effective mutation rate and growth
rate of the optimal genotype are large relative to the
death rate of infected cells (Ue, ro� n): Ue� n is
expected for a virus, at least when treated with a muta-
gen, and ro� n is expected for a virus that shows acute
infections in the absence of treatment. Factor x in
equations (3.1) and (3.2) then becomes independent
of Ue and the transmission rate then decreases pro-
portionately to 1=Ue: �b�=bo � n=ðKUeÞ: The constant

K ¼ pL

w ðas=roÞðð1� pLÞ=pLÞ½ �

� pL exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�s

ro

1� pL

pL

� �s !
; ð3:3Þ

where function w[.] is given in equation (3.1), depends
only on the growth rate of the optimal genotype (ro)
and on mutational parameters for both non-lethal
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Figure 2. Within-host eco-evolutionary equilibrium. The effect of treatment by a mutagen on the final density of infected cells
I*T is represented with a proportion pL (indicated on the graph) of true lethal mutations (with a zero transmission rate). After 50
time units at the natural mutation rate, the mutation rate was increased by a factor given on the x-axis (mutagen efficiency). The
equilibrium state of the viral population is given for the two mutation models: (a) constant mutation or (b) infection dependent

mutation. Each dot gives the average I*Tover t ¼ 150 to 500 time units (at equilibrium with the mutagen induced mutation rate) in
three replicate simulations. The distribution of fitness effects had shape a ¼ 1.5 and mean s̄ ¼ 0.1. The epidemiological par-
ameters were l ¼ 100, n ¼ 0.1, d ¼ 0.05 and ro ¼ 1 (corresponding to Ro ¼ 11). Solid lines show the theoretical value for IT*

(equation (3.2)) using either mutation rate (a) U or (b) Ue ¼ 2 mn according to the mutation model. The decrease in infected
cell density is approximately a linear function of mutation rate (or mutagen efficiency here), as illustrated by the accuracy of

the linear approximation (equation (3.4), dashed lines) and simulations are indicated by filled black circles.
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(a, s̄) and lethal mutations (pL), all of which are exper-
imentally amenable. From equation (3.3), the value of
the factor K in the absence of ‘true’ lethal mutations
(limit as pL! 0), i.e. when non-lethal mutations are
the main driving force of lethal mutagenesis is
K � a�s=ro. On the contrary, when true lethal
mutations are the main driving force (pL� s̄), the
factor becomes K � pL. The equilibrium density of
infected cells also simplifies in these conditions, the
infected cell density then decreases approximately
linearly with mutation rate, starting from its value in
the optimal genotype:

IT � � Io 1�Ue

K

ro

� �
: ð3:4Þ

Overall, we see that in spite of the complexity of the
system, the decrease in infected cell density and equi-
librium virus titre is an approximately linear function
of the effective mutation rate Ue.

All these predictions are in agreement with stochas-
tic simulations. Figure 2 shows that the equilibrium
density of infected cells is well approximated by
equation (3.2) and equally accurately by the linear
approximation in equation (3.4) for any proportion
of lethals and in the two alternative mutation models
(setting the right value to Ue). This agreement is
further illustrated in the electronic supplementary
material, figure S1 for two values of s̄ in the absence
of lethals.
(b) Critical mutation rates

Next, in order to evaluate the feasibility of lethal muta-
genesis, we sought to derive the critical mutation rate
Ue, above which the virus population will ultimately
become extinct. Extinction is defined by the fact that
the equilibrium total density of infected cells is zero:
IT* ¼ 0. One can find this threshold value for Ue
Phil. Trans. R. Soc. B (2010)
using either equation (3.2) (‘exact’) or its linear
approximation (equation (3.4), both yielding the
same threshold mutation rate:

Uc¼
ro

K
¼ ro

pL

w
as

ro

1�pL

pL

� �� �
� ro

pL

exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as

ro

1�pL

pL

� �s !
;

