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Simple Summary: The omental metastatic spreading of epithelial ovarian cancer is spearheaded
by complex cell–cell interactions present in the fluidic microenvironment (ascites), which is yet to
be fully decoded. Using a unique co-culture model of SNFT (SKOV3 cells expressing a Notch3
luciferase reporter-sensor) and NIH3T3 cells (differentially overexpressing Jagged1 ligand), we
demonstrated that incremental Jagged1 expression led to proportional Notch3 activation in SNFT.
Differential Notch3 activation was also evident from co-culture of SNFT with other EOC cell lines and
ascites-derived cancer-associated fibroblasts of HGSOC patients expressing varying levels of Jagged1.
Amongst the top five modulated genes identified by the gene profiler array, both p21 and VEGFA
showed enhanced expression (for p21)/secretion (for VEGFA) in SNFT when induced with Jagged1.
Secreted VEGFA further reduced CSC differentiation in platinum-resistant A2780 cells. Pronounced
VEGFA expression associated with Notch3 up-regulation in metastatic HGSOC tumors delineates an
unknown role of the Notch3/VEGFA axis in EOC progression.

Abstract: An active fluidic microenvironment governs peritoneal metastasis in epithelial ovarian
cancer (EOC), but its critical functional/molecular cues are not fully understood. Utilizing co-culture
models of NIH3T3 cells (differentially overexpressing Jagged1) and SKOV3 cells expressing a Notch3
luciferase reporter-sensor (SNFT), we showed that incremental expression of Jagged1 led to propor-
tional Notch3 activation in SNFT. With no basal luciferase activity, this system efficiently recorded
dose-dependent Notch3 activation by rh-Jag1 peptide and the non-appearance of such induction in co-
culture with NIH3T3∆jag1 cells indicates its sensitivity and specificity. Similar Notch3 modulation was
shown for the first time in co-cultures with HGSOC patients’ ascites-derived cancer-associated fibrob-
lasts and Jagged1-expressing EOC cell lines. NIH3T3J1-A and OVCAR3 co-cultured SNFT cells showed
maximum proliferation, invasion, and cisplatin resistance among all the heterotypic/homotypic cellu-
lar partners. VEGFA and CDKN1A are the two most upregulated genes identified across co-cultures
by the gene profiler array. Co-culture induced VEGFA secretion from SNFT cells which also reduced
cancer stem cell differentiation in platinum-resistant A2780 cells. rh-Jag1-peptide promoted enhanced
nuclear-cytoplasmic p21 expression. Additionally, metastatic HGSOC tumors had higher VEGFA
than corresponding primary tumors. This study thus demonstrates the tumoral and non-tumoral
cell-mediated differential Notch3 activation imparting its tumorigenic effects through two critical
molecular regulators, VEGFA and p21, during EOC progression.
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1. Introduction

Cell-to-cell communication is an important way of fostering a pathogenic microenvi-
ronment. The reciprocation among cancer cells and the remaining cellular/acellular compo-
nents in the tumor microenvironment leverages the disease and makes clinical intervention
challenging. The microenvironment comprises cancer cells, cancer-associated fibroblasts
(CAFs), endothelial cells, mesenchymal stem/stromal cells (MSCs), pericytes, immune cells,
and cell-derived components such as ascites, cytokines, metabolites, extra-cellular vesicles,
etc. [1]. This milieu provides several interactions ranging from classical para/endocrine
cues to transient cross-talks like phagocytosis, pinocytosis, receptor-ligand, and many
others. These interactions are both context- and tissue- dependent and influence crucial
tumorigenic functions, such as immune-suppression, chemoresistance, angiogenesis, and
metastasis, that often rely upon the levels of interactors (e.g., molecules/cells) [2]. Assess-
ment of the intra- and inter-cellular milieu is thus critical to understanding the course of the
disease and biological consequences that pave the way to developing therapeutic strategies.

Unlike other solid tumors, Epithelial ovarian cancer (EOC) primarily spreads through
direct peritoneal dissemination known as transcoelomic metastasis. Cell-to-cell interac-
tions in the tissue and fluidic (ascites) microenvironment are crucial in the early stages of
progression, and the omentum acts as the initial attachment site, followed by the visceral-
parietal peritoneum [3]. The omental vasculature displays branches of blood vessels
ending in a glomerulus-like capillary bed alongside several immune cells (T-cells, NK-cells,
macrophages, etc.) aggregating in/around them below the adipocytes. This site is known as
the milky spot, the hotbed for peritoneal metastasis [4]. A syngeneic murine ovarian cancer
model has shown that, post intraperitoneal injection of ID8 cells, metastasis happened
within a week in the omentum, which remained the only site of metastasis for six weeks [5].
Nieman et al. highlighted that the adipokines and fatty acids secreted from the milky spot
that promote omental metastasis in EOC [6]. However, the molecular factor/s arising from
cell–cell interactions, instrumental in promoting the disease, are largely unknown.

Despite widespread peritoneal metastasis, the underlying mechanisms, non-random
distribution, and cell implantation have not been completely deciphered. Techniques
like SNP array, karyotyping, and transcriptomics identified Notch3, a single-pass trans-
membrane receptor heterodimer, as altering (mostly as gene amplification and increase
in mRNA copies) 21% of high grade serous ovarian carcinomas (HGSOC), while 61% of
all patients have at least one alteration in the Notch3 pathway. Among the remaining
receptor isoforms, the alterations are 9% for Notch1 and Notch4 and 14% for Notch2 [7,8].
Interestingly, unlike Notch3, patients harbored mis-sense mutations and deletions in the
remaining Notch receptors. Although Jagged1 is the third-most altered (7%) ligand of the
Notch pathway after DLL3 (15%) and Jagged2 (8%) in the tumor, previous studies have
identified that the omental mesothelial cells predominantly express Jagged1 [9]. However,
measuring such interactions in real-time to assess the subsequent outcome is indispensable
to determining the course of the disease yet not attempted.

