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Abstract The eukaryotic sliding clamp, proliferating cell
nuclear antigen (PCNA), acts as a central coordinator of
DNA transactions by providing a multivalent interaction sur-
face for factors involved in DNA replication, repair, chromatin
dynamics and cell cycle regulation. Posttranslational modifi-
cations (PTMs), such as mono- and polyubiquitylation,
sumoylation, phosphorylation and acetylation, further expand
the repertoire of PCNA’s binding partners. These modifica-
tions affect PCNA’s activity in the bypass of lesions during
DNA replication, the regulation of alternative damage pro-
cessing pathways such as homologous recombination and
DNA interstrand cross-link repair, or impact on the stability
of PCNA itself. In this review, we summarise our current
knowledge about how the PTMs are “read” by downstream
effector proteins that mediate the appropriate action. Given the
variety of interaction partners responding to PCNA’s modified
forms, the ensemble of PCNA modifications serves as an
instructive model for the study of biological signalling
through PTMs in general.

Keywords PCNA . Ubiquitin . SUMO . Phosphorylation .

Acetylation . Posttranslational modifications . DNA
replication . Genome stability

Introduction

Posttranslational protein modifications (PTMs) generally
modulate the functions of their target proteins by creating,
blocking or modifying interaction surfaces. If recognised in an
intramolecular manner, the modification leads to a change in
the target’s conformation. More often, however, PTMs affect
the interactions between their targets and other cellular factors
that function as effectors by translating the modification into a
biological action (Fig. 1). Although some modifiers, such as
the phosphate group, may act in part by affecting the surface
charge properties of the modified substrate, PTMs are com-
monly recognised by means of dedicated domains or motifs
that bind specifically to the modifier. Such recognition motifs
often exhibit low-affinity binding, allowing an effective inter-
action only in combination with a basal affinity of the effector
for the unmodified target protein. In thismanner, a high degree
of selectivity for the modified substrate is achieved and in-
teractions with other target proteins carrying the same modi-
fication are avoided.

The effects of histone modifications on chromatin structure
are paradigmatic for how PTMs diversify the properties and
interactions of their targets (Kouzarides 2007). In fact, when
considering the staggering number of possible nucleosome
variants resulting from a combinatorial placement of several
different PTMs (phosphorylation, acetylation, methylation,
ubiquitylation and sumoylation) onto the histone octamer,
the term “histone code” seems an appropriate description of
the resulting complexity (Jenuwein and Allis 2001). Research
in this area has coined the terms “writers” and “erasers” for the
enzymes that attach and remove the modifiers, respectively,
and “readers” for the effector proteins that recognise the
modified histones and transmit the biological signal.

In this review, we will discuss demonstrated and potential
readers of the PTMs of one of the central regulators of DNA
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metabolism, the eukaryotic sliding clamp, proliferating cell
nuclear antigen (PCNA). The protein is a homotrimeric,
ring-shaped molecule that encircles DNA and acts as a
binding platform for the replicative DNA polymerases as
well as components of other pathways involved in DNA
repair, chromatin dynamics and cell cycle regulation
(Kelman 1997). Even in its unmodified form, PCNA in-
teracts with dozens of proteins (Moldovan et al. 2007).
Interactions usually involve the so-called interdomain con-
nector loop (IDCL) of PCNA and a motif termed PCNA-
interacting peptide (PIP box) on the interaction partner
(Warbrick 1998). In higher eukaryotes, a second PCNA-
interacting motif, called APIM (AlkB homologue 2
PCNA-interacting motif), has also been described, although
the region on PCNA to which this motif binds remains to be
characterised (Gilljam et al. 2009).

Phosphorylation of PCNA has been reported as early as
1994 (Prosperi et al. 1994), and we now know that PCNA is
also subject to ubiquitylation, sumoylation and acetylation
(Fig. 2). Over the past few years, tremendous progress has
been made in describing the biological consequences of some

of these PTMs and identifying their readers (Table 1, Fig. 3).
Here we will briefly describe each modification, review our
current understanding of how it is recognised by downstream
effector proteins and discuss unresolved questions.

Readers of PCNA ubiquitylation

Since its discovery a decade ago (Hoege et al. 2002), PCNA
ubiquitylation has emerged as a prominent marker for repli-
cation problems associated with DNA damage or replication
fork stalling (Bergink and Jentsch 2009; Ulrich 2009; Ulrich
and Walden 2010). By means of its downstream effectors,
ubiquitylated PCNA controls several aspects of damage tol-
erance, defined as a mechanism that allows the replication
machinery to bypass or avoid lesions in the template DNA.
The modification affects a highly conserved lysine (K) resi-
due, K164, and is detectable in all eukaryotic species that have
been analysed, including budding and fission yeast, mamma-
lian and avian cells, Xenopus laevis egg extracts and probably
plants (Hoege et al. 2002; Leach and Michael 2005; Arakawa
et al. 2006; Frampton et al. 2006; Anderson et al. 2008). It is
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Fig. 1 Posttranslational modifications and their recognition by effector
proteins. a Intramolecular recognition of the modifier, leading to a
conformational change in the target protein. b Intermolecular recogni-
tion involving a single interaction site. In cases where the PTM en-
hances binding of the effector (plus symbol), the modifier is recognised

in the context of the target protein as a composite epitope. Dissociation
(minus symbol) is induced by direct influence at the interaction site. c
Intermolecular recognition involving two interaction sites. Binding is
enhanced (plus symbol) by bipartite recognition and disrupted (minus
symbol) by interference at a second site
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mediated by a group of ubiquitin conjugation factors collec-
tively called the RAD6 pathway (Lawrence 1994). These
include its founding member, the ubiquitin-conjugating en-
zyme (E2) Rad6, which—in complex with the ubiquitin pro-
tein ligase (E3) Rad18—monoubiquitylates PCNA and the
heterodimeric E2 complex Ubc13-Mms2 (or Ubc13-UEV1 in
mammals), which cooperates with the E3 Rad5 (or one of the
mammalian homologues, SHPRH and HLTF) in the extension
of the monoubiquitin unit to a K63-linked polyubiquitin chain
(Hoege et al. 2002). In vertebrates, the deubiquitylating en-
zyme USP1 removes ubiquitin from PCNA (Huang et al.
2006); the isopeptidase Ubp10 was recently shown to fulfil
an analogous function in budding yeast (Gallego-Sanchez et
al. 2012). Ubiquitylation is induced by conditions that lead to
replication fork stalling (but not collapse) and involve the
exposure of single-stranded (ss)DNA. In yeast, Rad18
is rate limiting for both mono- and polyubiquitylation of
PCNA (Davies et al. 2008), but the conditions that
control the activation of Ubc13-Mms2 and Rad5 or
determine the balance between the two modifications
have not been determined.