ð3:5Þ

where K is given in equation (3.5) and function w[x]
has been defined in equation (3.1). We thus retrieve
a criterion that only depends on the parameters
describing the effects of mutations (a, s̄, pL), and on
the growth rate of the optimal genotype (ro), with all
these parameters being measured when the availability
of susceptible cells is maximal (i.e. S ¼ Smax). When
non-lethal mutations are the main driving force of
lethal mutagenesis (limit as pL! 0 in equation (3.5))
the critical mutation rate simplifies to Uc ! r2

o=as.
On the contrary, when it is true lethal mutations that
drive the process (pL� s̄ in equation (3.5)), it simpli-
fies to Uc! ro/pL. The criterion applies to the effective
mutation rate Uc. In the constant mutation model, it sets
an extinction limit to the mutation rate per unit time:
U 	 Uc. However in the infection-dependent mutation
model, it sets a limit to the mutation rate per infection
m 	 mc ¼ Uc/2n where Uc is given by equation (3.5).

Figure 2a,b shows that, in stochastic simulations,
extinction indeed occurs roughly at the limit set by
equation (3.5) for both mutation models. Note that
extinction tends to occur in fact at a slightly lower
mutation rate than Uc: equation (3.5) gives only a con-
servative (but still rather accurate) upper bound. Note
also an important distinction between the two
mutation models and theory. In neither of the two
models does full extinction occur, only a very
strong reduction in the density of infected cells. In
fact, complete extinction would ultimately occur in
all simulations, given sufficient simulation time,
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Figure 3. Effect of a mutagenic treatment on the course of an
infection. The dynamics of the infected and susceptible host
densities when a mutagen treatment is applied after the start
and stabilization of an infection (curative treatment). The
treatment consists in an increase in mutation rate relative

to the natural rate (Uo ¼ 0.1, constant mutation model
here). The dashed black curve gives the expected dynamics
in the absence of mutation (one strain SIS) before the
onset of treatment, at t ¼ 100, indicated by the dark blue

arrow. From that point each colour corresponds to different
mutagen efficiencies (given on the graph). Plain lines give the
simulated dynamics at each mutagen efficiency, and dashed
lines show the corresponding predicted equilibrium
(equation (3.2)): in the absence of extinction, simulated

dynamics fluctuate around this prediction. The dashed red
curve starting at the onset of the treatment, gives the
expected fastest dynamics to extinction (exponential
decrease at rate 2n). The dashed blue curve gives the corre-
sponding expected fastest possible increase for S(t), with the

plain blue curve giving the corresponding dynamics of S(t) in
simulations with a mutagen of effect (
20). The coloured
crosses give the time point of extinction in the treatment of
the corresponding colour. Mutation effects parameters:
shape a ¼ 1.5, mean s̄ ¼ 0.1 with pL ¼ 20% of true lethals,

predicted critical mutagen efficiency is Uc/Uo � 23 from
equation (3.5). Epidemiological parameters: same as
figure 2 except l ¼ 500, and the infection was started at
I(0) ¼ 10 and S(0) ¼ Smax ¼ l/d.
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because of stochasticity. We now delve quickly into this
issue of stochasticity with an example of an actual
treatment.
(c) Stochastic dynamics and treatment with

a mutagen

In figure 3, we follow the dynamics, in a single stochas-
tic simulation run, of infected and uninfected cells
following a viral infection treated with a mutagen,
after the onset of infection. The simulation starts
with a small inoculum of the optimal genotype. This
time dynamics also provides insights into the effect
of stochasticity, as does the electronic supplementary
figure S2 showing the time dynamics from the simu-
lations used in figure 2.

In figure 3, before the onset of the treatment (indi-
cated by the blue arrow), the density of infected cells
follows closely the predicted epidemiological dynamics
(grey curve) corresponding to the demographic
parameters of the optimal genotype (b ¼ bo). The
Phil. Trans. R. Soc. B (2010)
equilibrium titre sets to a value slightly below the
one expected for the optimal genotype, because
the virus is assumed to have a non-zero natural
mutation rate (Uo ¼ 0:1 in our simulation) which
already decreases the mean fitness of the viral popu-
lation. Then, at time t ¼ 100 the treatment with a
mutagen starts; it consists in an increase in U by a
given factor (or mutagen efficiency). After the start
of the treatment the titre quickly drops to a new equi-
librium value. The dashed line gives the corresponding
predicted value of the equilibrium density of infected
cells (equation (3.2)). Note that the extinction of the
virus population occurs at slightly lower values of U
than expected by our analytic model (Uc in equation
(3.5)), as in figure 2. We believe the discrepancy
between these simulations and our analytic predictions
is owing to multiple consequences of stochasticity
(finite population sizes).

