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Background. Hepatocellular carcinoma (HCC) is widely acknowledged as a malignant tumor with rapid progression, high
recurrence rate, and poor prognosis. At present, there is a paucity of reliable biomarkers at the clinical level to guide the
management of HCC and improve patient outcomes. Our research is aimed at assessing the prognostic value of MAD2L1 in
HCC. Methods. Four datasets, GSE121248, GSE101685, GSE85598, and GSE62232, were selected from the GEO database to
analyze differentially expressed genes (DEGs) between HCC and normal liver tissues. After functional analysis, we constructed
a protein-protein interaction network (PPI) for DEGs and identified core genes in this network with high connectivity with
other genes. We assessed the relationship between core genes and the pathogenesis and prognosis of HCC. Finally, we explored
the gene regulatory signaling mechanisms involved in HCC pathogenesis. Results. 145 DEGs were screened from the
intersection of the four GEO datasets. MAD2L1 was associated with most genes according to the PPI network and was selected
as a candidate gene for further study. Survival analysis suggested that high MAD2L1 expression in HCC correlated with a
worse prognosis. In addition, real-time quantitative PCR (RT-qPCR), western blot (WB), and immunohistochemistry (IHC)
findings suggested that the expression of MAD2L1 was abnormally increased in HCC tissues and cells compared to
paraneoplastic tissues and normal hepatocytes. Conclusion. We found that high MAD2L1 expression in HCC was significantly
associated with overall patient survival and clinical features. We also explored the potential biological properties of this gene.

1. Introduction

According to the latest World Health Organization esti-
mates, hepatocellular carcinoma (HCC) is one of the most
common malignancies in the world [1, 2], with high hetero-
geneity [3], recurrence, and metastatic rates [4] and a poor
long-term prognosis. Although surgical resection is the
mainstay of treatment for early-stage HCC [5], most HCC
patients are already at an advanced stage at diagnosis.
Accordingly, it is essential to elucidate the molecular mech-
anisms of HCC [6, 7] and identify effective molecular targets
[8, 9] to improve patient survival and quality of life [10].

Mitotic arrest deficient 2-like protein 1 (MAD2L1) has
been recognized as an important member of the MAD2 fam-

ily [11]. MAD2L1 is a protein-coding gene [12] and a
mitotic spindle assembly checkpoint component that pre-
vents anaphase onset until all chromosomes are correctly
aligned at the metaphase plate [13]. Until recently, the corre-
lation between the overexpression of MAD2L1 in tumors
and its prognostic value has been demonstrated [14]. In this
regard, MAD2L1 has been documented to be overexpressed
in lung adenocarcinoma cells and can promote proliferation
and inhibit apoptosis [15]. However, there is limited evi-
dence regarding the association between MAD2L1 and
tumors, and the role of MAD2L1 in HCC remains unclear.

Gene Expression Omnibus (GEO) is a comprehensive
online cancer research database that provides high-
throughput gene expression data submitted by research
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institutions from all over the world [16]. In the current
study, we selected several mRNA microarray datasets
(GSE121248, GSE101685, GSE85598, and GSE62232) from
the GEO database to screen for differentially expressed genes
associated with HCC occurrence and development. We then
performed a series of bioinformatics analyses such as the
protein-protein interaction (PPI) network construction,
Kaplan-Meier survival analysis, and functional analysis to
identify key genes that may regulate HCC progression [17].
In addition, microarray tissue samples were utilized to inves-
tigate the potential clinical relevance of key genes. The find-
ings of this study offer valuable insights into the quest for
new markers and drug candidate genes for targeted therapy
in HCC patients.

2. Materials and Methods

2.1. Data Acquisition. Four HCC datasets (GSE121248,
GSE101685, GSE84598, and GSE62232) were downloaded
from the NCBI GEO database. Dataset GSE121248 consisted
of 70 HCC and 37 paraneoplastic tissue samples, GSE101685
contained 25 HCC and 25 paraneoplastic tissue samples,
GSE62232 included 81 HCC and 9 paraneoplastic tissue
samples, and GSE84598 contained 22 HCC and 22 paraneo-
plastic tissue samples. DEGs were screened from the above 4
datasets. RNA sequencing data and survival prognosis data
for the hub genes were obtained from The Cancer Genome
Atlas (TCGA) database.