Damage-tolerant DNA polymerases

A straightforward mechanism to process lesions during
DNA replication is the use of specialised, damage-tolerant
DNA polymerases that can accommodate non-native tem-
plates in their active sites. This reaction, named translesion
synthesis (TLS), allows replication to be completed in the
presence of damage, but is at the same time a predominant
source of damage-induced mutations, generated as a conse-
quence of the low fidelity of these polymerases on damaged
as well as undamaged templates (Pages and Fuchs 2002;
Lehmann et al. 2007). Ubiquitylation was first implicated in
the activation of TLS polymerases by yeast genetics, when a
gene encoding one of these enzymes was cloned and
identif ied as a member of the RAD6 pathway
(McDonald et al. 1997). When PCNA was found to be
ubiquitylated in response to DNA damage (Hoege et al.
2002), genetic experiments in budding yeast again pro-
vided the f i rs t evidence that mono- , but not
polyubiquitylation of PCNA was required for TLS and
damage-induced mutagenesis (Stelter and Ulrich 2003).

Table 1 PCNA modifications and their effectors

Modification Effector Effect Domains Pathway References

Ubiquitylation Y family polymerases Binding PIP UBZ, UBM DNA damage bypass Stelter and Ulrich 2003

Bienko et al. 2005

Plosky et al. 2006

FANCL Binding (?) DRWD ICL repair Song et al. 2010;

Geng et al. 2010;

Palle and Vaziri 2011

SNM1A Binding PIP UBZ ICL repair Yang et al. 2010

C1ORF124/Spartan/DVC1 Binding (?) PIP UBZ DNA damage bypass Centore et al. 2012

Davis et al. 2012

Ghosal et al. 2012

Juhasz et al. 2012

Machida et al. 2012

Mosbech et al. 2012

Mgs1 Binding UBZ DNA damage bypass Saugar et al. 2012

ZRANB3 Binding PIP, APIM NZF DNA damage bypass Ciccia et al. 2012

Weston et al. 2012

hELG1 Binding ? PCNA deubiquitylation Lee et al. 2010

Sumoylation Srs2 Binding PIP-like SIM Inhibition of recombination Papouli et al. 2005

Pfander et al. 2005

PARI Binding PIP SIM Inhibition of recombination Moldovan et al. 2012

scElg1 Binding PIP-like SIM Genome maintenance Parnas et al. 2010

scRad18 Binding SIM PCNA ubiquitylation Parker and Ulrich 2012

Eco1 Dissociation (?) PIP-like Cohesion establishment Moldovan et al. 2006

Phosphorylation CRL4CDT2(?) Dissociation ? PCNA stability Wang et al. 2006

Lo et al. 2012

Acetylation MTH2 Dissociation ? PCNA stability Yu et al. 2009
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The molecular basis for this requirement was subsequently
elucidated with the discovery of ubiquitin-binding domains
(UBDs) in a subset of damage-tolerant DNA polymerases
(Kannouche et al. 2004; Watanabe et al. 2004; Bienko et al.
2005; Plosky et al. 2006).

Based on phylogenetic relationships, DNA polymerases
have been classified into several families. Among them, the
members of the Y family are characterised by their low
fidelity and their ability to bypass DNA lesions (Ohmori et
al. 2001). In budding yeast, there are two members, poly-
merase η (Polη) and Rev1. Mammalian cells additionally
encode polymerases ι (Polι) and κ (Polκ). All Y family
polymerases interact with PCNA: whereas Polη, Polι and
Polκ contain classical PIP boxes, Rev1 interacts with PCNA
through an alternative motif (Sharma et al. 2011). In addi-
tion, one or two UBDs were identified in all eukaryotic
members of this family (Bienko et al. 2005; Plosky et al.
2006). They serve as prototypes for two distinct classes: the

ubiquitin-binding zinc finger (UBZ) and the helical
ubiquitin-binding motif (UBM). Mutation of conserved res-
idues within these domains abolishes TLS and damage-
induced mutagenesis in yeast and prevents damage-
induced association of the mutant polymerases with PCNA
in mammalian cells (Bienko et al. 2005; Guo et al. 2006;
Parker et al. 2007). A similar defect in TLS is observed
when PCNA ubiquitylation is prevented by mutation of
K164 or depletion of Rad18. In vitro, the modified form
of PCNA was shown to activate Polη- and Rev1-dependent
lesion bypass (Garg and Burgers 2005), and in mammalian
cell extracts, monoubiquitylation likewise promoted the ex-
change of the replicative polymerase δ (Polδ) for a TLS
polymerase during the replication of UV-damaged DNA
(Zhuang et al. 2008; Masuda et al. 2010). Hence, PCNA
ubiquitylation activates TLS by selectively enhancing the
affinity of the damage-tolerant polymerases and thus
recruiting them to their sites of action.

Fig. 3 Readers of PCNA modifications. Domain structures of downstream effectors of modified PCNA are indicated schematically, according to
Table 1. Note that CRL4 is omitted from this figure, as the details of its interaction with PCNA have not been elucidated
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Structural information is available for the catalytic core
of Polη, its PIP box bound to PCNA, its UBZ domain in
complex with ubiquitin and a recombinant construct mim-
icking the ubiquitylated form of PCNA (Trincao et al. 2001;
Bomar et al. 2007; Hishiki et al. 2009; Freudenthal et al.
2010). This has allowed the modelling of a complex be-
tween Polη and the ubiquitylated clamp (Freudenthal et al.
2010), in which the concept of how the polymerase acts as a
reader of modified PCNA is nicely illustrated (Fig. 4a): the
long, flexible C terminus of Polη, harbouring the UBZ and
PIP motifs in close proximity, is able to reach over the
surface of PCNA such that the two domains simultaneously
contact the ubiquitin moiety and the IDCL of PCNA. This
leaves the catalytic core free to either reside at the side or
back face of the clamp or to swing around and occupy the
primer terminus, thus potentially replacing a stalled replica-
tive polymerase at this position.

Although the crystal structure of the PCNA-ubiquitin mim-
ic revealed two preferred positions of ubiquitin on the surface
of PCNA that occlude the interaction site of ubiquitin with the
TLS polymerases, biophysical data obtained with a native,
enzymatically generated conjugate in solution are more con-
sistent with an open and flexible conformation where the
ubiquitin moiety is highly mobile and therefore freely avail-
able for interactions (Hibbert and Sixma 2012). Furthermore,
the notion that ubiquitylation of PCNA does not interfere with
replicative functions such as interactions with Polδ, ligase I
and flap endonuclease (Garg and Burgers 2005) lends support
to an expanded “toolbelt” model (Pages and Fuchs 2002)
where ubiquitin primarily acts as an interaction module to
augment the scope of PCNA’s binding partners without af-
fecting its overall conformation. This model is also consistent
with the observation that the attachment site of ubiquitin on
PCNA is apparently not crucial for activity, such that an in-
frame fusion of ubiquitin to the amino terminus of PCNA
supports TLS in the absence of endogenous PCNA
ubiquitylation (Parker et al. 2007; Ramasubramanyan et al.
2010; Zhao and Ulrich 2010).

