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Abstract: Cancer is the leading cause of death in people worldwide. The conventional therapeutic
approach is mainly based on chemotherapy, which has a series of side effects. Compared with
traditional chemotherapy drugs, nanoparticle-based delivery of anti-cancer drugs possesses a few at-
tractive features. The application of nanotechnology in an interdisciplinary manner in the biomedical
field has led to functional nanoparticles achieving much progress in cancer therapy. Nanoparticles
have been involved in the diagnosis and targeted and personalized treatment of cancer. For example,
different nano-drug strategies, including endogenous and exogenous stimuli-responsive, surface
conjugation, and macromolecular encapsulation for nano-drug systems, have successfully prevented
tumor procession. The future for functional nanoparticles is bright and promising due to the fast
development of nanotechnology. However, there are still some challenges and limitations that need
to be considered. Based on the above contents, the present article analyzes the progress in developing
functional nanoparticles in cancer therapy. Research gaps and promising strategies for the clinical
application are discussed.
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1. Introduction

Cancer has a high incidence and mortality rate worldwide [1]. The overall mortality
rate of cancer is still as high as 20.2% [2]. Moreover, 19.3 million new cancer cases will occur
annually by 2025 [3]. Treatment strategies for cancer mainly depend on the cancer type
and the stage of the first diagnosis. Available treatment options for cancer include surgery,
radiotherapy, chemotherapy, hormone therapy, immunotherapy, and gene therapy [4].
Among these options, the most common way to treat cancer and inhibit tumor recurrence is
chemotherapy, which kills cancer cells with cytotoxic drugs. However, an adverse problem
of most chemotherapeutic drugs is that they cannot target the cytotoxicity of tumor cells,
resulting in multiple side effects and poor prognosis [5].

In 1986, two Japanese researchers first reported the enhanced permeability and reten-
tion (EPR) effect of nanoparticles in tumor tissues, which opened the door to the nano-drug
strategy for cancer treatment [6,7]. A large number of subsequent studies showed that,
compared with traditional chemotherapy drugs, the drug system based on a nano plat-
form showed significant advantages, such as (1) adjusting the oil–water distribution index
of drugs and improving bioavailability, (2) better stability of protein and peptide drugs,
(3) targeted administration, (4) the release of drugs in precise doses and on demand, and
(5) co-delivery of multiple drugs/diagnostic agents [8–11]. At the same time, encapsulating
anti-cancer drugs has many benefits, including better biological distribution, solubility, and
bioavailability [12].
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In the present review, we summarize the different functional nano-drug strategies of
stimulus-response, surface binding, and macromolecular encapsulation for cancer treat-
ment, discuss the key needs of functional nano-drugs in cancer treatment, and clarify the
further prospects of cancer treatment based on nano-drugs (Figure 1).

 

Figure 1 Figure 1. Main functional nanoparticles types in cancer therapy.

The main functional nanoparticle types are illustrated here, including tumor mi-
croenvironment (TME)-responsive, external stimuli-responsive, surface conjugates, and
large molecules.

2. Functional Nano-Drug Delivery Platform

Nanotechnology has aroused great interest in cancer treatment because of its excellent
solubility, targeting capability, therapeutic efficacy, and low toxicity compared with conven-
tional agents [10]. A series of strategies focused on stimuli-responsive, surface conjugation
with targeting ligands, large molecules, and so on offer attractive features and promote
highly efficient use of cancerous therapeutic agents.

2.1. Stimuli-Responsive Nano-Drug Delivery Platform
2.1.1. pH-Responsive

Acidic TME caused by hypoxia and extracellular lactic acid accumulation is one of the
most significant characteristics of solid tumors. In addition, different cell parts also show
different pH values, in which mitochondria are alkaline (pH ~8.0), and lysosomes are acidic
organelles (pH ~4.7). During drug delivery, the pH value of endosomes was observed to
change from pH ~6.3 to 5.5 [13,14].

A kind of macrophage-membrane-coated nanoparticle (cskc-PPiP/Paclitaxel @Ma)
was developed to release tumor-targeted chemotherapy drugs responding to the pH value
of endosomes and showed an excellent therapeutic efficacy [15]. One study showed that
green-emitting Zn2 GeO4: Mn2+ Pr3+ nanoparticles possessed good pH stimuli-responsive
luminescent behavior [16]. In a recent study, doxorubicin-hydrazone bond-PEG-folic acid
(DOX-hyd-PEG-FA) polymers coated on the surface of nano-graphene oxide could be
decomposed at the same time and had good pH sensitivity and active tumor targeting [17].
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One study revealed that a higher therapeutic effect was seen for melanoma cancer cells
than non-pH responsive gold nanoparticles [18]. In a previous study, hydrophobic Cur-
cumin (CUR) was combined with hydrophilic hyaluronic acid (HA) to form pH-responsive
nanoparticles, which achieved enhanced treatment efficacy for cancer with good biosafety.
The nanoparticle size was 89 nm, and the transmission electron microscope (TEM) image
revealed that the morphologies of the nanoparticle were spherical, and the release rate of
CUR was 73.5% at pH 5.0 [19]. Furthermore, chitosan, folic acid, and silver nanoparticles
loaded with gemcitabine were prepared and had an excellent response to pH. A recent
study also demonstrated the responsiveness of layered hydroxide (LDH) in the treatment
of colorectal cancer. Under the slightly acidic condition of the tumor site, LDH nano tablets
gradually degrade so that Ethylenediaminetetraacetic acid (EDTA) can realize the control-
lable release of acid reaction at the tumor site. This treatment strategy based on tumor cell
separation provides a safe and effective means to treat low-level colorectal cancer and will
bring a new dawn to patients with low-level colorectal cancer (Figure 2) [20].
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2.1.2. Redox-Responsive