In this study, a unique homotypic/heterotypic co-culture system comprising a Notch-
reporter sensor expressing SKOV3 (SNFT), other EOC cell lines (homotypic), and
NIH3T3/patient-derived fibroblasts (heterotypic) demonstrated that Notch3 signaling
activation is critically dependent upon the threshold level of ligand (Jagged1) expression in
real-time. Differential levels of Jagged1 impart differential cleavage of the Notch3 recep-
tor, leading to proportional augmentation of proliferation, chemoresistance, and invasion
abilities in the tumor cells. Intriguingly, using a Notch3 pathway gene profiler array, two
atypical Notch3 targets, cyclin-dependent kinase inhibitor 1A (CDKN1A) and vascular
endothelial growth factor A (VEGFA), were identified as the most upregulated factors
across both the homotypic and heterotypic interactions. Functional validation of these
novel targets highlights the robustness of our system and enhances knowledge of the
molecular cues that guide the EOC metastasis.
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2. Material and Methods
2.1. Reagents and Antibodies

Cisplatin (P-4394), α-tubulin (T5168), anti-Notch3 (HPA044392—that exclusively de-
tects the Valine-1744 residue of NICD3 (notch intracellular domain3) fragment), anti-
mouse (12–349), and anti-rabbit (A6154) HRP tagged, Verapamil (V4629) and Gamma-
secretase inhibitor ((GSI: N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl
ester (DAPT)) (D5942) were purchased from Sigma-Aldrich (St. Louis, MW, USA). IHC
detection kit (ab236466), Jagged1 (ab77751) and Hes1 (ab71559) antibodies were from Ab-
cam (Cambridge, UK). Pbx1/2 (sc-28313) and p21 (2947S) antibodies were from Santa-Cruz
(sc-28313) and Cell Signaling Technology. The 17-mer rh-Jag1 peptide (CDDYYYGFGC-
NKFCRPR) (188–204), corresponding to amino acids 187–203 of human Jagged1 peptide,
was purchased from Ana spec (Fermont, CA, USA). Dye cycle violet (DCV) was purchased
from Invitrogen (Waltham, MA, USA).

2.2. Cell Lines & Notch3 Reporter Sensor

Mouse embryonic fibroblast line NIH3T3 and EOC cell line A2780 were cultured in
DMEM. Other EOC cell lines, e.g., SKOV3, TOV21G, OVCAR3, and OAW42, were cultured
in RPMI and MEM, respectively. All media were supplemented with 10% FBS (20% for
OVCAR3) and 1% penicillin-streptomycin. Neomycin selection was used to express Jag1 in
NIH3T3 stably. Differential Jagged1 expressing clones (NIH3T3jag1) were selected based on
MFI values and membrane localization phenotype. A2780LR cells were generated earlier as
a model for acquired chemoresistance by the dose-escalation method using cisplatin [10].

10X-CSL (CBF-Su(H)-Lag2), a promoter response element, comprising 10 NICD re-
sponse element CSL-binding sites (5′-GTGGGAA-3′), was cloned upstream of a bifu-
sion reporter (firefly luciferase fused with tandem Tomato red fluorescence protein or
fl2-tdT) [11]. SKOV3 cells (Notch3+/NICD3−), stably expressing the construct, were se-
lected by neomycin.

2.3. Co-Culture Assay

The NIH3T3, NIH3T3jag1, other cancer cells, and patient-derived CAF were used
as a feeder layer for SNFT co-culture. All the feeder cells were seeded a day prior and
treated with mitomycin C (Mito-40, Neon) (4 µg/mL for 2 h). On day 0, SNFT cells were
overlaid in a specific ratio, and co-culture was performed as per experimental require-
ments. DAPT inhibition was given for 48 h, and the concentration was decided as per the
experimental requirements.

2.4. Immunofluorescence and Western Blotting

The cells were fixed using 4% paraformaldehyde, permeabilized with 0.2% Triton-X-
100) followed by blocking with 3% BSA, and sequentially probed with a primary antibody
(at 4 ◦C overnight) followed by a secondary antibody (2 h at room temperature). DAPI
was used for counterstaining, and the coverslips were mounted using Vectashield (H-1500,
Vector laboratories, Newark, CA, USA). Immunofluorescence images were acquired using
Carl Zeiss, LSM 780 microscope, and processed by ImageJ (version: 1.8.0_172). For the p21
localization study, we used the Intensity Ratio Nuclei Cytoplasm Tool.

As described earlier, whole-cell lysates preparation and Western blotting were per-
formed [10]. The blots were developed in chemidoc (Bio-Rad, Hercules, CA, USA), and the
image lab software performed the densitometry.

2.5. Luciferase Assay and Imaging

Luciferase assay to evaluate the activity of Notch response elements was performed
using a Promega Luciferase assay system (E1500) (Madison, WI, USA) by Cytation 5 cell
imaging multi-mode reader. For bioluminescence imaging, 200 µg of D-luciferin was added
to each well, imaged in Xenogen-IVIS, and quantified by Living Image software 4.4.
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2.6. Flow Cytometry

Sorting of side and non-side population cells was performed as described in a prior
study [12]. Verapamil (50 µM), a drug transporter inhibitor, was used as a negative control
for gating. For determination of cell surface expression of Jag1, cells were blocked in
FACS buffer followed by staining with primary and secondary antibodies. In the case of
Oct4 staining, additionally, cells were fixed with 2% PFA and permeabilized with 0.2%
triton-X-100.