While the basic mechanism of ubiquitin-dependent TLS is
now well accepted, several controversial issues remain. Why

do some TLS polymerases, such as Polι and Rev1, harbour
two UBDs, whereas one is sufficient in Polη and Polκ? In
mammalian Polι and Rev1, both UBM domains contribute to
ubiquitin binding (Bienko et al. 2005; Plosky et al. 2006). In
contrast, one of the UBMs of budding yeast Rev1 was found
to be dispensable for function (Guo et al. 2006), and the
isolated domain apparently does not even interact with
ubiquitin (Bomar et al. 2010). This indicates that a single
UBM can be sufficient for TLS. The relative importance of
ubiquitin versus PCNA binding has also been debated. On the
one hand, mutation of the PIP box in human Polη results in a
rather mild damage sensitivity (Bienko et al. 2005; Gueranger
et al. 2008), suggesting either the existence of a secondary
PCNA binding site (Acharya et al. 2008) or a predominance of
the UBZ–ubiquitin interaction in the recruitment. On the other
hand, another study found that PIP- and UBZ motifs need to
cooperate for efficient TLS by Polη (Bienko et al. 2010).
Finally, a number of reports have postulated that ubiquitin
binding by Polη in both yeast and human cells is dispensable
for TLS (Acharya et al. 2007; Acharya et al. 2008; Acharya et
al. 2010). These seemingly contradictory results may have
arisen from the specific experimental conditions that were
used in the latter studies: in order to inactivate the UBZ
domain of yeast Polη, mutations were introduced into the
zinc-coordinating residues, assuming that they would disrupt
ubiquitin binding. As it was later shown, this was a
misconception, as the somewhat unusual UBZ domain of
budding yeast Polη does not actually require zinc binding
for structural integrity (Woodruff et al. 2010). In the human
system, even a full deletion of the UBZ domain did not
prevent recruitment of the mutant protein into UV-induced
foci; however, in this case PCNA levels were artificially
elevated by overexpression, which resulted in an enforced
recruitment of the TLS polymerase even independent of the
UBZ domain (Sabbioneda et al. 2009). Despite these criti-
cisms, there is good evidence that the Y family polymerases
are not entirely ubiquitin-dependent in vertebrates: in chicken
DT40 cells, Rev1 activity requires PCNA ubiquitylation for
processing of postreplicative gaps, but not when operating in a
fork-associated mode (Edmunds et al. 2008). In mouse
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embryonic fibroblasts, both Polη and Rev1 were found to
exhibit measurable, albeit weak, activity even in a mutant
devoid of PCNA ubiquitylation (Hendel et al. 2011). Hence,
the contributions of the UBDs to the recruitment of the TLS
polymerases probably do not follow an all-or-nothing scenar-
io, but rather provide a significant enhancement of an other-
wise inefficient process. Considering the intricate mutual
interactions among the Y family polymerases and their affin-
ities for native PCNA and DNA, this is not all that surprising.

Fanconi anemia proteins

Damage-tolerant polymerases of the Y family perform the
bulk of TLS across a variety of DNA lesions, including
adducts affecting both strands of the DNA, called DNA
interstrand cross-links (ICLs). These can serve as templates
for TLS after their release from one of the two strands via
nucleolytic incisions. Although there is evidence that
replication-associated ICL repair can be mediated by TLS
independently of PCNA monoubiquitylation (Hicks et al.
2010), the modification has been shown to contribute to a
replication-independent pathway of ICL repair in yeast and
chicken cells via recruitment of Rev1. In this reaction, which
in yeast is observable in haploid G1 cells, Rev1 in cooperation
with Polζ is thought to mediate the filling of gaps resulting
from excision of the lesion from one of the strands (Sarkar et
al. 2006; Shen et al. 2006). In X. laevis egg extracts, this
activity appears to be taken over by Polκ, recruited by means
of its UBZ domain (Williams et al. 2012). An additional
pathway of ICL repair has evolved in metazoans, and intrigu-
ingly, this system, the Fanconi anemia (FA) pathway, also
appears to be influenced by PCNA monoubiquitylation.

The FA pathway is a DNA repair system that responds to
replication fork problems in general, but its action becomes
most obvious in the resolution of ICLs, where it coordinates
several DNA transactions, such as TLS, homologous recom-
bination and nucleotide excision repair (Ulrich and Walden
2010; Kim and D'Andrea 2012). Central to its regulation is the
monoubiquitylation of the chromatin-associated proteins
FANCD2 and FANCI by a multisubunit E3, the FA core
complex. FANCL, its catalytic subunit, is capable of
monoubiquitylating FANCD2/I in the absence of the other
subunits in vitro when supplemented with the cognate E2,
UBE2T (Alpi et al. 2008). Ubiquitylated FANCD2/I activate
their own set of downstream effectors, which include UBD-
containing proteins (Garner and Smogorzewska 2011).
Intriguingly, several studies have recently implicated the
PCNA-specific E3, Rad18, in the FA pathway (Zhang et al.
2008; Geng et al. 2010; Park et al. 2010; Song et al. 2010; Palle
and Vaziri 2011; Williams et al. 2011). There is good agree-
ment that inactivation of Rad18 prevents full FANCD2
ubiquitylation and recruitment to the chromatin (Song et al.
2010; Palle and Vaziri 2011). According to one report,

rep lacement of endogenous PCNA with a non-
ubiquitylatable mutant caused the same defect (Geng et al.
2010; Song et al. 2010) observed a spontaneous recruitment
of FANCA and FANCD2 to chromatin upon expression of a
linear fusion of ubiquitin to PCNA, strongly implying that
Rad18mediates its effect on the FA pathway via ubiquitylation
of PCNA. An even more direct impact was demonstrated by
(Geng et al. 2010) in an in vitro ubiquitylation assay, where the
presence of ubiquitylated PCNA stimulated the catalytic activ-
ity of FANCL towards FANCD2/I. As FANCL directly in-
teracts with PCNA via its central DRWD domain (Geng et al.
2010), these data suggest that FANCL is a genuine reader of
ubiquitylated PCNA that gains its activity by recognition of the
modification. Whether FANCL harbours a UBD that would
serve this purpose is currently unknown. Interestingly,
FANCD2 itself contains a PIP box (Howlett et al. 2009),
suggesting that PCNA may serve as an interaction platform
that coordinates activation of the FA pathway.