It has been shown that tumor extracellular matrix is an oxidizing medium, while
intracellular space is reduced, glutathione (GSH) are reductants widely present in the
human body [21,22]. Since the expression of GSH in cancer tissues is higher than that
in normal tissues, nanoparticles sensitive to GSH are worthwhile for cancer therapy
(Figure 3) [22–24]. GSH-responsive hydrophilic PEG and hydrophobic poly (lactic acid
co glycolic acid) (PLGA) copolymer were reported to improve therapy efficacy in lung
cancer in vitro/in vivo. The nanoparticles were spherical with a diameter of around 200 nm
and negative zeta potential [25]. Redox-responsive PEG with PTX NPs achieved a better
treatment effect than free drugs in a breast cancer xenograft mouse model. TEM images
revealed that the nanoparticles were spherical with an average size of 70 nm [26]. In a
previous study, a cationic supramolecular polymer forming a redox-induced gene transfer
vector through a host–guest complex from β-cyclodextrin dimer and ferrocene dimer, were
prepared. The particle size was 150–200 nm, and the morphology was observed using
atomic force microscopy [27]. Furthermore, PEG-modified pillar [5] arene and porphyrin
with pyridinium moieties were combined [28].
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2.1.3. ROS-Responsive

Cancer cells are subjected to more and more oxidative stress, resulting in changes
in metabolic activities and carcinogenic transformation [30,31]. In particular, the level of
reactive oxygen species in tumor tissue is mainly higher, which is due to the accumulation
of active molecules under hypoxia in tumor tissue [32].

Recent studies have shown that special enzymes that produce reactive oxygen species
have very beneficial functions in the treatment of cancer [33]. Through the self-assembly of
thioketal units, photosensitizers, and Chlorin e6, a kind of ROS-responsive nanoparticle
was formed and showed excellent tumor penetration and satisfied therapeutic efficacy [34].
One previous study developed integrated nanoparticles composed of poly (ethylene glycol)
and polymerized methacrylate monomer loaded with β-lapachone, which is responsive
to tumor ROS [35]. A kind of heparanase modified with β-cyclodextrin (β-CD) grafted
heparin co-loading with doxorubicin (DOX), ferrocene (Fc), and TGF-β receptor inhibitor
(SB431542) was established and successfully inhibited breast cancer metastasis, under
which ferroptosis induced by ROS was essential [36].

A nano-drug composed of arginine-glycine-aspartate (RGD) conjugated with cy-
totoxin epothilone Bis was sensitive to ROS, showing excellent tumor selectivity and
anti-cancer effect in vitro/in vivo [37]. A new ROS-responsive micelle composed of poly
10-hydroxycamptothecin and PEG, which loaded dexamethasone, was constructed, reveal-
ing an ideal anti-tumor effect [38]. Recently, phospholipid-coated Na2S2O8 nanoparticles
that could generate new reactive oxygen species for in-situ generation of Na+ and S2O8

2−

and then transform into toxic sulfate radical and hydroxyl radical (•SO4
− and •OH) were

prepared. As illustrated by the scanning electron microscopy (SEM) images and TEM
images, Na2S2O8 nanoparticles have a uniform spherical nanoflowers structure with a
diameter of around 270 nm. In addition, all these effects will lead to the death of highly
immunogenic cells and regulate the immunosuppressive TME, inhibiting tumor metastasis
and recurrence (Figure 4) [39]. Nanoscale metal-organic frameworks (nMOFs) have made
much progress in radiotherapy, photodynamic therapy, and chemodynamic therapy via
nMOFs-mediated ROS generation [40]. In a previous study, Fe-metal organic framework
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nanoparticles were formed to generate ROS and induced cancer cell death by diminishing
endogenous substances in the TME; the killing rate of tumors is up to 96.65% [41]. As for
functional inorganic nanoparticles, they are also widely used because of their wide variety,
precise size control, and stable function. The most widely used inorganic nanoparticles
include mesoporous silica nanoparticles (MSNs) and noble metals (typically Au). For
example, in a previous study, doxorubicin was loaded into the MSN pore capped with
cerium oxide nanoparticles (COPs), the pre-oxidant property of COPs raised ROS levels,
and a synergistic effect of drug and nanoparticle was achieved in the cancer treatment [42].
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2.1.4. Hypoxia-Responsive

It is well-known that an incomplete vascular network and limited oxygen diffusion
distance exist in solid tumors (200 µm). Hypoxia is a unique pathological feature for 50–60%
of solid tumors [43–45].