CFSE dye dilution assay was performed to determine SNFT proliferation after co-
culture. SNFT cells, synchronized by mimosine treatment for 16 h, were stained with 10 µM
Carboxyfluorescein succinimidyl ester (CFSE) (34554, Thermo Scientific, Waltham, MA,
USA) as per the manufacturer’s protocol. The cells were then equally divided, and one part
was acquired to determine the viable cells by FACS ARIA III using FACS DIVA software.
At least 20,000 events were acquired with propidium iodide for gating the viable cells in
FACS ARIA III using FACS DIVA software. The remaining cells were co-cultured with
different feeder layers of NIH3T3 or NIH3T3jag1 cells already treated with mitomycin C
in a 1:2 to 1:3 ratio depending upon the cell size. The cell proliferation was monitored
for 48 h, and the mean fluorescence intensity (MFI) was calculated using FlowJo VX. The
proliferation index (PI), a ratio-metric value of the total number of generations and number
of cells having undergone any number of divisions, was derived from the MFI using the
following equation.

PI =
∑i

1 i× Ni
2i

Σi
1

ni
2i

Ni = total number of cells undergoing division till ith generation.

2.7. Cell Invasion Assay

A transwell invasion assay was carried out to assess the cellular invasion property.
The IncuCyte ClearView inserts (Essen BioScience, Ann Arbor, MI, USA) were coated with
Matrigel (50 µg/mL) prepared in the incomplete culture medium. CFSE-labelled SNFT
cells were seeded either alone or with NIH3T3/NIH3T3jag1 clones/other EOC cell lines in
the inserts and grown in a serum-free medium for 24 h. The bottom reservoir was filled
with a complete medium. 1500 SNFT was co-cultured for 24 h in the ratio above, and the
bottom plane of the insert was imaged by Incucyte live cell analysis instrument. The green
puncta were counted by the Incucyte software (version-2020A).

2.8. Cell Cytotoxicity Assay

CFSE-labelled SNFT cells were co-cultured either with NIH3T3 or NIH3T3jag1 clones
or EOC cell lines for 24 h, followed by segregation through flow cytometry. From the sorted
population, 2000 cells were seeded and treated with different concentrations of cisplatin for
48 h. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) (M2003, Merck, Burlington, MA, USA) assay.

2.9. VEGFA Enzyme-Linked Immunosorbent Assay (ELISA)

100 microliter of culture-media from SNFT (alone or NIH3T3wt/NIH3T3jag1 clones/EOC
cell line co-culture) were used for the sandwich ELISA (E-EL-H0111, Elabscience, Houston,
TX, USA) following the manufacturer’s protocol to determine the concentrations of secreted
VEGF using a standard curve. The concentration of the standards ranged from 31.25 to
2000 pg/mL.

2.10. Notch3 Immunohistochemistry

Sections of the FFPE tumor blocks were made with 5-micron thickness. Following
de-waxing, peroxidase activity was blocked, and the antigen was unmasked with pH 6
buffer by the HIER method. Post incubation with primary/secondary antibodies, the
sections were developed by DAB, followed by haematoxylin counterstain, and mounted
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by DPX. The slides were graded blindly by an experienced pathologist, and the score was
represented by the Immunoreactivity index.

2.11. RNA Isolation

For isolation RNA from SNFT cells post-co-culture, different feeder cells were labelled
with CFSE followed by their cell-division arrest, as mentioned earlier, and then co-incubated
with SNFT for 24 h. The CFSE-negative population was collected and allowed to adhere first,
and total RNA was extracted by Qiagen RNeasy mini kit (74104, Germantown, MD, USA).

2.12. Quantitative Real-Time PCR and Notch3 Gene Profiler Array

cDNA was synthesized from RNA extracted from EOC cell lines using a SuperScript
IV First-Strand Synthesis kit (18090010, Invitrogen, Waltham, MA, USA). Quantitative real-
time-PCR was performed using PowerUp SYBR Green Master Mix (A25741, Invitrogen)
using appropriate gene-specific primers with Glyceraldehyde-3-phosphate-dehydrogenase
(GAPDH) as an internal control. The relative gene expression was measured as delta Ct
values. The list of primer sequences is given in the supplementary information (Table S1).

The real-time RT2 Profiler PCR Array (QIAGEN, Cat. no. CLAH40080E, Germantown,
MD, USA) and RT2 SYBR® Green qPCR Master Mix (330529) were used for transcriptional
profiling. GAPDH was the assay reference gene. Ct values were derived to an Excel file to
build a table and then uploaded onto the data analysis web portal at http://www.qiagen.
com/geneglobe (accessed on 8 December 2021) (Table S3).

2.13. Isolation of Mesothelial Cells from Patients

Ascitic fluid enriched with tumor cells, CAFs, leucocytes, and other immune cells was
collected from high-grade serous ovarian cancer patients through ascites tapping as per
protocol approved by the Ethics Committee-III of ACTREC-TMC. Cells were sorted into
CD90+ and CD90− populations by MACS (Miltenyi Biotec GmbH, Bergirsch, Gladbach,
Germany), and the CD90+ CAF fraction was further tested for the absence of EpCAM
expression by immunofluorescence. Jagged1 expression was determined either by im-
munofluorescence/flow cytometry or both, and CAFs with membranous Jagged1 were
further used for experiments.