Although attractive, this model is not undisputed, as
conflicting results were obtained by other laboratories:
Williams et al. (2011) reported that depletion of Rad18, but
not abolition of PCNA ubiquitylation prevented efficient
FANCD2/I ubiquitylation, suggesting a PCNA-independent
function of Rad18 in the FA pathway. Likewise, Palle and
Vaziri (2011) observed that treatment with camptothecin, a
topoisomerase poison that causes replication fork collapse,
triggered FANCD2 ubiquitylation without causing PCNA
ubiquitylation, again implying that the two pathways act in-
dependently and in parallel. Whether factors such as insuffi-
cient depletion of native PCNA or the use of different
genotoxic agents are responsible for these discrepancies re-
mains to be determined.

SNM1A/Pso2

Another potential reader of ubiquitylated PCNA that partici-
pates in ICL repair is the nuclease SNM1A, or its yeast
homolog Pso2/Snm1, which was first identified in screens
for mutants sensitive to cross-linking agents (Brendel et al.
2003). Pso2 acts downstream of the incision step and may
participate in the initial processing of the excised region
surrounding the cross-link in order to facilitate subsequent
TLS or homologous recombination (Cattell et al. 2010).
Human SNM1A contains a canonical PIP box and interacts
with PCNA (Yang et al. 2010), and both human and yeast
proteins harbour a UBZ domain (Hofmann 2009; Yang et al.
2010) have demonstrated a UBZ-dependent enhanced affinity
of SNM1A for a ubiquitin–PCNA fusion compared to native
PCNA, and the protein localises to damage-induced foci in a
PIP-, UBZ- and Rad18-dependent manner, thus strongly
suggesting that its recruitment is directly mediated by
ubiquitylated PCNA. Although strictly speaking this model
has yet to be proved, it is consistent with the observation that
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in yeast ICL-induced PCNA ubiquitylation in haploid G1 cells
is observed at the step when Pso2 is acting, following the
initial, nucleotide excision repair-mediated incision step
(Sarkar et al. 2006).

C1orf124/DVC1/Spartan

Based on the candidates described above, the presence of a
PIP box in combination with a UBZ motif appears to be a
strong indicator of a function downstream of ubiquitylated
PCNA. As a consequence, the previously uncharacterised
human protein C1orf124 has recently attracted the attention
of several laboratories (Centore et al. 2012; Davis et al. 2012;
Ghosal et al. 2012; Juhasz et al. 2012; Machida et al. 2012;
Mosbech et al. 2012). The protein, subsequently named
Spartan (for SprT-like domain at the N terminus) or DVC1
(for DNA damage-targeting VCP adaptor C1orf124), contains
an N-terminal SprT-like domain, related to a family of pro-
teases, followed by an SHP box that mediates interaction with
the ubiquitin-dependent chaperone p97 (or VCP), a canonical
PIP box and a C-terminal UBZ domain. While there is general
agreement between the studies that C1orf124 is recruited to
sites of replication problems in a UBZ- and PIP-dependent
manner and protects cells from DNA damage-induced muta-
genesis, the mechanistic basis for its function in the damage
response remains controversial.

A number of researchers reported a preferential interaction
of C1orf124 with ubiquitylated PCNA (Centore et al. 2012;
Ghosal et al. 2012; Juhasz et al. 2012) and observed that its
recruitment to damage-induced foci was dependent on Rad18
(Centore et al. 2012; Juhasz et al. 2012; Machida et al. 2012)
or even K164 of PCNA (Machida et al. 2012). Depletion of
the protein reduced the amount of ubiquitylated PCNA and
chromatin-associated Rad18 and Polη (Centore et al. 2012;
Ghosal et al. 2012), which was interpreted either as a function
in a positive feed-forward regulation of the modification itself
(Centore et al. 2012) or as a protection from USP1-mediated
PCNA deubiquitylation (Juhasz et al. 2012; Ghosal et al.
2012) speculated that C1orf124 might exert a protective effect
on PCNA ubiquitylation by sequestering Rad18 and/or
ubiquitylated PCNA away from the segregase activity of
p97. Common to all these models is a genuine function of
C1orf124 as an interactor and reader of ubiquitylated PCNA
and a positive contribution to TLS.

However, recent reports by Mosbech et al. (2012) and
Davis et al. (2012) have challenged this viewpoint. Although
they also observed a requirement of both PIP and UBZ do-
mains for efficient localisation of C1orf124 to foci, this re-
cruitment was found to be independent of Rad18, thus arguing
against a selective recognition of ubiquitylated PCNA and
instead suggesting a UBZ-mediated binding to other, yet
unidentified ubiquitin conjugates at stalled replication forks.
Furthermore, and in contrast to the model described above,

depletion of C1orf124 enhanced the association of the Y
family Polη with chromatin, implicating the protein in the
downregulation of TLS rather than its activation (Davis et al.
2012; Mosbech et al. 2012). In this scenario, the segregase
activity of p97 could possibly mediate the extraction or even
degradation of PCNA-associated Polη. In conclusion, while a
contribution of C1orf124 to the regulation of TLS appears
likely, neither its mechanism nor its net effect has been rigor-
ously demonstrated. The lack of a yeast homologue compli-
cates a genetic analysis that might otherwise have clarified the
protein’s mechanism of action. Moreover, the relatively
unspecific affinity of the UBZ domain for K48-, K63- and
linear polyubiquitin chains (Centore et al. 2012; Davis et al.
2012; Mosbech et al. 2012) does not allow definitive conclu-
sions about its relevant modified targets at this time. Hence,
future studies will have to elaborate whether or not C1orf124
is a reader of ubiquitylated PCNA.

Mgs1/WRNIP1

Compared to our relatively detailed understanding of TLS
activation by monoubiquitylated PCNA, hardly anything is
known about the consequences of PCNA polyubiquitylation.
Genetic evidence in yeast has implicated this modification in
an error-free pathway of damage avoidance that likely in-
volves template switching, but the mechanistic aspects of the
reaction are unexplored (Hoege et al. 2002; Zhang and
Lawrence 2005). Considering that the K63-linked
polyubiquitin chains do not trigger proteasomal degradation
of PCNA (Zhao and Ulrich 2010), identification of proteins
that recognise the polyubiquitylated form of PCNA might
prove crucial to unravel the mechanism of error-free damage
bypass. One such candidate is the AAA+ATPase Mgs1 from
budding yeast. The protein contributes to genome stability in
multiple ways, and both deletion and overexpression of the
gene affects recombination and mutation rates (Hishida et al.
2001; Branzei et al. 2002; Hishida et al. 2002). Although no
obvious PIP box has been identified, Mgs1 interacts with
PCNA (Hishida et al. 2006), and it harbours an N-terminal
UBZ domain that selectively enhances its affinity for
ubiquitin–PCNA fusions in vivo and in vitro, with a marked
preference for longer chains (Saugar et al. 2012). Genetic
analysis has confirmed that the UBZ domain is functionally
linked to ubiquitylated PCNA and contributes to the recruit-
ment of Mgs1 to chromatin when PCNA is ubiquitylated in
response to replication fork stalling (Saugar et al. 2012).
Consistent with these data, the mammalian homologue,
WRNIP1 (Werner helicase-interacting protein 1), is recruited
to RPA-associated nuclear foci in a UBZ-dependent manner
(Crosetto et al. 2008). These observations clearly identify
Mgs1 as a reader of ubiquitylated PCNA.