Self-assembled hypoxia-reactive carboxymethylglucan nanoparticles (CMD NPs) were
established to promote the selective release of hydrophobic drugs in tumors [46]. Man-
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ganese dioxide nanoparticles (MnO2 NPs) toward hydrogen peroxide (H2O2) for the
simultaneous production of O2 and regulation of pH were proposed to prevent tumor
hypoxia and inhibit tumor growth and proliferation of breast tumors [47].

One previous study reported a platform composed of hyaluronic acid (HA)-stabilized
CuMnOx nanoparticles (CMOH) and indocyanine green (ICG) for hypoxic tumor therapy
and their thermally amplified catalytic activity and TME regulation ability [48]. One
study reported a kind of PEG-camptothecin(CPT)-2-(piperidin-1-yl)ethyl methacrylate
nanoparticle, which was hypoxia-responsive and showed tumor-suppressed effect [49].
Moreover, one study reported a hypoxia-responsive nanovesicle could enhance the efficacy
of sonodynamic therapy (SDT) by generating sufficient ROS in tumors. Furthermore,
SEM/TEM images showed that the morphology of the nano-assemblies had a uniform
vesicular structure with an average diameter of around 129 ± 16.3 nm [50]. A new type
of polymer micelles to sense hypoxia in tumors was constructed, in which the drug was
released and caused immunogenic cell death through chemotherapy and photothermal
therapy, which was effective in the treatment of advanced breast cancer. Characterized by
TEM, the polymer micelles were spherical and monodisperse with a diameter of 84 nm
(Figure 5) [51].
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2.1.5. Enzyme-Responsive

Tumor tissue has diverse enzyme expression profiles, which is helpful in developing
efficient enzyme-responsive nano-drug delivery systems and can realize the fascinating
physicochemical properties of different materials on the nanoscale [52,53].

Recently, a microneedle comprised of an anti-programmed death-ligand 1 antibody
(aPD-L1) and cold atmospheric plasma therapy was also reported to induce immunogenic
tumor cell death [54]. Fe3+ ion and naturally derived tannic acid could form sorafenib
NP, which could inhibit the GPX4 enzyme for ferroptosis initiation and eventually tumor
elimination [55]. One study reported that legumain-responsive gold nanoparticles (AuNPs)
could lead to enhanced accumulation of doxorubicin (DOX) and hydroxychloroquine at the
glioma site of patients, possessing therapeutic efficacy [56]. As reported in a previous study,
carboxylesterase-responsive folate-decorated albumins into a nanocluster (FHP) confirms
that it was reported to be enzyme-triggered and effective for precise cancer theranostics [57].
Matrix Metallopeptidase 2(MMP-2) responsive and RGD-peptide-modified liposome con-
sisting of pirfenidone (an anti-fibrotic agent) and gemcitabine (a chemotherapeutic drug)
was effective in pancreatic stellate cells model in BALB/c nude mice [58]. In another study,
treatment with a therapeutic drug carrier loaded with monomethyl auristatin E (MMAE)
via intravenous injection, MMAE targeted albumin where extracellular β-glucuronidase
was overexpressed, achieved outstanding therapeutic efficacy on pancreatic tumor mice
(Figure 6) [59].
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2.1.6. Temperature-Sensitive

The temperature of tumor tissue is usually 1–2 ◦C higher than normal cells, which is
called hyperthermia [60,61]. Temperature is beneficial as an external stimulus in nanoparti-
cle design. Some advantages include low toxicity and better control of cancer drug dose
and localization [62].

Some types of temperature-response carriers include liposomes, polymer micelles,
dendrimers, etc. [63]. Thermoresponsive micelles based on PEG-[poly(caprolactone), PCL]-
PEG loaded with phenylalanine ammonia lyase showed an excellent anti-tumor effect in
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colorectal cancer. The molecular weight and polydispersity of the polymer were 5392 and
1.345, respectively [64]. In another study, three-arm star-shaped s-P random copolymers
were modified with folic acid to make them active and targeted. The micelles were all
spherical in shape, which was observed by TEM and the average distribution size was
between 35 and 110 nm [65]. It was reported that using this polymer micelle system, loaded
DOX will be released when the temperature reaches lower critical solution temperature
(LCST) (39.2 ◦C), and the polymer shell will quickly release the drug at only a slightly
higher temperature (40 ◦C) (Figure 7) [66].
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2.1.7. Ultrasound-Sensitive

As an external stimulus, ultrasound is popular in nano-drug research because of its
non-invasive, non-ionizing radiation as well as easy adjustment of its tissue penetration
depth and frequency [67]. Ultrasound can release drugs from responsive nanocarriers [68],
which could increase the permeability of biological barriers by increasing the temperature
to increase the absorption, release, and production of cavitation bubbles [69].