First, the transient dynamics following the start of
the treatment may lead to extinction before reaching
the expected equilibrium density. Indeed, when the
mutation rate is increased, the new evolutionary equi-
librium is reached faster than the new corresponding
demographic equilibrium for host cell densities. This
will lead to an overshoot of the effect of mutagens on
the mutation load which results in a decrease in the
density of infected cells below the equilibrium density.
When population sizes are small, this may lead to
extinction very fast. This heuristic argument is illus-
trated in figure 3, for the curve 
20 mutagen
efficiency (exponential decrease to extinction, black
dashed curve).

Second, stochasticity will induce genetic drift
and this alone is expected to affect the evolutionary
dynamics. Indeed, our model only captures the deter-
ministic part of the mutation load which results from
the balance between mutation and selection. In finite
populations, genetic drift will also reduce mean fitness
relative to the optimal genotype.

Third, with finite populations, the population is in
fact doomed to become extinct after sufficient time,
whatever the mutation rate (as we could also confirm
in our simulations, not shown). What varies, however,
is the expected time to extinction. In this case, the con-
cept of critical mutation rate needs to be redefined
using a threshold value for the time taken to extinc-
tion. In this context, one may use the
approximations for expected time to extinction from
quasi-stationary distributions obtained by Nasell
(2005).

The present deterministic theory therefore only
provides an upper limit for the mutation rate above
which extinction is fast. We expect that adding other
stochastic effects (such as fluctuations in population
sizes caused by external factors), would lead to even
faster extinctions. Our theory thus provides a conser-
vative prediction to evaluate the feasibility of lethal
mutagenesis.
4. DISCUSSION
(a) Summary of the results

The present paper is an attempt to analyse the feasi-
bility of lethal mutagenesis as a therapeutic strategy
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against viral infections, although the model could
be readily extended to deal with other pathogens
(Bull & Wilke 2008; Chen & Shakhnovich 2009).
We combine an evolutionary model of mutations
and stabilizing selection together with a demographic
model of within-host dynamics (jointly modelling
viral and host cell dynamics). In contrast to previous
studies (Gerrish & Garcia-Lerma 2003; Bull et al.
2007; Bull & Wilke 2008), the present model
assumes that single mutations have variable (gamma
distributed) effects on Malthusian fitness (growth
rate), in agreement with empirical data (Sanjuàn
et al. 2004; Carrasco et al. 2007; Domingo-Calap
et al. 2009). To do so, we use a fitness landscape
model of stabilizing selection for an arbitrary
(unknown) set of underlying traits. We then make
use of the fact that, at the high mutation rate induced
by mutagens, classical models of mutation–selection
balance, based on a Gaussian distribution for the
phenotype at equilibrium (Lande 1980), are accurate
(Turelli 1984). These models thus provide a relevant
and well-developed framework to study RNA virus
fitness and phenotypes under the joint action of
selection and mutation. For more realism, we also
add a class of lethal mutations (not described in
the former landscape models), in a way akin to
sequence space models. In our model the population
of virus genotypes shows variation for the number of
mutations they carry (as in classical quasispecies
theory), the fitness effect of each mutation (including
beneficial ones), and even epistasis for fitness
between mutations.

We used the classical model of virus within-host
dynamics (Nowak & May 2000) to incorporate explicit
within-host demography. Interestingly, taking this
dynamics into account reveals two important conse-
quences of demography on evolution. First, since
uninfected host cells are the fuel of virus fitness, the
intensity of selection depends on the availability of
these cells. As the population of viruses decreases
(e.g. following a treatment) the number of uninfected
cells increases and the intensity of selection becomes
stronger. This effect may help rescue a population on
the verge of extinction. Second, demography may
also affect the rate of appearance of new mutations.
If mutations are conditional on the event of infecting
a new host cell, the mutation rate necessarily depends
on the birth and death rate of the population (Infec-
tion-dependent mutation model). A population with
higher turn-over and higher growth rate generates a
higher number of mutations per infected cells. This
feedback of demography on evolution may be key to
accurately predict within-host adaptation or extinction.