Yet, a number of important issues remain unresolved. First,
we still do not understand Mgs1’s function in DNA damage
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bypass. The protein exhibits DNA-dependent ATPase and
strand annealing activities (Hishida et al. 2001) and it appears
to exert a negative impact on the PCNA–Polδ interaction
(Branzei et al. 2002; Vijeh Motlagh et al. 2006; Saugar et al.
2012), but it is unknown which of these activities is relevant
for damage bypass. Second, the genetic relationship between
the UBZ domain and PCNA is a composite of mono- and
polyubiquitin-dependent functions, and its affinity for
ubiquitylated PCNA is not limited to the K63-linked
polyubiquitylated form, but extends to monoubiquitin and
linear, i.e. head-to-tail-linked polyubiquitin chains, which are
inactive in the error-free pathway of damage avoidance (Zhao
and Ulrich 2010; Saugar et al. 2012). Mgs1 is therefore likely
to affect both TLS and template switching. Finally, a number
of phenotypes of mgs1 mutants are independent of the UBZ
domain, such as accelerated ageing, elevated spontaneous
mutation rates and a synthetic lethality with rad6 and rad18.
In summary, Mgs1 clearly acts as a downstream effector of
mono- and polyubiquitylated PCNA, but neither is its function
exclusively mediated by ubiquitylated PCNA, nor is it likely
the only factor with an influence on error-free template
switching.

ZRANB3/AH2

Preferential interaction with polyubiquitylated PCNA was
recently reported for another ATPase, ZRANB3 (zinc finger,
Ran-binding domain containing 3), also called AH2
(annealing helicase 2) (Ciccia et al. 2012). The protein har-
bours a helicase domain of the SNF2 family in combination
with an HNH endonuclease motif (Flaus et al. 2006).
Biochemical analysis has identified ATP-driven DNA rewind-
ing, fork regression and D-loop dismantling activities as well
as an ATP-dependent, structure-specific endonuclease activity
(Yusufzai and Kadonaga 2010; Ciccia et al. 2012; Weston et
al. 2012). Interaction with PCNAwas found to be mediated by
a canonical PIP box and an APIM motif in a partially redun-
dant manner (Ciccia et al. 2012). Consistent with a function in
resolving replication problems, interaction with PCNA medi-
ates ZRANB3’s localisation to laser-induced DNA damage
foci in vivo, and depletion of the protein results in a mild
sensitivity to replication stress, an accumulation of sister
chromatid exchanges and a defect in replication fork restart
after DNA damage (Ciccia et al. 2012; Weston et al. 2012;
Yuan et al. 2012). ZRANB3 also contains a UBD of the NZF
(Npl4 zinc finger) type, which binds to polyubiquitin chains,
but not monoubiquitin, displays a preference for K63- over
K48-linked chains, mediates the preferential binding to
polyubiquitylated PCNA and contributes to its damage-
induced localisation (Ciccia et al. 2012; Weston et al. 2012).
Notably, ZRANB3 foci colocalise with WRNIP1, and
WRNIP1 can be found in ZRANB3 immunoprecipitates
(Ciccia et al. 2012).

Taken together, these data strongly suggest a function of
ZRANB3 downstream of polyubiquitylated PCNA. In sup-
port of this model, retention of the protein in foci was found
to be reduced upon depletion of RAD18 or UBC13 (Ciccia
et al. 2012). A rigorous genetic analysis that takes into
account the functions of UBC13 and the Rad5 homologs
HLTF and SHPRH will be necessary in order to verify
whether ZRANB3 is indeed a mediator of error-free damage
avoidance, and if so, by what mechanism it influences
template switching. Meanwhile, a better characterisation of
the NZF domain may provide further insight. In contrast to
the UBZ domain of Mgs1/WRNIP1, which is not per se
polyubiquitin or linkage specific and may attain a preference
for polymeric chains mainly by means of oligomerisation,
NZF domains often exhibit genuine specificity for
polyubiquitin. This is due to a two-sided binding mode,
where two hydrophobic patches within the domain engage
in simultaneous interactions with two molecules of ubiquitin
(Kulathu et al. 2009; Sato et al. 2009). In this manner, the
closely related NZF domain from TAB2 gains exquisite
selectivity for the K63-linkage.

Surprisingly, no convincing homolog of ZRANB3 has
been detected in lower eukaryotes. Considering that the
ubiquitin conjugation factors operating on PCNA are highly
conserved from yeast to humans, one would not expect the
downstream events to have completely diverged. Hence, the
question of how polyubiquitylated PCNA induces error-free
damage bypass still remains unresolved.

hELG1

An interesting mechanistic facet of DNA damage bypass
concerns the regulation of PCNA deubiquitylation, which in
human cells is mediated by the isopeptidase USP1 in complex
with its co-factor, UAF1 (Cohn et al. 2007). In a screen for
USP1 interaction partners, the RFC1-like protein ELG1 was
recently identified (Lee et al. 2010). Whereas RFC1 itself—in
complex with the small subunits RFC2, RFC3, RFC4 and
RFC5 called replication factor C—is responsible for loading
PCNA onto the DNA during replication, ELG1 functions as
the large subunit of an alternative clamp loader complex and
has been broadly implicated in the maintenance of genome
stability (Majka and Burgers 2004; Aroya and Kupiec 2005).
ELG1 forms a complex with the small RFC subunits and
physically interacts with PCNA (Kanellis et al. 2003), and
Lee et al. (2010) observed that human ELG1 co-localised with
PCNA at sites of replication fork stalling. Depletion and
overexpression experiments demonstrated a negative effect
of ELG1 on PCNA ubiquitylation, which depended on the
presence of USP1. This effect was found to be mediated by a
SUMO interaction motif (SIM) in the N terminus of ELG1
that was responsible for interaction with a SUMO-like domain
in UAF1 but did not require the small RFC subunits,
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suggesting that in this context ELG1 promotes PCNA
deubiquitylation by serving as a structural link between
USP1-UAF1 and PCNA rather than acting catalytically as a
clamp loader (Yang et al. 2011). Alternatively, ELG1 could
promote genome stability by recruiting USP1-UAF1 for
deubiquitylation of a different substrate, and failure to do so
could indirectly cause enhanced PCNA ubiquitylation due to
the accumulation of replication problems. While this scenario
has not formally been excluded, a direct recruitment of USP1-
UAF1 to PCNA by ELG1 appears more likely. However,
whether ELG1 actually selectively recognises the
ubiquitylated form of PCNA, or how else it might be directed
towards the relevant pool of PCNA is unknown. Hence, at this
point it remains to be determined whether human ELG1 is a
genuine reader of ubiquitylated PCNA or merely an adaptor
for an eraser. Meanwhile, two recent reports have provided
good evidence that in cooperation with the small RFC sub-
units ELG1 acts as a PCNA unloader (Kubota et al. 2013; Lee
et al. 2013). However, this activity is unrelated to ELG1’s
effects on PCNA ubiquitylation, and while the unloading
function has turned out to be highly conserved, the impact
of ELG1 on PCNA modifications appears to have significant-
ly diverged from yeast to humans (see below).