2.14. Statistical Analysis

All the data represented the mean ± SEM of at least three independent experiments
and were analyzed for significance using paired/unpaired Student’s t-test. p-value ≤ 0.05
was considered significant. For gene regulation calculations, we chose a ±2-fold cut-off for
considering significantly altered candidate genes.

3. Results

3.1. Establishment of Differential NIH3T3jag1 Clones and Notch3 Reporter Sensor

For elucidating the differential activation of Notch3 by variable Jagged1 expression,
NIH3T3 was stably expressed with different Jagged1 levels and validated by immunofluo-
rescence and FACS. All the NIH3T3jag1 clones possessed prominent and patchy membra-
nous Jagged1 (Figure 1A). The activation of Notch3 critically depends upon the ligand’s
membrane localization. Flow cytometry analysis showed differential expression of Jagged1
in four clones, further selected for the study (NIH3T3J1-A, NIH3T3J1-B, NIH3T3J1-C, and
NIH3T3J1-D showed ~10-fold, ~6-fold, ~2.5-fold and ~1.5-fold-increase over NIH3T3jag1wt,
respectively) (Figure 1B,C). The transcript and protein levels (data not shown) also vali-
dated the differential expression of Jagged1 across the clones, and mRNA/protein had a
good positive correlation (r = 0.87) (Figure S1A).

http://www.qiagen.com/geneglobe
http://www.qiagen.com/geneglobe
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Figure 1. Establishment of differential NIH3T3jag1 clones and Notch3 reporter sensor. (A) Immunoflu-
orescence images representing the membranous localization of Jag1 in NIH3T3 clones. (B,C) Flow
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cytometry panel representing the quantitation of cell surface expression of Jag1 through mean
fluorescence intensity, which indicated a differential degree of Jag1 expression across the clones
(n = 3). (D,E) Live cell bioluminescence imaging of SNFT cells after Jag-1 peptide treatment (D) and
graphical representation of the same (n = 2) (E) showing increased Notch3-sensor promoter activ-
ity. (F,G) Several Notch3 targets (hes1, pbx1, notch3) showed upregulation after peptide-induced
activation at the transcript level (n = 3). Further, the Western blot of NICD3 and hes1 after differ-
ential Jag1 induction in SNFT (G) (also see Figure S6A) and the densitometric quantification of the
proteins (H) (housekeeping control: alpha-tubulin, n = 2) highlight that the NICD3 cleavage and
its target protein expression increased differentially upon induction due to the pathway activation.
(I,J) Activation/inhibition kinetics of live-cell bioluminescence image depicting that peptide-induced
promoter activity attenuated after DAPT blockade (n = 2). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

The notch reporter sensor was stably expressed in SKOV3 (SNFT cells) for spatiotem-
porally assessing the consequence of Notch3 activation. Since the CSL domain provides
a generalized measure of Notch receptor activation, the exact effect of Notch3 was in-
vestigated by probing with a NICD3-specific antibody. Moreover, SKOV3 possesses all
cleaved-Notch isoforms but NICD3 [13]. Rh-Jag1 (10 µM) treated SNFT caused biolumi-
nescence signal induction due to NICD3, which was ~2.9-fold higher than the untreated
cells (Figure 1E). Untreated SNFT did not show any detectable luminescence, indicating
that signal enhancement was the specific effect of NICD3. Rh-Jag1 also increased Notch3
target gene expression such as hes1 (1.87-fold, p < 0.05), pbx1 (2.64-fold, p < 0.05) (Figure 1F).
Different peptide concentrations (10 µM and 25 µM) showed 19-fold (p < 0.001) and 27.4-
fold (p < 0.001) higher NICD3 and 5.14-fold (p < 0.01) and 7.72-fold (p < 0.001) higher hes1
expression at the protein level in SNFT (n = 2) (Figure 1G,H). DAPT (10 µM) reduced the
peptide-induced activation by 2.05-fold (p < 0.001) (Figure 1I,J).

3.2. Establishment of a Unique Co-Culture Model of Differential Notch3 Activation by SNFT and
NIH3T3Jag1 Cells

We cultured the SNFT cells upon the NIH3T3jag1 clones (feeder layer) and measured
Notch3 luminescence as a read-out of Notch3 activation. In co-culture, NIH3T3J1A-induced
Notch3 activity in SNFT was first observed at 12 h, which increased by ~19-fold (p < 0.01)
from the initial time point (6340 ± 157.16 p/s/cm2/sr), further enhanced at 24 h (22.3-
fold, p < 0.001), and temporal declined at 36 h (19.6-fold, p < 0.001) and 48 h (15-fold,
p < 0.001) (Figure 2A,B). Therefore, 24 h was selected for incubation for all experiments.
Co-culture of SNFT with all the NIH3T3jag1 clones (NIH3T3wt, NIH3T3J1-D, NIH3T3J1-C,
NIH3T3J1-B, NIH3T3J1-A) resulted in a linearly proportional increase in promoter activity by
1.5-fold, 3.9-fold, 13.8-fold, 20.9-fold, and 39.3-fold, respectively, compared to SNFT alone
(Figure 2C,D). A dose-dependent decrease in Notch3 reporter activity level was observed
with increasing DAPT concentration, and maximal inhibition (3.16-fold) was observed at
75 µM (for 48 h) (p < 0.001) (Figure 2E,F). No detectable luciferase activity was observed
on co-culturing Jag1nod mutant expressing NIH3T3 cells with SNFT cells, suggesting the
system’s specificity (Figure S1B–D).