The liposome is a mature multifunctional drug delivery system. For example, under
the stimulation of hyperthermia caused by ultrasound, a temperature-sensitive liposome
achieved complete regression of breast cancer in mice [70], which was also applied in
a human breast cancer xenograft mouse model and achieved a good effect [71–73]. As
reported in one previous study, focused ultrasound sonication with microbubbles (MBs)
could improve delivery efficiency and significantly enhance DOX accumulation [74]. What
is more, low-dose focused ultrasound hyperthermia significantly enhanced the pegylated
liposomal doxorubicin delivery into brain tumors and showed a promising anti-tumor ef-
fect [75]. Liu et al. showed that a nanoreactor was designed by immobilizing catalase in the
large opening of mesoporous organosilicon nanoparticles (MOS). The immobilized enzyme
catalyzes the decomposition of H2O2 into O2 molecules in a controlled manner, even when
compared with 10 µm bubbles can also be produced continuously when incubated with
H2O2. The bubbles generated in situ significantly enhanced the echo contrast and acted as
cavitation nuclei, reducing the ultrasonic dose required for evident coagulative necrosis to
80 W. TEM images revealed a spherical shape with a diameter of 140 nm. This structure
can also be used as a probe for ultrasonic diagnosis of tissue oxidative stress (Figure 8) [76].
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2.1.8. Magnetic Field-Sensitive

As a safe type of stimulus, magnetic fields are prevalent in nano-drug delivery in the
therapy of tumors [78]. Besides treatment, magnetic field-sensitive nanoparticles were also
used in diagnostic imaging [79]. A recent study used targeted magnetic carriers to deliver
the DOX into the bladder wall, which caused more significant accumulation and provided
site-specific delivery of drugs [80]. One recent study revealed that biomimetic magnetic
Fe3O4-SAS@PLT nanoparticles were effective in curing non-inflamed tumors for ferroptosis
with immunotherapy [81]. Magnetic field-induced hyperthermia could be used in the nano-
drug treatment of bladder cancer in a hyperthermia-responsive manner [82–84]. Oxygen
(O2) and nitric oxide (NO) were co-delivered through ultrasound-responsive nanoparti-
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cles to enhance SDT and immune response, revealing an excellent immunosuppression
reversion and activation of immune response for cancer immunotherapy (Figure 9) [85].
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2.1.9. Light-Sensitive

Light-responsive nanoparticles are popular for their convenient use at different wave-
lengths, such as ultraviolet (UV) [86], visible [87], and near-infrared (NIR) [88]. Nowadays,
UV is widely used in functional nanoparticle design. Compared with UV, the deeper
penetration of NIR is effective for deep tissue therapy [89].

Light-controlled drug delivery was first reported in 2010 [90]. The UV light irradiation
could induce the burst release of hydrophobic NR molecules from the nanoparticle [91]. In
another study, a copolymer system consisting of poly(ethylene oxide) (PEO) and poly(2-
nitrobenzyl methacrylate) (PNBM) was sensitive to UV-light and led to the light-controlled
release of payload drugs [90]. Compared with UV, infrared ranges from 600–900 nm,
has deeper penetration, and is more effective in treating cancer in the deep part of the
tissue. NIR-responsive systems are another main light-responsive system [92]. As an FDA-
approved fluorescent dye, ICG is widely used in cancer therapy, which could absorb NIR
light into heat [93]. Additionally, doxorubicin and ICG loaded in PLGA-based and dual-
modality imaging guided chemo-photothermal nanoparticles showed faster release under
NIR irradiation; this nanoparticle had a diameter of around 200 nm with good fluorescence
stability. Doxorubicin release was stimulated by heat, and nanoparticle penetration of the
tumor was improved after NIR irradiation, this research provided a promising strategy
for early diagnosis and therapy for cancer [94]. In a previous study, the dual-responsive
supramolecular prodrug complexes (SPCs)-based self-assemblies were achieved by utiliz-
ing UV and pH stimuli, with easier internalization into the cancer cells and therapy efficacy
(Figure 10) [95].
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2.2. Surface Conjugation with Targeting Ligands

The active target of cancer cells based on monoclonal antibodies, peptides, and aptamer
has aroused significant interest in the field of targeting ligands [4].