Readers of PCNA sumoylation

SUMO modification of PCNAwas first observed in budding
yeast as a damage-independent modification affecting pre-
dominantly K164 and to a minor extent a second site, K127
(Hoege et al. 2002). Conjugation is mediated by the sole
SUMO-specific E2, Ubc9. At K164, this requires the
SUMOE3 Siz1, whereas K127 sumoylation proceeds without
an E3 in vitro and is mediated by Siz2 in vivo (Hoege et al.
2002; Parker et al. 2008). Similar to ubiquitylation, the mod-
ification is strongly enhanced by loading of PCNA onto DNA
(Parker et al. 2008). In vivo, the residence on DNA appears to
be both necessary and sufficient for PCNA to be sumoylated,
which results in a replication-associated modification pattern
(Hoege et al. 2002; Parker et al. 2008). The isopeptidase Ulp1
is responsible for deconjugation (Stelter and Ulrich 2003).
Although sumoylation at K164 has been observed in several
other species or model systems, such as chicken DT40 cells,
X. laevis egg extracts and recently mammalian cells, the
modification appears to be much less abundant than in bud-
ding yeast, and not much is known about its regulation (Leach
and Michael 2005; Arakawa et al. 2006; Gohler et al. 2008;
Gali et al. 2012; Moldovan et al. 2012).

Srs2

Preventing PCNA sumoylation suppresses the damage sensi-
tivity of budding yeast mutants defective in damage bypass.
This was originally interpreted as an antagonistic relationship

between SUMO and ubiquitin (Hoege et al. 2002). However,
the effect was only observable in mutants unable to
ubiquitylate PCNA, and it required the presence of homolo-
gous recombination factors. Taken together, these properties
were reminiscent of mutants isolated previously as srs2 (sup-
pressor of rad6) (Papouli et al. 2005; Pfander et al. 2005).
SRS2 encodes a helicase that contributes to DNA double-
strand break repair, replication and damage signalling
(Marini and Krejci 2010). It acts mostly by eliminating toxic
recombination intermediates, via disrupting or preventing the
formation of presynaptic Rad51 filaments. Genetic epistasis
between srs2mutants and loss of PCNA sumoylation indicat-
ed a function in the same pathway, and Srs2 was indeed found
to preferentially interact with the sumoylated forms of PCNA
(Papouli et al. 2005; Pfander et al. 2005). Consistent with an
effector function, association of Srs2 with replication interme-
diates positively correlated with the extent of PCNA
sumoylation, while a negative correlation was found with
Rad51 (Papouli et al. 2005). At the same time, loss of
PCNA sumoylation resulted in an enhancement of spontane-
ous mitotic cross-overs and intrachromosomal recombination,
suggesting that Srs2, recruited via interaction with sumoylated
PCNA, exerts its antirecombinogenic action even during
undisturbed replication (Pfander et al. 2005; Robert et al.
2006). Its effect on damage bypass can be viewed as a pre-
cautionary measure that prevents damage processing by ho-
mologous recombination, thereby allowing the ubiquitin-
dependent pathway to proceed.

Preferential interaction of Srs2 with sumoylated PCNA is
achieved by means of a SIM in the very C terminus of the
protein such that deletion of this sequence selectively abol-
ishes those functions of Srs2 relating to its action at repli-
cation forks (Le Breton et al. 2008). The molecular basis for
this interaction is illustrated by an X-ray structure of PCNA
sumoylated at K164 in complex with a C-terminal fragment
of Srs2 (Armstrong et al. 2012). In this structure, recogni-
tion of sumoylated PCNA is achieved by two adjacent, but
separate interaction motifs for PCNA and for SUMO, re-
spectively (Fig. 4b). Interaction with PCNA is mediated by
a PIP-like motif that differs somewhat from the canonical
version in terms of sequence and conformation, whereas the
SIM–SUMO interaction closely resembles that of other
known examples. Intriguingly, the distance between the
SIM and PIP-like motifs in the structure is incompatible
with their originating from the same molecule of Srs2,
which suggests that two Srs2 fragments are cross-bridging
two molecules of sumoylated PCNA in the crystal.
However, molecular modelling indicates that a single Srs2
can interact simultaneously with PCNA and SUMO (either
on K164 or on K127) if the SUMO moiety on PCNA is
allowed to adopt a different conformation.

The genetic and biochemical evidence identifies Srs2 as an
important reader of sumoylated PCNA. However, this function
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appears to be specific to budding yeast: although Srs2 homo-
logues can be identified in other fungi, such as
Schizosaccharomyces pombe, a C-terminal SIM is conserved
only in a small group of budding yeasts related to
Saccharomyces cerevisiae (Fig. 5). Consistently, deletion of S.
pombe SRS2 does not suppress the damage sensitivity of mu-
tants defective in PCNA ubiquitylation (Frampton et al. 2006).

PARI

Higher eukaryotes appear to lack a genuine Srs2 homologue
altogether, although several unrelated helicases has been iden-
tified in vertebrates that may cover various aspects of Srs2’s
antirecombinogenic function (Krejci et al. 2012). PARI is a
helicase of the UvrD family, thus distantly related to Srs2. It
can remove Rad51 from single-stranded DNAwhen present in
stoichiometric amounts, and depletion of the protein causes an
increase in mitomycin C-induced chromosome aberrations,
hypersensitivity to the drug and elevated levels of spontane-
ous and damage-induced homologous recombination
(Moldovan et al. 2012). Based on the identification of a SIM
and a PIP box, which mediate a preferential interaction with
PCNA–SUMO fusions in vitro, the protein has been proposed
to act as a vertebrate version of Srs2. Function of PARI in vivo
requires both motifs (Moldovan et al. 2012), and a permanent
fusion of SUMO1 to the C terminus of PCNA inhibits homol-
ogous recombination (Gali et al. 2012), suggesting that PARI
may indeed act downstream of PCNA in an Srs2-like manner.
However, PCNA sumoylation occurs at very low levels in
mammalian cells, as detection requires overexpression of an
epitope-tagged SUMO allele (Gali et al. 2012;Moldovan et al.