Finally, NIH3T3J1-A, the highest Jag1 expressing clone, enhanced NICD3-cleavage in
SNFT compared with NIH3T3wt co-culture suggesting the presence of an active juxtacrine
cross-talk (Figure 2G,H).
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Figure 2. Establishment of a unique co-culture model of Notch3 activation-sensor expressing tumor
cells (SNFT) and differentially expressing Jagged-1 fibroblasts (NIH3T3jag−1). (A,B) Temporal kinetics
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of Notch3 sensor activity in SNFT in co-culture with NIH3T3J1-A cells showed an initial activation af-
ter 12 h of 18.9-fold (p < 0.01), which reaches its maxima at 24 h (22.3-fold, p < 0.001) and subsequently
dropped by 48 h (14.8-fold, p < 0.001) (n = 3). (C,D) Bioluminescence images of co-culture between
SNFT and different Jag1 clones of NIH3T3 (C) show a linearly proportional relationship between
Jagged1 expression and Notch3 promoter activity as represented graphically in (D) (n = 3 for each
clone). (E,F) Dose-inhibition kinetics are represented by the live-cell images (E) and graphically (F),
which shows that concentration between 50 µM to 75 µM of DAPT results in a significant reduction in
the NIH3T3J1-A mediated Notch3 activity in SNFT (n = 3). All three real-time live-cell imaging experi-
ments were independently performed and represented by respective scale bars. (G,H) Immunoblot
of sorted SNFT cells post-co-culture and graphical analysis show increased release of NICD3 in SNFT
when co-cultured with NIH3T3wt (not significantly) and with NIH3T3J1-A (~3-fold, p ≤ 0.01) (n = 2)
(also see Figure S6B). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.3. Differential Induction of Notch3 by Homo/Heterotypic Cellular Interactions Leads to
Differential Modulation in Proliferation, Invasiveness, and Cisplatin Sensitivity in SNFT

We confirmed the Jagged1 expression/membrane localization of EOC cell lines (e.g.,
A2780, OVCAR3, TOV21G, and OAW42) and utilized them as a feeder for juxtacrine-
activation of Notch3 (Figure S2A–C). Upon co-culturing with SNFT, OVCAR3 induced the
maximum activation (204,333.33 ± 8412.95 p/s/cm2/sr) followed by A2780
(170,666.66 ± 5456.90 p/s/cm2/sr) and OAW42 (97,349.27± 3247.22 p/s/cm2/sr) (p < 0.001)
(Figure 3A,B). DAPT (50 µM) significantly attenuated this activity (A2780:1.68-fold, p < 0.001;
OAW42:2.36-fold, p < 0.001; OVCAR3:1.89-fold, p < 0.01) (Figure S2D,E). Despite expression
at the RNA and protein levels, TOV21G showed no membranous Jag1 (data not shown).
Immunoblot showed NICD3 release in SNFT post-co-culture with OVCAR3 and OAW42
but not with TOV21G (Figure S2F).

Post-CFSE-labelling, SNFT was monocultured/co-cultured for 48 h, and the prolif-
erative index was calculated (PISNFT) after normalizing by PIday-0 (Figure S3A). PISNFT
fold-increase after NIH3T3J1-A

, NIH3T3J1-B, and NIH3T3J1-C co-culture were 12.32-fold,
9.34-fold, and 9.57-fold (p < 0.0001), respectively, with insignificant fold-difference between
two intermediate clones. The NIH3T3J1-D co-culture further reduced the PISNFT (3.27-fold),
comparable to NIH3T3wt (3.67-fold) (p < 0.0001) (Figure 3C). Co-culture with A2780 (4.85-
fold), OAW42 (4.40-fold), and OVCAR3 (7.71-fold) (p < 0.001) imparted an incremental
effect on proliferation (Figure 3D). Rh-Jag1 concentration gradient also showed a similar
effect (Figure S3B). Compared with basal SNFT (MFI:11.75 ± 1.52), Ki-67 was maximally
expressed after co-culture with OVCAR3 (MFI:25.15 ± 2.07), followed by NIH3T3J1-A

(MFI:22.76 ± 2.22), showing significantly higher nuclear localization, 2.13- and 1.93-fold
(p < 0.01), respectively. OAW42-SNFT co-culture resulted in a 1.6-fold (p < 0.01) increase
in nuclear expression (MFI:18.20 ± 1.57). NIH3T3wt induction was comparable to SNFT
(MFI:12.39 ± 2.21, p < 0.01) (Figure 3E,F).

Cancer cells also modulate invasive potential as well as proliferation for tumor suste-
nance [14]. SNFT, already metastatic, showed invasion 24 h post-culture (10.33 ± 0.33 cells/field).
In comparison, NIH3T3J1-A-induction augmented invasiveness by 6.83-fold (p < 0.001).
Similarly, OVCAR3, OAW42, and NIH3T3J1-D cells induced 5.64-fold (p < 0.001), 2.96-fold
(p < 0.01), and 2.09-fold (p < 0.05) higher invasiveness in SNFT respectively, while NIH3T3wt

induced non-significant invasion (1.22-fold, p = ns) (Figure 3G,H). Rh-Jag1 peptide treat-
ment (25 µM) slightly increased the invasiveness (2.3-fold, p < 0.05) (Figure S3).