2.2.1. Monoclonal Antibodies

Antibody-drug conjugates are monoclonal antibodies conjugated to cytotoxic agents [96].
Monoclonal antibodies (MAbs) are macromolecules widely used as targeting ligands to
various types of nanoparticles, such as SPIONs [97], QDs [97], liposomes [98], and Au
nanocages [99]. However, their bulky size and constant redundant region may limit their
use. As reported in a previous study, nanoparticles formed by 2-methoxy-estradiol (2-ME)
based on anti-human epidermal growth factor receptor 2 (HER2) antibody-modified BSA
were validated in targeted cancer therapy; this system was prepared using the desolution
method and was proven effective in retaining the immunospecificity of the anti-HER2
antibody for the targeted cancer therapy [100]. Furthermore, in a previous study, PTX
was absorbed on graphene oxide nanosheets and then conjugated with vascular endothe-
lial growth factor (VEGF) to form the targeted nanoparticles, which showed remarkable
potential in photothermal controllable tumor treatment [101].

2.2.2. Peptides

Due to the bulky size of MAbs, peptides represent a viable targeting moiety with
relative flexibility and overcome the disadvantages of using MAbs [102]. Peptide−drug
conjugates (PDCs) are increasingly recognized in targeted drug delivery [103]. For example,
RGD peptides were intimately connected with integrin [104]. Nanoparticles composed of
RGD conjugation with superparamagnetic iron oxide nanoparticles (SPIONs) possessed
better targeting affinity and specificity [105]. In one previous study, a biocompatible
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conjugate consisting of a fatty acid-substituted dextran decorated with cyclo[RGDfK(C-
6-aminocaproic acid)] cRGDfK peptide could be used as a candidate for conventional
PEG [106]. Recently, gemcitabine (GEM) and amphiphilic peptide conjugation were ef-
fective in breast cancer therapy, this system was formed via self-assembled behaviors,
and the stability of GEM could be maintained during the circulation and accumulated in
the tumor site, which broadened the application of GEM for breast cancer therapy [107].
Tumor vascular endothelial cells (tVECs) were targeted with cRGD-functionalized polyplex
micelle loading anti-angiogenic protein encoding pDNA for anti-tumor activity in human
pancreatic adenocarcinoma tumor-bearing mice by noting that tVECs abundantly express
αvβ3 and αvβ3 integrin receptors [108,109]. Moreover, the application of cell-penetrating
peptides (CPPs) based on nanoplatforms in cancer treatment has also been worth attention
since their identification 25 years ago [110]. Nanoparticles could be functionally attached
to CCPs to achieve good therapeutic efficacy. For example, a nanoparticle against CapG to
a series of CPPs showed a good potential for metastasis in breast cancer [111].

2.2.3. Aptamers

Aptamers are complex three-dimensional structures composed of short, single-stranded,
synthetic nucleic acid oligomers, DNA or RNA, with some good characteristics for their
high affinity and specificity, easy synthesis, low molecular weight, and lack immuno-
genicity [112]. As ligands, conjugation of aptamers to nanoparticles has been reported
in a series of previous studies [113]. The combined use of cisplatin in liposomes conju-
gated with aptamers has been reported where the nucleolins (NCL) were the target of
aptamers. Aptamer-conjugated liposomes were formed by cholesterol incorporation and
hydration, which showed strong anti-proliferative activity in breast cancer cells overex-
pressing NCL [114].

2.3. Large Molecules-Based Therapy
2.3.1. Nucleic Acid-Based Therapy

Nucleic acid-based therapy is a technology that transfers nucleic acids, including
plasmid DNA, mini vector DNA, siRNA, etc., to the nucleus of diseased cells or tissues for
the gene therapy of cancers [115–117]. Furthermore, gene therapy focuses on the mutated
genome of the tumor cells [118], aiming to restore instead of kill cells [119].

Nowadays, there are two methods, viral and non-viral, in gene therapy. Safety con-
cerns have limited the routine use of viral vectors. In contrast, a non-viral gene delivery
method is preferred.

Poly(N-isopropylacrylamide) (PNIPAM) is the most extensively used in gene delivery
systems [120]. The polyplex micelles consisting of PNIPAAm and therapeutic plasmid DNA
(pDNA) could prolong blood circulation and suppress tumor growth in H22 tumor-bearing
mice [121]. Nanoparticle-based delivery of small interfering RNAs (siRNAs) has also been
reported to possess an anti-proliferative effect [122]. A biodegradable and redox-sensitive
nanocarrier consisting of solid poly (disulfide amide) (PDSA)/cationic lipid core and a
lipid-PEG shell for siRNA delivery was proven to have a good therapeutic effect [123].
Liposomes targeting the interleukin 12 (IL-12) gene in a non-viral manner could induce an
immune response and achieve good therapeutic efficacy [124].