2012). This is not entirely consistent with a function in pro-
tection of replication forks from hyperrecombination and
stands in contrast to the yeast system, where a significant
portion of PCNA is sumoylated during S phase (Parker et al.
2008). Not much is known about the regulation of PCNA
sumoylation in humans, and further work will clearly be
necessary to confirm a genetic link to the function of PARI.

scElg1

Similar to the effect of srs2 on damage bypass mutants, dele-
tion of budding yeast ELG1 has been reported to suppress the
sensitivity of mutants deficient in PCNA polyubiquitylation
(Parnas et al. 2010). As with SRS2, the toxic effect of Elg1
activity in the absence of ubiquitylated PCNAwas dependent
on Siz1 and the capacity of PCNA to be sumoylated.
Consistent with these observations, Parnas et al. (Parnas et al.
2010) found a preferential interaction of Elg1 with sumoylated
PCNA, mediated by three SIMs and a motif distantly related to
the PIP box in the N-terminal domain of Elg1. Mutation of the
SIMs or PIP-like motifs individually had little effect on Elg1
function; however, deletion of both SIMs and PIP in combi-
nation resulted in a substantial damage sensitivity.

How Elg1 acts downstream of sumoylated PCNA remains
to be determined. Although unloading activity was recently
demonstrated, this was independent of PCNA sumoylation
(Kubota et al. 2013). A synergistic effect of elg1 with srs2
indicates that the two proteins do not act in the same pathway,
even though both respond to SUMO. Notably, deletion of
ELG1 causes an accumulation of PCNA in its sumoylated
form on chromatin, suggesting that the protein might act as
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Fig. 5 Conservation of SIMs in Srs2 and Rad18. A phylogenetic tree of
yeasts and selected vertebrates indicates the presence or absence of SIMs.
Red high-probability SIM, based on position and homology to the S.
cerevisiae genes. Green high-probability SIM in reverse orientation.
Orange putative SIM, possibly at a different location. Note that the C-

terminal carboxylate in Srs2 from S. cerevisiae is engaged in the interac-
tion with SUMO (Armstrong et al. 2012), making it unlikely that the
motif in K. lactis Srs2 acts as a SIM. The phylogenetic tree (not to scale)
was adapted from Dujon (2010) and Kurtzman and Robnett (2003). A
detailed sequence alignment is provided in supplementary Figure S1
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an unloader for sumoylated PCNA (Parnas et al. 2010).
However, biochemical evidence for this activity is lacking
and alternative models have not been excluded. The observa-
tion that mutation of PIP and SIMmotifs results in a phenotype
weaker than that of an elg1 deletion implies that the protein has
additional functions unrelated to sumoylated PCNA.
Moreover, Elg1’s SIMs might not be exclusively dedicated to
PCNA-bound SUMO, as a two-hybrid screen revealed inter-
actions with other sumoylated and SIM-containing proteins,
mediated by poly-SUMO chains (Parnas et al. 2011).

Rad18

The notion that PCNA sumoylation is targeted predominantly
toward the same lysine as ubiquitylation raises the question of
how the transition between the replication-associated
sumoylated form of PCNA to the damage-induced
ubiquitylated form is accomplished. Biochemical analysis of
the E3 Rad18 from budding yeast has now revealed an inter-
esting cross-talk between the two modifiers that suggests a
relevant mechanism (Parker and Ulrich 2012). Through a
canonical SIM, Rad18’s activity towards PCNA is strongly
boosted by the presence of SUMO on the clamp. Interestingly,
SUMO can either reside on K164 of one of the subunits or be
appended as a fusion to PCNA’s N terminus, indicating that its
position on PCNA is irrelevant for its activating effect on
Rad18 and suggesting that the transition from sumoylated to
ubiquitylated PCNA may well involve a doubly modified
trimer. In vivo, mutation of the SIM in Rad18 or selective
inhibition of PCNA sumoylation (by deleting SIZ1 in combi-
nation with mutating K127 to R) causes a substantial reduc-
tion in damage-induced PCNA ubiquitylation and a
corresponding damage sensitivity (Parker and Ulrich 2012).
Hence, sumoylated PCNA appears to be the physiological
substrate of Rad18, and the modification not only recruits
Srs2 and potentially Elg1, but it also facilitates damage-
induced ubiquitylation. Like many other SIM-containing pro-
teins, Rad18 itself is sumoylated in a SIM-dependent manner,
but the modification sites or their significance for Rad18
function have not been elucidated. Notably, the enhancement
of Rad18 activity by PCNA sumoylation is not conserved in
mammals. In fact, based on sequence alignments it appears to
be restricted to a small number of species closely related to S.
cerevisiae. Here, the presence of the SIM in Rad18 exhibits a
good correlation with the conservation of the SIM-containing
C terminus of Srs2 (Fig. 5), suggesting that the recognition of
sumoylated PCNA by Srs2 and Rad18 may have co-evolved.

Eco1

Although posttranslational modifiers very often promote the
binding of downstream effector proteins, there are examples
where the modification interferes with the association of a

binding partner. A similar scenario was suggested for the
interaction of the budding yeast cohesion establishment
factor Eco1 with PCNA. Eco1 acts by acetylation of a
cohesin subunit, Smc3, during S phase (Skibbens 2009),
and its interaction with PCNA, mediated by a PIP-like motif
in its extreme N terminus, was reported to be essential for
establishment of sister chromatid cohesion (Moldovan et al.
2006). In this context, PCNA sumoylation appears to coun-
teract Eco1’s activity, as abolition of the modification was
found to suppress the temperature sensitivity of eco1 mu-
tants. However, although in vitro interaction assays revealed
a competition between Eco1 and the SUMO-E2 Ubc9 for
PCNA binding (Moldovan et al. 2006), sumoylation of
K127 or K164 of PCNA does not interfere with the associ-
ation of Eco1 (Armstrong et al. 2012), suggesting that the
impact of SUMO-PCNA on Eco1 activity is likely mediated
indirectly through an unknown mechanism.

Readers of other PCNA modifications

While the number of readers of ubiquitylated and sumoylated
PCNA is steadily growing, we know much less about the
consequences of other posttranslational modifications of
PCNA, such as phosphorylation and acetylation. Both modi-
fications have been detected in mammalian cell extracts
(Prosperi et al. 1994; Naryzhny and Lee 2004), but their
significance and regulation are not yet fully understood.