In several malignancies, Notch3 abets drug resistance [15]. CFSE-labelled SNFT
was sorted after co-culturing and tested for cisplatin sensitivity. The IC50 of cisplatin for
SNFT increased ~2–3-fold after culturing with either NIH3T3J1-A (8.8 µg/mL, p < 0.01)
or OVCAR3 (8.3 µg/mL, p < 0.01) compared to basal SNFT (2.7 µg/mL) and also with
NIH3T3wt-culture (3.8 µg/mL) (Figure 3I,J). The peptide (25 µM) also imparts cisplatin
resistance in SNFT (IC50: 6.61 µg/mL) (Figure S3C).
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Figure 3. Differential induction of Notch3 by homo/heterotypic interactions leads to modulation in
proliferation, invasiveness, and cisplatin sensitivity in SNFT. (A,B) Bioluminescence images of SNFT
individually co-cultured with TOV21G, OAW42, A2780, and OVCAR3 cell lines naturally expressing
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different levels of Jag1, which led to differential Notch3 promoter activity as represented by
the bar diagram (n = 3). Co-culturing with TOV21G showed comparable luciferase activity
(9111 ± 458.28 p/s/cm2/sr) to SNFT. (C,D) The proliferation index was calculated by FlowJo soft-
ware and plotted as a line graph which indicated heterogeneity in the proliferation rate of SNFT
post-co-culture with different NIH3T3-Jagged1 expressing clones and EOC cell lines. The maximum
increase in SNFT proliferation was found after NIH3T3J1-A co-culture (12.3-fold, p < 0.001) and post
OVCAR3 co-culture (7.7-fold, p < 0.001) on day2. (E,F) Immunofluorescence images of Ki-67 staining,
a nuclear marker for cell proliferation in SNFT cells sorted after co-culturing with various EOC
cells and Jagged-1 expressing NIH3T3 clones labelled with CFSE (E). Graphical comparison of the
overall distribution of Ki-67 labelled SNFT cells exhibited maximal induction after co-culture with
OVCAR3 cells, followed by NIH3T3J1-A and OAW42 cells. NIH3T3wt also induced Ki-67 expression
SNFT but not significantly (n = 2). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. (G,H) The epifluorescence
images represent the invaded SNFT cells (green) after co-culture (G). The highest invasion was
observed in SNFT co-cultured with NIH3T3J1-A, followed by OVCAR3, OAW42, and NIH3T3J1-D

(H) (n = 3). (I,J) The result of the MTT assay was plotted as drug concentration vs. percentage cell
survival in a line graph which showed that across different co-culture conditions NIH3T3J1-A and
OVCAR3 imparted the highest cisplatin resistance in SNFT, which gradually decreased with OAW42,
NIH3T3J1-D, and NIH3T3Wt co-cultures. The IC50 doses of SNFT alone and after co-culture with
different cells are presented in the table (n = 3). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.4. Cancer-Associated Fibroblasts (CAF) Induce Notch3 Activation in the Co-Culture Model

We isolated CD90+ CAFs from malignant ascites of six HGSOC patients, evaluated
Jagged1 status, and validated the sensor model in cancerous conditions. For four cases (CAF
I, III, IV, and VI), CD90+ CAFs showed membranous and cytoplasmic Jagged1 expression
but at differential levels. CAF-II showed low and cytoplasmic expression, and CAF-V
did not have any detectable expression (Figure 4C). Differential level of Notch3 sensor
activation in SNFT (CAF I:37-fold, p < 0.001; CAF III:28.1-fold, p < 0.001; CAF IV:13.2-fold,
p < 0.001; and CAF VI:6.8-fold, p < 0.001 increase over SNFT-alone) was observed when
Jagged1+ve CAF-co-culturing (Figure 4C,D).

3.5. CDKN1A and VEGFA Are Two Key Differential Genes (DGs) in SNFT Post
Homotypic/Heterotypic Activation of the Notch3 Pathway

The incremental ligand expression induces an amplified activation of Notch3 through
NICD-cleavage. To delineate the amplification’s summative effect on classical/non-classical
target genes’ expression associated with various diseases, we performed the transcriptional
profiling of SNFT across co-culture (NIH3T3wt, NIH3T3J1-A, NIH3T3J1-B, CAF-III, CAF-VI,
and OVCAR3). Altogether normalized expression of 107 putative candidate genes was
plotted (Figure 5A). The core downstream effector genes of Notch3, e.g., pbx1, hes1, showed
increased expression indicating an activated Notch3 pathway. Across populations, five
DGs (CDKN1A, VEGFA, FOXC1, TNFSF10, and SERPINA3) had a significant fold-change
compared with NIH3T3wt (Figure 5B). SERPINA3 (except for CAF-III-co-culture) and
FOXC1 were upregulated and downregulated, respectively (Figure 5C). NICD3 causes tran-
scriptional de-repression at the CSL-ternary complex by replacing HDAC with HAT [16].
Hence, the upregulated DGs represent a surrogate of Notch3 activation. Three genes, i.e.,
CDKN1A (2.15- to 5.1-fold), VEGFA (2.15- to 12.12-fold), and TNFSF10 (2.03- to 4.44-fold),
were upregulated post-co-culture in SNFT (Figure 5C). Two maximally modulated genes
(CDKN1A and VEGFA) were further validated (Figure 5D).