Additionally, thermosensitive nanocarriers have also been used in gene transfec-
tion. For example, PEG polymers with grafted PEI chains were used to improve trans-
fection efficiency [125]. In another study, the core GCP was replaced with transactivator
of transcription (TAT)-modified AuNPs loaded with Cas9/sgRNA-Plk1 plasmid to ob-
tain multifunctional clustered, regularly interspaced, short palindromic repeats-associated
protein/single guide RNA-polo-like kinase 1 (Cas9/sgRNA-Plk1) plasmid-loaded mul-
tifunctional nanocarriers [126]. Under the stimulation of NIR, CRISPR/Cas9 plasmid
delivery has been successful in genome editing (~20%) of MTH1 in HCT 116-GFP tumor
models (Figure 11) [127]. At present, lipid nanoparticle-mediated mRNA delivery for
chimeric antigen receptor (CAR) T cell therapy is promising. However, the viral delivery
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vectors caused severe side effects. Ionizable lipid nanoparticles (LNPs) could achieve safe
and stable delivery of mRNA to human T cells for the activation of functional proteins to
enhance the efficacy of CRA T treatment [128].
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2.3.2. Protein-Based Drug Delivery

Natural biological molecules usually form protein-based nanoparticles with biocom-
patible, biodegradable, and non-antigenic properties and can be functionalized with cell-
targeting groups or ligands [129–131]. Gelatin is a protein obtained from the hydrolysis
of collagen [132]. One previous study in dogs with bladder cancer revealed that gelatin
nanoparticles loaded with paclitaxel (PTX) had a good therapeutic efficacy [133]. Drug
molecules conjugated with proteins were used for cancer therapy [134]. Hollow meso-
porous silica capsules have garnered significant attention as protein delivery vehicles [135].
For example, Fluorescein isothiocyanate (FITC)-labeled proteins were loaded into the
nanoparticles to achieve efficient therapeutic efficacy [136], evidenced by several examples
of protein delivery in liposomes [137]. Moreover, magnetic field-responsive protein conju-
gation nanoparticles were also reported to be an efficient system for brain tumors [138].

2.4. Others—Hydrogel

Hydrogel is a polymer with a three-dimensional, hydrophilic, and cross-linking net-
work, capable of retaining a large amount of water or physiological fluids [139]. Injectable
biodegradable hydrogels have broadened novel methods of cancer treatment [140,141].

In cancer therapy, hydrogels provide a platform for drug combinations. For example,
an injectable DNA hydrogel assembled by chemo drug-grafted DNA in a previous study
showed excellent anti-tumor efficacy and represented a promising adjuvant therapy in
cancer treatment [142]. Additionally, thermosensitive PPZ hydrogel loaded with PEGylated
cobalt ferrite nanoparticles showed a fantastic therapeutic efficacy in the breast cancer mice
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model [143]. Furthermore, a unique “Jekyll and Hyde” nanoparticle–hydrogel (NP-gel)
hybrid platform was designed to load DOX, leading to a good anti-recurrence efficiency
and low toxicity [144]. Based on the hyperthermia caused by ultrasound, a magnetic
hyperthermia responsive hydrogel comprised of silk fibroin and iron oxide nanocubes was
effective in the 4T1tumor-bearing mice model [145]. A light-responsive hydrogel consisting
of Ag2S and Fe-doped bioactive glass was proven to inhibit tumor growth (Figure 12) [146].
Moreover, a hydrogel composed of indoleamine 2,3-dioxygenase-1, and chemotactic CXC
chemokine ligand 10 was designed and delivered in the regressing postresection tumor
relapse, especially for its immunity modulation in glioblastoma multiforme [147]. More-
over, PEG hydrogel was constructed as a co-delivery system, where the PEG chain and
cyclodextrin determine the transition temperature [148].
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3. Preclinical to Clinical Transformation

As for the development of functional nanoparticles in cancer therapy, although great
progress has been made which was summarized in Table 1, there are still several challenges
in safety and drug release which need to be overcome if they are to be transformed into
clinical use [149]. Understanding the in vitro and in vivo delivery is a significant step for
the application of functional nanoparticles in clinics. The nanoparticles must be firstly
evaluated at the cellular level and, further, at tissue, organ, and body levels. During the in-
tracellular transport process, the main steps, including endocytosis, intracellular transport,
escape, and degradation, need to be considered. While nanoparticle–cell interaction is the
main concern in the in vitro application, the most important thing for in vivo application
is achieving the targeted delivery to the tumor site. The main processes, including the
EPR effect, passive tumor targeting, active targeting, pharmacokinetics, biodistribution,
and clearance, are vital [150–154]. Learning from multidisciplinary knowledge, such as
computational modeling, is significant in this progress [155,156]. Computational modeling
could be used in the prediction and monitoring of releasing and interaction behaviors of
nanoparticles in the body despite the limitation of translating results from computational
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models into clinical practices on account of the complexity and heterogeneity of clinical
tumors [157]. Furthermore, drug release is not controllable to some degree due to the
heterogeneity from patient to patient. More advanced approaches need to be proposed to
be used in the nanoparticle-controlled release. For example, the microchip is a relatively
competent device in this field [158].

Table 1. Functional nanoparticles in clinical translation.