2.2. Identification of DEGs. GEO2R is an online tool used to
conduct differential gene expression analysis on GEO data.
DEGs in HCC and paracancer samples identified by GEO2R
were downloaded from the GEO database with the cDNA
expression profiles. The log-fold change (FC) in expression
and adjusted P values (adj:P) were determined. Genes that
met the cutoff criteria of adj:P < 0:05 and ∣logFC ∣ >1:0 were
regarded as DEGs [16]. Genes from the four datasets were inter-
sected using the Venn diagram network tool. Volcano plots of
DEGs were generated by visual hierarchical clustering analysis.

2.3. Functional Enrichment Analysis of DEGs. To reveal the
functions of DEGs, we used the Enrichr database for GO
annotation and KEGG pathway enrichment analysis [18].
The GO terminology consists of three components: biologi-
cal process (BP), cellular component (CC), and molecular
function (MF). An adj:P value < 0.05 was statistically
significant.

2.4. Hub Gene Analysis. To query the potential correlation
between these DEGs, we evaluated them using the STRING
web tool [19]. Furthermore, modules of the PPI network
(cutoff values were set to degree = 2, node score = 0:2, k‐
core = 2, and maximumdepth = 100) were explored using
the Molecular Complex Detection (MCODE) plugin from
Cytoscape.

2.5. Gene Set Enrichment Analysis. All gene expression data
of TCGA-HCC were downloaded from the UCSC Xena plat-
form. The HCC patients were divided into high-expression
and low-expression groups, according to the median value

of MAD2L1 expression [20]. Gene set enrichment analysis
(GSEA) [21] evaluated expression differences in gene sets
between the two groups to validate GO and KEGG analysis
results. An adj:P value < 0.05 was statistically significant.

2.6. Survival Analysis. The Kaplan-Meier plotter is an analy-
sis tool built by Oncomir that can be used to analyze the
overall survival of various tumors with genes, featuring a
total of 54675 genes in a sample of 10461 patients. In this
study, Kaplan-Meier analysis was conducted to examine
the correlation between MAD2L1 expression and OS and
RFS in HCC patients. The log-rank test determined whether
the two survival curves were statistically significantly differ-
ent. P value < 0.01 was statistically significant.

2.7. The Quantitative Real-Time Polymerase Chain Reaction
of Cell Lines. Cells including LO2, human normal liver cell
line, and HCC cell lines HCCLM3, MHCC-97H, Huh7,
HepG2, and Hep3B were obtained from the Chinese Cell
Bank (Shanghai, China) and cultured with Dulbecco’s mod-
ified Eagle medium supplemented with 10% fetal bovine
serum. All cells were incubated at 37°C in a 5% CO2
incubator.

The TRIzol reagent (Invitrogen, Thermo Fisher Scientific,
Shanghai, China) was applied to extract total RNA from cell
lines according to themanufacturer’s instructions. Reverse tran-
scription into cDNA was conducted using the Transcriptor
First Strand cDNA Synthesis Kit. The cDNA strand was ana-
lyzed by qRT-PCR using the SYBR PCR kit. The expression
of MAD2L1 was computed by the 2ð−ΔΔCtÞ method using
GAPDH as an internal reference. The qRT-PCR primers used
in the present study were as follows: MAD2L1 forward primer,
5′-GTTCTTCTCATTCGGCATCAACA-3′; MAD2L1 reverse
primer, 3′-GAGTCCGTATTTCTGCACTCG-5′; GAPDH
forward primer, 5′-CACCATGAAGATCAAGATCATTGC-
3′; and GAPDH reverse primer, 3′-GGCCGGACTCATCG
TACTCCTGC-5′.

2.8. Western Blot. Cells were lysed in RIPA buffer containing
1% protease inhibitor PMSF. Centrifugation of the upper
supernatant was performed, and the protein levels were
determined by the BCA protein assay. Total proteins were
separated on 12.5% SDS gels at 80V for 30 minutes,
followed by 120V for 60 minutes. The protein was trans-
ferred onto PVDF membranes at 350mA for 1 hour. Then,
the protein blots were incubated with primary antibodies
consisting of MAD2L1 (10337-1-AP, PTG, 1 : 1000) and β-
tubulin (AP0064, Bioworld, 1 : 5000) for 14-18 hours. After
the blots were incubated with secondary antibodies, bands
were detected by enhanced chemiluminescence.

2.9. Evaluation of IHC Results. Tissue arrays were purchased
from Shanghai Outdo Biotechnology Co. (Shanghai Outdo,
Shanghai, China) and applied to estimate the expression of
MAD2L1 protein.