Our model is mainly used to focus on the joint
demographic and evolutionary equilibrium of the
within-host viral population. Although many biologi-
cal factors have been introduced into the model, the
resulting effect of mutation on virus titre and infected
cell density proves surprisingly simple. At eco-
evolutionary equilibrium, the total density of infected
cells IT* is an approximately linearly decreasing func-
tion of the effective mutation rate. If Io is the density
of infected cells for an infection by the optimal geno-
type, then rearranging equations (3.4) and (3.5),
Phil. Trans. R. Soc. B (2010)
yields simply

IT � � Io 1�Ue

Uc

� �
when Ue , Uc; ð4:1Þ

where Ue is the effective mutation rate depending on
the mutation model and Uc ¼ ro=K (equation (3.5))
is the critical mutation rate for extinction (where the
constant K is given in equation (3.3)). This critical
rate Uc only depends on the fitness effects of non-
lethal mutations (a, s̄), and proportion of lethal
mutations (pL), and on the maximal growth rate of
the optimal genotype (ro). When the effective mutation
rate is high enough (Ue . Uc, equation (3.5)), the
equilibrium cell density becomes so small that extinc-
tion is effectively certain within a short time. With
finite populations, full extinction at U . Uc may not
always happen instantaneously, but a very sharp
decrease in population density is observed, at U
values slightly below our theoretical Uc, owing to
stochastic effects (figures 2 and 3).

These results were confirmed, for both infection-
dependent mutation or constant mutation models, by
individual-based simulations that accounted for the
stochasticity that was neglected in the model (figures 2
and 3). The mean transmission rate decreases pro-
portionately to 1/Ue which was also confirmed by
simulations (not shown).
(b) Factors affecting the efficacy of the treatment

Our results, summarized in equations (4.1) and (3.5),
yield qualitative insights into what aspects of the virus
biology make it less or more prone to extinction by
lethal mutagenesis. The efficacy of a mutagen in con-
trolling an infection is fully determined by Uc

(equation (3.5)): any factor decreasing Uc will facili-
tate the treatment, by implying a faster reduction of
the virus titre at a given mutation rate Ue . Uc

(equation (4.1)), and by allowing its extinction at
lower mutagen efficacy. These factors are mutational
effects parameters (a, s̄, pL) and a single demographic
parameter, the growth rate of the optimal genotype ro .

We illustrate in the electronic supplementary
figure S3 how the parameters of mutation effects on
fitness affect Uc and the treatment efficacy. First, not
surprisingly, a virus with a lower proportion pL of
true lethal mutations is less prone to lethal mutagen-
esis. Lethal mutations have a strong impact on Uc

(see figure 2 and the electronic supplementary
material, figure S3), which means that a ‘biased’ muta-
gen that would also increase the frequency of lethal
mutations would be much more efficient. Second,
lethal mutagenesis may occur even in the absence of
lethal mutations (pL! 0, in equation (3.5)), at a criti-
cal mutation rate Uc ¼ r2

o=as, i.e. more likely so for a
virus with a larger s̄ or a larger a. This latter effect con-
trasts with previous models of lethal mutagenesis,
based on sequence space models and where the
mutation load was independent of mutation effects
on fitness (Bull et al. 2007). It also concurs with results
from the recent simulation study using protein stability
as a proxy for fitness (Chen & Shakhnovich 2009). In
this paper, fitness was fully determined by protein
stability, which de facto creates a phenotypic



Table 1. Predicting the critical mutation rate of several viruses. Unshaded rows give empirical estimates from distributions of

single mutants: total observed proportion of non-viable mutants ( bpL), the mean of sn among viable mutants (s̄n) and its
variance V(sn). Note that sn is a scaled measure of selection coefficient sn ¼ s=ro among viable mutants. Shaded rows
correspond to theoretical predictions derived from these estimates, shape of the distribution among viable mutants (an),
proportion of ‘apparent lethals’ (p*