Formulation Active Ingredient Trademark Label Indication Status

Albumin NP Paclitaxel Abraxane Breast, lung, and
pancreatic cancer Approved

Inorganic
nanoparticles

Ferric oxide Feraheme Iron deficiency anemia
(chronic kidney disease) Approved

Silicon dioxide Cornell Dots Imaging: melanoma,
brain tumor Preclinical trial

Silica dioxide-gold AuroLase Lung cancer
(photothermal therapy) Preclinical trial

Liposomes

Doxorubicin Doxil
Kaposi sarcoma, breast
cancer, ovarian cancer,
multiple myeloma

Approved

Daunorubicin DaunoXome Kaposi sarcoma Approved

Doxorubicin Myocet Metastatic breast cancer Approved

Paclitaxel Lipusu Ovarian cancer, metastatic
gastric cancer Approved

Mifamurtide MEPACT Osteosarcoma Approved

Vincristine sulfate Marqibo Acute
lymphoblastic leukemia Approved

Irinotecan Onivyde Metastatic
pancreatic cancer Approved

Cytarabine/daunorubicin (5:1) VYXEOS Acute myeloid leukemia Approved

Cisplatin Lipolatin Non-small cell lung cancer Clinical trial phase 3

Irinotecan IHL-305 Advanced stage of
solid tumor Clinical trial phase 1

Nanoparticles

Paclitaxel DHP107 Advanced gastric cancer Approved

Doxorubicin Transdrug® Hepatocellular carcinoma Approved

Docetaxel BIND-014 Advanced non-small cell
lung cancer Clinical trial phase 2

Camptothecin CRLX101 Advanced non-small cell
lung cancer Clinical trial phase 2

Anti-RRM2 siRNA CALAA-01 Solid tumor Clinical trial phase 1

Paclitaxel Nanoxel®
Advanced stage of
breast cancer Clinical trial phase 1

Paclitaxel PICN Metastatic breast cancer Approved

Polymer-drug
conjugate

Asparaginase Oncaspar® Leukemia Clinical trial phase 3

Paclitaxel Xyotax® Breast cancer,
ovarian cancer Clinical trial phase 3

Paclitaxel Taxoprexin® Solid tumor Clinical trial phase 2

Camptothecin XMT-1001 Non-small cell lung cancer Clinical trial phase 1

Paclitaxel Genexol-PM Breast cancer, lung cancer Approved
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Table 1. Cont.

Formulation Active Ingredient Trademark Label Indication Status

Polymeric micelles

Paclitaxel Nanoxel Breast cancer,
ovarian cancer Approved

Paclitaxel Paclical Ovarian cancer Approved

Doxorubicin Themodox® Breast, lung cancer Clinical trial phase 3

Paclitaxel Genexol®-PM
Breast cancer, lung cancer,
pancreatic cancer Approved

Paclitaxel Paclical® Ovarian cancer Approved

Paclitaxel NK105 Gastric cancer Clinical trial phase 3

Oxaliplatin NC-4016 Solid tumor Clinical trial phase 1

Cisplatin NC-6004 Pancreatic cancer Clinical trial phase 3

7-ethyl-10-hydroxycamptothecin NK012 Triple-negative
breast cancer Clinical trial phase 2

4. Discussion

Functional nanoparticles are promising for improving cancer treatment significantly.
Functional nano-drugs are designed as a platform in response to TME-related stimuli,
such as acidic pH and increased secretion of GSH [159,160], or external temperature,
ultrasound, magnetic field, and light [161]. In addition, surface conjugation and large
molecule delivery are also applicable in functional drug delivery. Furthermore, nano-
drugs have versatility, combining diagnosis and treatment characteristics. In recent years,
functional nanoparticles have become increasingly important in cancer immunotherapy
because of the delivery of tumor-related immunomodulators [162,163]. This research topic
on functional nanoparticles in cancer therapeutic therapy is exciting because of the current
progress; however, there are still many problems to be solved on the road to the wide
application of functional nanoparticles.

As for challenges, the biggest problems of these functional nano-drugs are their in-
stability during blood circulation, toxicity, low renal clearance, shallow penetration depth,
uncontrollable emission under stimulation signals, low uptake, and accumulation in the
cancer cells/tissues [164]. Thus, it is vital to understand the interaction between functional
nanoparticles and biological systems at cell, tissue, organ, and body levels. For decades,
people have been attempting to improve the therapeutic effect, but reducing toxicity in
the development of cancer nano-drugs has not explicitly been solved [165,166]. When
functional nanoparticles could modulate the toxicity of anti-cancer drugs, a new direc-
tion, and better opportunities were provided for the translation. Multidrug resistance
(MDR) is a sophisticated process involving multiple mechanisms, such as efflux pump-
mediated/dependent MDR, tumor cell heterogeneity, clonal selection, and expansion. The
present functional nanoparticles could be designed based on the tumor genetic profiles via
a series of nanoplatforms, including liposomes, dendrimers, and metallic nanoparticles,
which could be promising for overcoming cancer drug resistance and achieving a better
effect [167–169]. The use of redox enzymes still needs a lot of research [170]. For example,
light-responsive nanoparticles were limited by penetration depth. A fundamental obstacle
lies in developing optimal methods for loading and releasing nanoparticle drugs. The en-
capsulation of drug molecules must be stable during the idle period. Still, once it enters the
tumor site, it will be activated to release the drug [171,172]. Developing advanced methods
for overcoming the above problems to improve the effectiveness of cancer treatment is a
principal goal.