PCNA phosphorylation

Mass spectrometric analysis of PCNA isolated from human
cells identified tyrosine (Y)211 as a phosphorylation site
(Wang et al. 2006). The kinase responsible for this modifi-
cation was found to be EGF receptor (EGFR), which plays
an essential role in cell proliferation. Consistent with this
function, Y211 phosphorylation, which was detected mainly
in the chromatin-associated fraction, correlated with prolif-
eration. Mutation of Y211 to phenylalanine caused
polyubiquitylation and proteasomal degradation of PCNA,
while phosphorylation stabilised the protein. Intriguingly,
although ubiquitylation was directed at K164 of PCNA,
the modification did not involve the set of conjugation
factors required for damage-induced ubiquitylation, but in-
stead the Cullin 4-based ubiquitin ligase CRL4, which is
known for assembly of K48-linked ubiquitin chains (Lo et
al. 2012). Phosphorylation at Y211 was found to interfere
with the E3–PCNA interaction, thus explaining its
stabilising effect. It is noteworthy that PCNA itself acts as
a co-factor for CRL4-dependent ubiquitylation of several
cell cycle regulators, such as CDT1 and p21 (Abbas and
Dutta 2011). In these contexts the CUL4 subunit cooperates
with the substrate adaptor CDT2; whether the same adaptor
is used in the degradation of PCNA has not been
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determined. It is also unclear how CRL4- and PCNA-
dependent degradation of other targets is compatible with
Y211 phosphorylation, or how this modification is regulat-
ed. However, an EGFR-dependent control over PCNA sta-
bility is consistent with the essential contribution of the
clamp to cell proliferation via DNA synthesis. It should be
mentioned that Y211 is unlikely to be the only phosphory-
lation site on PCNA; in fact, modification of Y114 has
recently been linked to the development of adipose tissue
by an unknown mechanism (Lo et al. 2013).

PCNA acetylation

Not only phosphorylation, but also acetylation seems to
impinge on PCNA stability, although the two signals appar-
ently respond to different stimuli. Critical to the acetylation-
dependent mechanism is the mammalian protein MTH2
(MutT homologue 2). In Escherichia coli, MutT prevents
incorporation of the nucleotide triphosphate 8oxo-dGTP
into DNA by hydrolysis to 8oxo-dGMP, thus protecting
the cell from the potentially mutagenic effect of the oxidised
guanine (Maki and Sekiguchi 1992). Human MTH2 was
identified based on its homology to MutT and exhibits
similar enzymatic activity (Cai et al. 2003). MTH2 was
found to bind to PCNA, but intriguingly, this interaction
was abolished selectively by treatment with ultraviolet (UV)
radiation, whilst ionising or oxidative damage had no effect
(Yu et al. 2009). UV irradiation also caused the acetylation
of PCNA, and treatment with trichostatin A (TSA), an
inhibitor of deacetylation enzymes, likewise triggered the
release of MTH2 from PCNA, indicating that PCNA acety-
lation interferes with the MTH2–PCNA interaction and
thereby induces the UV-dependent dissociation. TSA treat-
ment or MTH2 depletion reduced the half-life of PCNA in a
proteasome-dependent manner, suggesting that interaction
with MTH2 stabilises PCNA. Consistent with this model,
PCNA degradation coincided with reduced DNA synthesis
and cell cycle progression after UV irradiation, which was
rescued by PCNA overexpression. Taken together, these
data suggest that PCNA acetylation, via inhibiting MTH2
association, controls PCNA stability and thereby cell prolif-
eration in response to DNA damage. However, many issues
remain to be resolved, such as the residues affected by
acetylation, the enzymes involved and the mechanism that
induces the modification, the question of why the response
seems to be limited to UV, and whether this function of
MTH2 is at all related to its role in preventing mutagenesis
by hydrolysis of 8oxo-dGTP.

Outlook

Despite the diversity of phenomena controlled by PCNA
modifications, some common concepts about the mechanisms

of PCNA’s readers emerge. First of all, and perhaps expect-
edly, most PCNA modifications exert their effects in the
context of DNA, consistent with PCNA’s clamp-like action.
With the possible exception of acetylation, which has not been
sufficiently characterised, PCNA modifications are all associ-
ated with DNA-bound PCNA. In the case of sumoylation,
loading appears to be both necessary and sufficient for the
modification (Parker et al. 2008), whereas ubiquitylation is
induced by a recruitment of Rad18 to loaded PCNA via
interaction with RPA-coated ssDNA (Davies et al. 2008;
Niimi et al. 2008), and phosphorylation by EGFR also
occurs preferentially on chromatin-associated PCNA
(Wang et al. 2006).

Second, the characterisation of PCNA effectors has re-
vealed important information about how ubiquitin and
SUMO are recognised in conjunction with their target pro-
teins. In contrast to phosphorylation-specific interactions,
where the residues interacting with the phosphate moiety
are usually embedded in the substrate binding surface, rec-
ognition of ubiquitylated or sumoylated proteins appears to
largely follow a modular mode, involving separate and
independent elements for binding to the target and the
PTM. This is best illustrated by the molecular models of
ubiquitylated and sumoylated PCNA interacting with the C-
terminal tails of Polη and Srs2, respectively (Freudenthal et
al. 2011; Armstrong et al. 2012) (Fig. 4). The modularity is
consistent with the notion that the ubiquitin- or SUMO-
interaction motifs are often juxtaposed to the PIP motif
(Fig. 3). In fact, the toolbelt model according to which
PCNA interactors are loosely tethered to the clamp rather
than engaging in extensive interactions predicts that an
unstructured peptide harbouring the relevant interaction mo-
tifs would probably be most suited as flexible tether. It
remains to be seen whether the combinatorial use of stan-
dard recognition modules is common to other effectors of
ubiquitylated or sumoylated proteins. The recent identifica-
tion of a histone binding motif in the ubiquitin-binding
RING finger proteins RNF168 and RNF169, which confers
specificity for ubiquitylated histones, suggests that bipartite
recognition modules is likely a conserved feature in the
ubiquitin system (Panier et al. 2012). As an upshot of this
notion, however, simply assuming a preferential association
with the modified form of a given protein based on the
presence of both a substrate- and a PTM-specific rec-
ognition motif in an interaction partner would be unac-
ceptable. Even in vitro studies suggesting a preferential
interaction might be misleading in the absence of firm
genetic evidence linking the conjugation of the modifier
to the action of the reader.

Finally, the use of ubiquitylated and sumoylated PCNA
as an interaction platform for multiple different PTM-
specific effectors indicates a diversification of functions in
metazoans. For example, the link of PCNA ubiquitylation to
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the Fanconi anemia pathway, C1ORF124 or ZRANB3
seems to be without precedent in fungi, suggesting that these
effectors were added later in evolution. It is likely that even
now the list of readers of the modified forms of PCNA is not
yet complete.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.
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