L, see the electronic supplementary material, appendix S3), proportion of true lethals

(pL), critical mutation rate for extinction, (Uc, equation (3.5)), as a function of the growth rate of the optimal genotype ro
(see the electronic supplementary material, appendix S3). Generation time (duration of an infectious cycle) is given in
exponential growth, where t ¼ logðBÞ=ro, where B is the virus burst size. Units: g21, per generation (inferred from
generation time estimates); d21, per day; h21, per hour.

virus VSVa TEVb Qbc Fx174c F1d

type ss(2) RNA ss(þ) RNA ss(þ) RNA ss DNA ss DNA

host animals plants bacteria bacteria bacteria
no. of mutations studied 48 66 42 45 100bpL 40% 41% 29% 20% 21%
s̄n 0.13 0.13 0.10 0.13 0.10
V(sn) 0.04 0.43 0.02 0.05 0.04
an ¼ 1=CV 2ðsnÞ 0.48 0.04 0.59 0.34 0.28

ro 0.9 h21d 0.3 d21e 3.6 h21d 10 h21d 4.3 h21d

generation time (h)d 7.68 — 2.07f 0.46 �1

p*
L 1.0% 0.1% 0.1% 1.9% 1.3%

pL ¼ bpL 2 p*
L 39% 41% 29% 18% 20%

Uc (equation (3.5)) 1.87 ro 2.24 ro 2.36 ro 3.57 ro 3.63 ro
Uc 12.88 g21 0.74 d21 17.52 g21 16.22 g21 15.46 g21

aSanjuàn et al. (2004).
bCarrasco et al. (2007).
cDomingo-Calap et al. (2009).
dR. Sanjuan (2010), personal communication and this issue.
eS. Elena (2010), personal communication.
fMean based on estimates of burst size B in other leviviruses like Qb (MS2 & R17) from De Paepe & Taddei (2006).
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landscape, where, as in our model, compensatory
mutation takes place. Consistently, Chen &
Shakhnovich also observed that mutation effects
parameters affected the mutagen efficacy. The discre-
pancy with previous models based on sequence space
is probably caused by the presence, in phenotype
space landscapes, of compensatory mutations, epista-
sis between mutations, and variation in fitness
among single mutants, that affect the mutation load
and its demographic impact.

The only remaining parameter that influences the
efficacy of the treatment (equation (3.5)) is the
growth rate ro of the infection (measured for the opti-
mal genotype during early exponential phase). Not
surprisingly, all else being equal, a virus with higher
growth rate will be more difficult to cure, and this par-
ameter alone summarizes the impact of demographic
factors on the efficacy of lethal mutagenesis. In practi-
cal terms this means that the efficacy of lethal
mutagenesis could be increased if another drug was
used to reduce ro (e.g. by killing specifically infected
cells and/or by reducing the replication rate of the
virus). Finally, note that when mutation only occurs
during new infectious cycles, the death rate of infected
cells (n) also affects the efficacy of the mutagen
treatment, in the sense that the critical mutation rate
per infectious cycle, is given by mc ¼ Uc/2n where Uc

is given by equation (3.5). Therefore, an infection
inducing higher cell mortality (larger n) should be
more sensitive to mutation, because it has a higher
turn-over rate per unit time. However, the efficiency
of the mutagen (relative to natural mutation rate)
Phil. Trans. R. Soc. B (2010)
that is required for a given decrease in viral titre
remains independent of n for both mutation models
(as Uc/U ¼ mc/m).
(c) Feasibility of lethal mutagenesis