In recent years, functional nanoparticles have also been applied in cancer immunother-
apy because of their delivery of tumor-associated immunomodulatory agents/antigens to
activate dendritic cells for the elimination of cancer cells through this immunomodulatory
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process. The induction of cellular immune responses at mucosa is now of great interest
in vaccine development targeting mucosal pathogens. For example, an effector memory
T cell-based mucosal nanoparticle vaccination could promote robust T cell responses for
protection [173]. Furthermore, combined with other agents, immune checkpoint inhibitors
targeted to immune inhibitory receptors such as CTLA-4, PD-1, and PD-L1 could achieve a
more durable efficacy and excellent safety [174–176].

In addition, it is essential to develop an in vitro/in vivo test platform for the practical
evaluation of functional nanoparticles. Notably, there are significant differences between
in vitro and in vivo tumor models, as well as between animals and humans. To date, most
nanoparticles work well in vitro but fail to test in a more complex in vivo microenvironment.
A few years ago, the exciting concept of “organ-on-chip” was proposed [158]. In this
method, 3D miniaturized in vitro human tissues/organs were created through perfusion
culture on a microfluidic chip and connected to form a multi-organ human simulation
platform, which could be used to test drugs and nanoparticles and predict their behavior
in vivo.

As for in vivo drug delivery, several issues need to be considered, including the
EPR effect, active targeting, clearance by the MPS, renal clearance and pharmacokinetics
and biodistribution, biocompatibility, and biodegradation, which were shown in detail in
another review [177]. The clearance rate of nanoparticles is a critical issue in the design of
nanoparticles [178]. Although most nanoparticles can degrade after they are delivered as
drugs, many other systems cannot degrade quickly, but their potency is too strong to be
ignored. In these cases, it is necessary to design according to its physiological correlation
with cancer and normal tissues [179].

Due to the high heterogeneity and complexity of the TME, nanoparticles’ targeting and
therapeutic ability are often quite limited, including a variety of subsets [180]. Moreover,
there are similar characteristics between tumors and normal tissues [181]. Two schemes
have been designed to solve this problem, involving a variety of delivery/target mecha-
nisms. Co-delivery of multi-drugs via nanoparticles can be designed to target multiple
anti-tumor parts simultaneously [182]. Similarly, better treatment efficacy can be achieved
via antibody conjugation against one tumor type for tumor recognition [183].

In recent years, carrier-free nano-drugs have contributed to the progress of various
treatment methods [184,185]. The advantages of anti-cancer medications combined with
other chemotherapeutic drugs, photosensitizers, photothermal therapy, immunotherapy, or
genetic drugs have been proven. Finally, this paper introduces the prospects to emphasize
the challenges and possible solutions of the currently developed carrier-free nano-drugs
in clinical application, which may have significance for designing effective carrier-free
solutions in the future.

Apart from the treatment characteristic, the theragnostic agents used for cancer diag-
nosis and personalized treatment is also important. The concept of theranostics emerged
around 2002 to combine diagnostic assays with therapy. Molecular imaging was applied
in the cancer treatment for its tumor target specificity and minor damage to the normal
tissue. There is a growing number of nanoscale probes that have been developed for imag-
ing modality, therapeutic cargo, and the target [186]. For example, the prostate-specific
membrane antigen-targeted nanoplexes carrying imaging reporters, siRNA, cDNA, and
prodrug enzymes in the cancer diagnosis have been reported [187,188]. As a young field
for theranostics, some issues, including side effects of probes, synthesis, and translation,
still need to be solved. Moreover, functional nanoparticle strategies contributed a lot to
this cancer diagnosis and treatment [186]. Importantly, theranostics could reveal the actual
characteristics of cancer and the side effects in patients; therefore, this feedback could help
for personalized treatment.

In summary, with the technical revolution of nanotechnology, more stable and biocom-
patible functional nano-drug delivery systems will be developed and better used in cancer
diagnosis and treatment.
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5. Future Directions

Facing the main challenges with nanoparticles in cancer treatment, some aspects
still need attention. First, reducing side effects and improving the delivery efficiency
of nanoparticles through interdisciplinary approaches, such as computational modeling.
Secondly, more attention needs to be paid to controlling the loading and releasing of
nano cargos. Thirdly, a multifaceted evaluation platform is worth efforts to be built
up for a comprehensive study and monitoring for in vitro/in vivo interaction between
nanoparticles and cells/whole organism.
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