Rh-Jag1 treatment (25 µM) increased both CDKN1A and VEGFA expressions in SNFT
by 5.12-fold (p < 0.01) and 13.75-fold (p < 0.0001), and DAPT attenuated this effect by 7.45-
fold (p < 0.01) and 1.27-fold (p < 0.01), respectively, indicating Notch pathway-mediated
regulation during co-culture (Figure 5D).
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Figure 4. Cancer-associated fibroblasts induce Notch3 activation in the co-culture model. (A) Im-
munofluorescence images depicting the localization pattern (both membranous and cytoplasmic)
of Jag1 in CAFs. CAFs from patients II and V did not show membranous Jagged-1. Notably, Jag1
expression showed heterogeneity across different cells within an individual and across patients
(n = 1). (B,C) Co-culture of these CAFs induced differential levels of Notch3 activation in SNFT as
indicated by the luciferase signal (n = 1). Note that CAF II and CAF V co-culture did not activate
Notch3 in SNFT (n = 1). ** p ≤ 0.01, *** p ≤ 0.001.

Jagged1 peptide (25 µM) resulted in a pan-cellular redistribution of p21 and the
expression increased by 2.35-fold (p < 0.01) (nucleus) and 1.62-fold (p < 0.01) (cytoplasm).
Cisplatin (25 µg/mL) increased nuclear localization (3.57-fold, p = 0.058), along with a
slight increase in the cytoplasm (1.26-fold, p < 0.01). Intriguingly, a combinatorial treatment
(peptide-cisplatin) resulted in maximum nuclear (4.53-fold, p < 0.001) and cytoplasm (1.94-
fold, p < 0.01) expression of p21 in SNFT (Figure 5E,F).
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Figure 5. CDKN1A and VEGFA are two key differential genes (DGs) in SNFT post homo-
typic/heterotypic activation of the Notch3 pathway. (A) Modulation in 107 Notch3 target genes in
FACS sorted labelled SNFT cells from co-culture (CC) with five Jagged-1 expressing cells (OVCAR3,
NIH3T3J1-A, NIH3T3J1-B, CAF-III, and CAF-VI) as compared to NIH3T3wt cells is represented by
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the heatmap. (B,C) The Venn diagram shows the unique and overlapping differential genes across
five co-cultures. Among them, CDKN1A, VEGFA, and TNFSF10 exhibited significant up-regulation.
At the same time, SERPINA3 (only in CAF-III co-culture SNFT) and FOXC1 showed down-regulated
expression. (D) Expressions of CDKN1A and VEGFA (the two most significant DGs) were increased
after Jag1 peptide treatment, which declined after DAPT treatment in SNFT (n = 2) (see Table S2 for
expression values). (E,F) Immunofluorescence images showing the expression level and localization of
p21 in SNFT after peptide treatment or cisplatin treatment or treatment with both. Peptide treatment
significantly augmented nuclear and cytoplasmic localization of p21, which further increased after
cisplatin along with peptide treatment. Cisplatin alone did not cause any change in nuclear or
cytoplasmic p21 compared to untreated (n = 3). The nuclear-cytoplasmic intensity tool, an ImageJ
macros toolset, was used to quantify the expression. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.6. VEGFA Regulates CSC-Non CSC Turnover in A2780LR Cells, and Its Expression along with
CDK2N1A Correlates with Notch3 in Metastatic HGSOC Tumors

SNFT secreted higher VEGFA after co-culturing with NIH3T3wt (2-fold, p < 0.001),
NIH3T3J1-A (5.01-fold, p < 0.001), NIH3T3J1-B (2.98-fold, p < 0.001), and NIH3T3J1-D (2.16-
fold, p < 0.001) to SNFT culture alone (Figure 6A). Both OVCAR3 and OAW42 cells had
secreted VEGFA. For homotypic co-culture conditions, normalization for the feeder layer
confirmed increased VEGFA secretion after OVCAR3 (4.14-fold, p < 0.001) and OAW42
(3.67-fold, p < 0.001) co-culture.

Earlier works reported that VEGFA could drive cancer-initiating stem cells in triple-
negative breast cancer and non-small cell lung carcinoma, primarily through the myc/stat3/sox2
axis [17,18]. Notch3 is a known critical regulator of cancer stem cells (CSC) in ovarian
carcinoma [15]. Hence, to determine whether VEGFA secretion induced by co-culture
affects side population fraction, a surrogate marker for CSC characterization, DCV efflux
assay, was performed on A2780LR cells. Owing to its terminally resistant nature against
cisplatin, A2780LR showed a 19.7% SP fraction at the basal level, which increased after
purified VEGFA treatment (2 ng/mL) for 7 days by 1.6-fold to 30.8%. Conditioning with
co-cultured media after incubating SNFT cells upon NIH3T3J1-A feeder layer for 1 week
increased the SP fraction further (34%) by 1.72-fold (Figure 6A). Oct4 expression (MFI) in
A2780LR was also found to be increased (2.39-fold) after conditioning with the co-cultured
medium. However, the percentage increase of positive cells was insignificant (1.75 in
untreated v/s 2.13 in a conditioned medium treated (Figure S4A–C).