Beyond qualitative predictions, our results allow a dis-
cussion of the potential of lethal mutagenesis based on
quantitative arguments, because they are expressed as
a function of measurable quantities. This also makes
them potentially testable. First, our predictions
depend on classical epidemiological parameters of
within-host dynamics for the optimal genotype (ro

and possibly n). Second, they depend on the par-
ameters describing the distribution of fitness of single
random mutations, measured when the availability of
susceptible cells is maximal (a, s̄, pL). Based on the
empirical estimates available for the latter parameters
in five virus species, we computed (equation (3.5))
the predicted critical mutation rate for extinction (Uc

in table 1). This threshold is fairly small and surpris-
ingly constant across species (of the order of 15
mutations per viral genome replication), in part
because empirical estimates suggest a high and fairly
consistent frequency of lethal mutations across virus
species. Overall, such critical mutation rates seem
reachable with mutagens that would increase mutation
rates by one to two orders of magnitude. Furthermore,
even when extinction is not achieved, our results
suggest that increasing the mutation rate may still be
an efficient treatment, as the relative decrease in
virus titre at a given U is (1 2 U/Uc) (equation (4.1),
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figure 2). Overall, these results point to an encouraging
potential for lethal mutagenesis to efficiently eliminate,
or at least reduce, viral infections.
(d) Evolution of resistance

As in any therapeutic strategies, lethal mutagenesis
may lead to the evolution of resistance in pathogens
(as discussed in Manrubia et al. in press). In vitro
studies revealed two types of resistance mechanisms
against chemical mutagens. First, resistance may
occur through increased fidelity of the replication
(i.e. lowering Ue). For example, Pfeiffer & Kirkegaard
(2003) describe the in vitro evolution of poliovirus
resistance against ribavirin, a nucleotide analogue
which induces mutations by allowing base mis-
matches. This resistance is caused by a single amino
acid change in the viral polymerase that increases the
fidelity of RNA synthesis and thus limits the muta-
genic effects of the drug. Second, our results suggest
that resistance could also occur via a decrease in the
average fitness effects of mutations (i.e. lower s̄).
This type of selection for lower s̄ has been reported
in VSV (Sanjuan et al. 2007). In the presence of the
mutagen 5-fluorouracyl, a robust variant of VSV out-
competed the wild type strain, in the presence of a
chemical mutagen, whereas the wild-type was the fit-
test in the absence of mutagen. The characterization
of this robust variant revealed a lower effect of
mutations on fitness but not a lower rate of mutation
(Sanjuan et al. 2007). Overall, resistance to chemical
mutagens is likely to occur and limit the feasibility of
lethal mutagenesis.

The use of mutagens in combination with classical
drugs may be a way to increase the efficacy of thera-
peutic treatments, and reduce the development of
resistance (Gerrish & Garcia-Lerma 2003; Perales
et al. 2007). We have seen here how reducing ro (by
means of a classical drug) would facilitate the treat-
ment by a mutagen. However, the interplay between
the effects of multiple drugs is still not well under-
stood, and the evolution of resistance in this context
even less. This clearly deserves both theoretical and
experimental investigations.
(e) Concluding remarks and perspectives

We hope that the theoretical framework proposed here
may help model virus adaptation in a context that
includes sufficient complexity to be reasonably realis-
tic. An important feature of the present approach is
that the predictions are testable because they are
expressed in terms of a few quantities that can all be
measured experimentally (table 1).

We believe, however, that the predictive potential
of the present theory of lethal mutagenesis could be
improved in several directions. First, as pointed out
above, our simulations revealed a potential impact of sto-
chasticity in the dynamics of the pathogens. Second,
recombination and complementation have been neg-
lected in our analysis. This is likely to affect our
predictions on equilibrium densities of infected cells.
These two factors, however, require coinfection and
thus a relatively high density of infected cells. This
implies that their effect on the critical mutation rate
Phil. Trans. R. Soc. B (2010)
(i.e. close to extinction when the density of infected
cells is very low) could be weak. Third, in a more realistic
context, the mutagen would be applied in a hetero-
geneous host environment, with some areas where the
drug is not delivered. These untreated areas could
form an important source of mutation-free genotypes
able to rescue the virus population from extinction.
This scenario has been recently modelled in a simplified
model with only lethal mutations (Steinmeyer & Wilke
2009), it would be interesting to extend this work to
include non-lethal mutations and viral adaptation to
the different environments. More generally, predictive
models of viral evolution in a heterogeneous host
environment might be needed if we are to provide quan-
titatively useful models for medical applications. Fourth,
as discussed above, we believe the potential synergism
between chemical mutagens and more classical thera-
peutic drugs (Gerrish & Garcia-Lerma 2003; Perales
et al. 2007) derves more work.
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