The IHC results based on the staining intensity and stain-
ing area of the tissue microarrays were scored by two experi-
enced pathologists from the Department of Pathology at the
Affiliated Hospital of Guizhou Medical University [22]. The
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staining area was scored as follows: 0, <5%; 1, 6-25%; 2, 26-
50%; 3, 51-75%; and 4, >75%. The staining intensity was
scored as follows: 0, none; 1, mild; 2, moderate; and 3, strong.
The score for each segment was equal to the product of their
staining intensity and staining area and was categorized as
negative if the final score was <6 and positive if the final score
was ≥6.

2.10. Statistical Analysis. SPSS 22.0 (SPSS, IL, USA) was used
for statistical analysis. Student’s two-tailed t-test was used to
assess statistical significance of differences between two groups
and one-way ANOVA among multiple groups. TheWilcoxon
rank-sum test analyzed the skewed data. Spearman’s rank cor-
relation test was conducted to assess the correlation between
gene expression levels. The chi-square test evaluated correla-
tions between gene expression and clinicopathological charac-
teristics. Survival analysis was conducted by the Kaplan-Meier
method and log-rank test. Univariate andmultivariate survival
analyses were calculated using Cox proportional regression
models. A P value < 0.05 indicated statistical significance
(∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).

3. Results

3.1. Identification of 145 DEGs in HCC Compared to Normal
Liver Tissue. Four datasets (GSE121248, GSE101685,

GSE84598, and GSE62232) were obtained from the GEO
database to analyze DEGs between HCC and paraneoplastic
tissues. 775 DEGs (248 upregulated and 527 downregulated
genes) were identified in the GSE121248 dataset. 1241 DEGs
(523 upregulated and 718 downregulated genes) were
obtained from dataset GSE101685. Moreover, for the
GSE84598 dataset, 906 DEGs (302 upregulated and 604
downregulated genes) were identified. Finally, 1204 DEGs
(600 upregulated and 604 downregulated genes) were
screened from GSE62232. Remarkably, 42 DEGs were signif-
icantly upregulated (Figure 1(a)), and 103 DEGs were down-
regulated (Figure 1(b)) in HCC tissues compared with
paracancerous tissues (Supplementary Table 1). The
intersected DEGs in GSE121248 are shown in Figure 1(c).

3.2. GO and KEGG Pathway Enrichment Analyses. The
Enrichr database was used for GO and KEGG enrichment
analysis to explore the biological role of the screened DEGs.
Figure 2 lists the top 10 enriched GO and KEGG pathways.
GO annotation revealed that significantly enriched biologi-
cal processes associated with the 145 DEGs included coen-
zyme metabolic process, small molecule catabolic process,
carboxylic acid, organic acid catabolic process, etc.
(Figure 2(a)). The top four significantly enriched terms in
cell component analysis were collagen-containing extracellu-
lar matrix, vesicle lumen, cytoplasmic vesicle lumen, and
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Figure 1: Identification of common DEGs from GSE121248, GSE101685, GSE85598, and GSE62232 datasets: (a) the 42 upregulated DEGs;
(b) The 103 downregulated DEGs; (c) volcano plot of the 145 DEGs (red, upregulation; blue, downregulation).
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protein-lipid complex (Figure 2(b)). Moreover, the top four
significantly enriched molecular function terms included
coenzyme binding, organic acid binding, carboxylic acid,
and tetrapyrrole binding (Figure 2(c)). Finally, the top four
significantly enriched signaling pathways for the 145 DEGs
were carbon metabolism, tryptophan metabolism, retinol
metabolism, and complement and coagulation cascades
(Figure 2(d)).

3.3. MAD2L1 Is a Core Gene in the PPI Network. The
STRING database was employed to construct the PPI net-
work of these 145 DEGs. 145 nodes (genes) and 484 edges

(interactions) were observed in the constructed PPI network
(Figure 3(a)). We eventually selected the top 10 hub genes by
their connectivity level, including “CCNB1” (score = 29),
followed by “MAD2L1” (score = 27), “CCNA2” (score = 27
), “AURKA” (score = 26), “ZWINT” (score = 25), “TPX2”
(score = 25), “EZH2” (score = 25), and “HMMR”
(score = 25) (Supplementary Table 2). The interactions
among these ten hub genes were further visualized
(Figure 3(b)). KEGG analysis revealed that the significantly
enriched pathways for the ten hub genes were
progesterone-mediated oocyte maturation, cell cycle,
oocyte meiosis, cellular senescence, and human T-cell
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Figure 2: GO annotation and KEGG pathway enrichment analysis: (a) the biological processes; (b) the cellular components; (c) the
molecular functions; (d) the KEGG pathway enrichment analysis of DEGs.
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leukemia virus one infection. Based on the PPI network, we
identified CCNB1, MAD2L1, and CCNA2 as the top genes
with higher connectivity degrees with other genes,
suggesting their core position in the network. Given that
CCNB1 has been widely reported in various tumors, we
selected MAD2L1 as the study candidate for our follow-up
work.

3.4. Expression and Survival Analysis of MAD2L1. The
mRNA expression level of MAD2L1 in HCC was further
assessed in TCGA. We found that MAD2L1 expression
was significantly upregulated in HCC tissues than in para-
cancerous tissues (Figures 4(a) and 4(b)). Additionally, the
prognostic value of MAD2L1 expression in HCC was
assessed by the Kaplan-Meier plotter. Patients with high
expression of MAD2L1 had a shorter survival time
(Figures 4(c) and 4(d)). Overall, these results suggest that
MAD2L1 expression is higher in HCC tissue than in adja-
cent liver tissue, and MAD2L1 is an adverse prognostic
factor.

3.5. GSEA for MAD2L1-Associated Signaling Pathways in
HCC. To explore the potential biological functions of
MAD2L1, we performed GSEA for samples with low and
high MAD2L1 expression to predict MAD2L1-related sig-
naling pathways. The significantly enriched terms upregu-
lated in the high MAD2L1 group were “DNA repair,”
“G2M checkpoint,” “E2F targets,” “MYC targets,” “glycoly-
sis,” “unfolded protein response,” “P53 signaling pathway,”
“PI3K/AKT/mTOR signaling pathway,” and “Wnt/β-
catenin signaling pathway” (Figure 5).

3.6. High Expression of MAD2L1 in HCC. We selected five
HCC and one hepatocyte cell line to evaluate the expression
of MAD2L1 using real-time quantitative PCR and western
blot. The RNA and protein levels of MAD2L1 were upregu-
lated (Figures 6(a) and 6(b)). To further determine the sig-
nificance of MAD2L1 expression, IHC staining was
performed in a cohort comprising 90 cases of primary
HCC paired with noncancerous tissue (Figures 6(c) and
6(d)). Survival analysis showed that overexpression of
MAD2L1 was associated with poor prognosis, reducing the
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Figure 3: The PPI network and hub gene identification: (a) PPI network of 145 DEGs; (b) PPI network of the top 10 hub genes; (c) KEGG
enrichment analysis of the 10 hub genes.
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overall survival time (P = 0:014) and disease-free survival
time (P = 0:028) of HCC patients (Figures 6(e) and 6(f)).

A correlation was found between MAD2L1 expression
and the clinicopathological features of HCC. High expres-
sion of MAD2L1 was linked with Edmondson-Steiner grad-
ing (P = 0:019) and tumor size (P = 0:042). During the
univariate analysis, Edmondson-Steiner grading (P < 0:001
), GGT (P = 0:035), and AJCC (P = 0:021) were significantly
correlated (Table 1). To determine whether MAD2L1 was a
prognostic factor independent of HCC, we conducted a mul-
tifactorial Cox regression analysis based on the expression
level of MAD2L1 adjusted for the Edmondson-Steiner grade,
GGT, and AJCC of HCC patients. Importantly, we found

that MAD2L1 expression and Edmondson-Steiner grading
were independent prognostic factors for HCC (Table 2).

4. Discussion

Despite recent advances in diagnosis and treatment, hepato-
cellular carcinoma remains one of the most lethal cancers
globally [23–25]. Although the treatment landscape con-
tinues to be challenging given the heterogeneity of tumors
and the evolutionary nature of cancer, molecular pathology
offers much promise for HCC in terms of molecular diagno-
sis and targeted therapy [26–28]. Indeed, in the current era
of precision medicine, it is of great benefit to explore
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Figure 4: Expression and survival analysis of MAD2L1: (a) the mRNA levels of MAD2L1 in TCGA in HCC tissues and adjacent liver
tissues; (b) the mRNA levels of MAD2L1 in paired HCC and adjacent liver tissues in TCGA database; (c) Kaplan-Meier survival analysis
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abnormal molecular genetic alterations in tumors through
various bioinformatics analysis tools to predict the survival
prognosis of tumor patients.

The GEO database is one of the most common public
databases used by researchers worldwide to explore genetic
abnormalities in various cancers [29–32]. In this study, we first
selected four different cDNA expression profiles, GSE121248,
GSE101685, GSE85598, and GSE62232, from the GEO data-
base to analyze the DEGs in HCC compared with normal liver
tissues and screened 145 genes (including 42 upregulated and
153 downregulated genes). Interestingly, although these DEGs
were enriched in different cellular locations, most of the up-
and downregulated DEGs were involved in biological pro-
cesses related to metabolism and energy regulation.

To narrow down the number of “candidate” DEGs and
determine potential “key” genes for HCC development [30,
31, 33, 34], a PPI network of 145 DEGs was constructed to
visualize the relationships between genes, followed by func-
tional analysis. Based on their connectivity level, the top
ten hub genes identified included CCNB1, MAD2L1,
CCNA2, AURKA, ZWINT, HMMR, TPX2, EZH2, and
OIP5. Most importantly, MAD2L1 was the highest-ranked
gene among these ten genes in the PPI network.

In previous studies, the differential expression of MAD2L1
in many tumors was analyzed using the TIMER2.0 database
[35, 36]. It was found that the expression of the MAD2L1 gene
was higher in BLCA, BRCA, CESC, CHOL, COAD, ESCA,
GBM, HNSC, KIRC, LUAD, LUSC, PRAD, READ, STAD,
and UCEC than in their corresponding paracancerous tissues.
There are currently no reports of MAD2L1 expression in
HCC and its potential prognostic impact in the literature. In a
study byWei et al., bioinformatics analysis was used to demon-
strate that NDC80 andMAD2L1 were potential biomarkers for
the diagnosis of non-small-cell lung cancer [37]. Moreover,
CDK1 and MAD2L1 were reported by Lu et al. as prognostic
markers in rhabdomyosarcoma [38]. To the best of our knowl-
edge, this is the first comprehensive study to assess the expres-
sion of MAD2L1 in HCC using TCGA database [39]. We
provided compelling evidence that MAD2L1 gene expression
levels are significantly higher in HCC patients than in adjacent
paraneoplastic tissues, as confirmed by IHC. Kaplan-Meier sur-
vival analysis showed high expression of MAD2L1 in HCC cor-
related with shorter OS and DFS. This finding was also
validated in other datasets. Multivariate Cox analysis further
confirmed that high expression of MAD2L1 was an indepen-
dent risk factor for OS in patients with HCC. Other clinicopath-
ologic features, including Edmondson-Steiner grade and tumor
size, were also associated with a worse prognosis in HCC.

Herein, GSEA results showed that MAD2L1 was associ-
ated with DNA repair, G2M checkpoint, p53 signaling path-
way, PI3K/AKT/mTOR signaling pathway, and Wnt/β-
catenin signaling pathway in cancer. It is widely acknowledged
that DNA replication ensures that cellular genetic information
is accurately copied and correctly transmitted to offspring cells
[32, 40, 41]. However, DNA replication is prone to interfer-
ence and damage under various pressures in the body, leading
to stagnant DNA replication, affecting genome stability, and
even inducing apoptosis [42], necrosis [43], and carcinogene-
sis [44]. Pathway enrichment analysis suggested thatMAD2L1
affected the pathogenesis of proliferation and apoptosis in
hepatocellular carcinoma via the above pathways. MAD2L1
has been documented to be associated with female breast can-
cer [45], where it is usually deleted or amplified simulta-
neously with BUB1B. Therefore, these two genes are
commonly tested in ductal breast carcinoma patients to aid
clinicians in selecting anticancer agents [46].

Furthermore, MAD2L1 has been reported in glioblas-
toma as a target of tumor suppressors, including miR-30a-
3p, which inhibited the proliferation of gastric cancer cells
[47]. In addition, the cell cycles were arrested at the G0/G1
phase.

To the best of our knowledge, no evidence of an association
between HCC and genetic abnormalities involving MAD2L1

Table 1: Correlations between MAD2L1 expression and the
clinicopathological features of hepatocellular carcinoma patients.

Characteristics n
MAD2L1 expression

P value
Low High

Age (years)

>50 50 20 (40.00%) 30 (60.00%)
0.343

≤50 40 20 (50.00%) 20 (50.00%)

Gender

Male 80 34 (42.50%) 46 (57.5%)
0.476

Female 10 6 (60.00%) 4 (40.00%)

AJCC stage

I 63 31 (49.21%) 32 (50.79%)
0.165

II-III 27 9 (33.33%) 18 (66.67%)

HBsAg

Negative 19 10 (52.63%) 9 (47.37%)
0.419

Positive 71 30 (42.25%) 41 (57.75%)

AFP (μg/L)

>400 33 15 (45.45%) 18 (54.54%)
0.883

≤400 57 25 (43.86%) 32 (56.14%)

Total bilirubin (μmol/L)

>20 15 7 (46.67%) 8 (53.33%)
0.850

≤20 75 33 (44.00%) 42 (56.00%)

ALT (U/L)

>45 32 15 (46.88%) 17 (53.12%)
0.730

≤45 58 25 (43.30%) 33 (56.70%)

GGT (U/L)

>40 59 24 (40.68%) 35 (59.32%)
0.321

≤40 31 16 (51.61%) 15 (48.39%)

Edmondson-Steiner
grade

I & II 53 29 (54.72%) 24 (40.68%)
0.019

III & IV 37 11 (29.73%) 26 (70.27%)

Tumor number

1 79 35 (44.30%) 44 (55.70%)
0.943>1 11 5 (45.45%) 6 (54.55%)

Tumor size (cm)

>5 28 8 (28.57%) 20 (71.43%)
0.042

≤5 62 32 (51.61%) 30 (48.39%)
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has been reported. Although our approach can provide new
insights into the correlation between MAD2L1 and HCC, cer-
tain limitations were noted in this study. First of all, only
GEO and TCGA datasets were analyzed, whichmay be a source
of sample bias. To increase the robustness of our findings and
ensure their implementation at the clinical level, the sample size
should be further expanded, with additional clinical factors
included in future studies. Finally, experimental verification is
required to elucidate the mechanism of MAD2L1 in HCC
development in vitro and in vivo. In summary, our study pro-
vided significant insights into better understanding the patho-
genesis of HCC; however, our findings were not robust
enough to classify MAD2L1 proteins as new potential drug tar-
gets in HCC. In addition, many questions remain to be
addressed. The specific mechanism of MAD2L1 in HCC
remains unknown, nor is it clear whether MAD2L1 is associ-
ated with chemoresistance in HCC. Accordingly, further
research on the mechanisms at the molecular level is required
to improve the clinical treatment of this patient population.

5. Conclusions

In short, we identified 145 DEGs in HCC based on the GEO
database, and the gene MAD2L1 was found to be a core
component of the PPI network of DEGs. The analysis of
online databases and IHC, qPCR, and WB assays demon-

strated abnormal overexpression of MAD2L1 in HCC com-
pared to paraneoplastic tissues. Survival analysis suggested
that high MAD2L1 expression was correlated with a poor
prognosis. In addition, the biological processes and signaling
pathways associated with MAD2L1 were preliminarily
explored. Further investigations are essential to improve
our understanding of the clinical applications they may hold.
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Table 2: Univariate and multivariate survival analyses.

Characteristics
OS

Univariate Multivariate
HR 95% CI P value HR 95% CI P value

MAD2L1expression 11.511 (3.471-38.110) <0.001 8.644 (2.543-29.382) 0.001

Low vs. high

Age (years) 0.721 (0.352-1.476) 0.371

≤50 vs. >50
Gender 0.520 (0.124-2.176) 0.371

Male vs. female

AJCC stage 2.262 (1.128-4.536) 0.021 1.230 (0.599-2.527) 0.512

I vs. II-III

HBsAg 1.001 (0.429-2.336) 0.998

Negative vs. positive

AFP (ng/mL) 0.888 (0.434-1.818) 0.746

≤400 vs. >400
Total bilirubin (μmol/L) 1.113 (0.428-2.893) 0.826

≤20 vs. >20
ALT (U/L) 0.935 (0.457-1.912) 0.853

≤45 vs. >45
GGT (U/L) 0.386 (0.159-0.937) 0.035 0.572 (0.231-1.416) 0.227

≤40 vs. >40
Edmondson-Steiner grade 5.198 (2.384-11.336) <0.001 3.640 (1.589-8.333) 0.002

I-II vs. III-IV

Tumor number 1.810 (0.742-4.417) 0.192

Single vs. multiple

Tumor size (cm) 0.504 (0.250-1.018) 0.056

≤5 vs. >5
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