Next, we sought to determine whether the Notch3/VEGFA axis exerts differential
effects upon the SP & NSP fractions in terms of their differentiation, drug resistance,
and pluripotent characteristics. All these attributes are decisive for EOC progression.
An equal number of sorted SP (19.3%) and NSP (70%) cells of A2780LR were incubated
in the supernatant of the SNFT/NIH3T3J1-A co-cultured medium for a week and again
sorted into SP and NSP fractions. Both differentiation of SP (SP: 39.2%; Figure S5) and
minimal de-differentiation of NSP (SP: 9.3%; Figure S5) were observed (data not shown).
Intriguingly, expression of pluripotent genes, e.g., nanog, oct4, and sox2, increased in SP
and NSP factions post-conditioning compared to the untreated SP or NSP, respectively.
However, the fold increase of these genes was significantly higher in conditioned-SP (nanog:
34.5-fold; oct4: 22-fold) than that of conditioned-NSP (nanog: 2.8-fold; oct4: 9.5-fold) except
for sox2 (conditioned-SP: 7.2-fold; conditioned-NSP: 7.7-fold). Also, Notch3, one of the well-
known drivers of stemness, increased by 12.7-fold and 7.4-fold in SP and NSP, respectively,
after conditioning. This observation has strengthened the fact that the SP population is
indeed enriched with stem-like cells. Interestingly, the expression of vegfa increased by
6-fold in SP but plummeted by 3.9-fold in NSP cells, indicating the absence of an active
Notch3/VEGFA axis in NSP cells. Due to the complicated experimental design and a small
number of SP cell collections, we could not measure the secreted VEGFA independently
from SP and NSP fractions after conditioning.
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greatest fold-increase of VEGFA activity (~5-fold) that gradually diminishes with OVCAR3, OAW42,
NIH3T3J1-B, NIH3T3J1-D, and NIH3T3wt cells. (B) Increased side population was observed in A2780LR

cells after treatment of either VEGFA peptide or conditioning with a co-cultured medium containing
VEGFA (n = 2). (C) The fold change for the pluripotent genes, VEGFA and Notch3, was determined
after conditioning the SP and NSP fractions of A2780LR cells that showed a prominent enrichment of
stem-like property in SP cells compared to NSP along with a predominantly active Notch3/VEGFA
axis only in SP cells. (D,E) The gene expression for CDKN1A and VEGFA was compared between pri-
mary and metastatic tumors from seven paired cases of HGSOC, wherein VEGFA showed significant
increase post metastasis in five cases and a decrease or no change in one case each. For CDKN1A, the
expression had either increased or decreased in three patients, each with one case having no differ-
ence in expression. (F,G) Across the ovary and omentum, Notch3 showed membranous-cytoplasmic
expression. The majority of the cases had higher Notch3 IRS in metastatic tumors and no change or
decrease in staining in one case each. Smooth muscle cells of blood vessels are considered an internal
positive control. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, ns-statistically non significant.

Finally, to assess our findings in HGSOC patient population, we measured CDKN1A
and VEGFA transcripts levels from primary and corresponding metastatic tumor tissues.
Among the seven patients, omental metastasis, compared to respective primary tumors,
showed decreased expression of CDKN1A (P1, P2, P3; p < 0.001) in three cases and increased
CDKN1A in another three (P4, P7; p < 0.001; P5, p = ns) with one case having no difference in
expression. However, five patients showed increased VEGFA gene expression in metastatic
tumors compared with their primary, which also showed enhanced NICD3 expression
as determined by IHC. In the remaining two cases, the VEGFA level was reduced in the
paired metastatic counterparts (P1, p < 0.01; P6, p < 0.05). The cleaved Notch3 level in these
cases was not altered (P1) or decreased (P6) (Figure 6F,G). Notably, we did not observe
any nuclear localization of cleaved Notch3 and this was thereby scored based upon its
cytoplasmic-membranous expression (Figure S4D).

4. Discussion

Both ascitic and tumor tissue microenvironments in EOC, known for their complex
biology during tumor initiation and progression, comprise various acellular/cellular com-
ponents with a critical role in the evolution of malignancy [1]. Omentum is the most
common site of distant metastasis in advanced-stage EOC, comprising 70% of all cases
wherein binary interactions between either stromal/tumor or tumor/tumor cell pairs are
pathologically critical [1,19]. To assess and estimate the impact of cell–cell communica-
tions (either homotypic or heterotypic), we investigated the juxtacrine interaction between
CAFs/tumor cells in the context of Notch3 signaling and also whether potential heterogene-
ity in the CAFs or tumor cells leads to differential levels of Jagged1 ligand that can drive
the Notch3 activation differentially in EOC cells and its functional consequence. Develop-
ing a one-of-its-kind luciferase-based multimeric reporter sensor in SKOV3 cells (SNFT)
and co-culturing SNFT with various cell types, we investigated the effect of differential
activation of Notch3 in real-time. The sensor is found to be sensitive enough to distinguish
different ligand concentrations either overexpressed on the surface of NIH3T3jag1 clones or
naturally expressing EOC cell lines and CAFs. Its sensitivity was also ascertained in the
presence of a Notch-pathway inhibitor and inducer, i.e., DAPT and rh-Jag1 peptide, respec-
tively. To the best of our knowledge, this is possibly the first-ever study to demonstrate
the differential activation of the Notch pathway, particularly Notch3, by patient-derived
CAFs with variable expression of Jagged1. Such differential Notch3 pathway activation
elicited modulations in proliferation, invasion, and drug sensitivity of SNFT through both
homo/heterotypic co-culture conditions, which were directly proportional to the level of
Jagged1 expression. When compared across all the co-culture conditions, the Notch3 RT2
profiler array identified VEGFA and CDKN1A as the most upregulated candidates among
the top modulated genes in SNFT. Due to Notch3 activation after co-culture, enhanced
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VEGFA secretion from SNFT enhanced the un-differentiated CSC population in platinum-
resistant A2780 cells. Though co-culture medium did induce differentiation in pure SP
cells, the pluripotent genes and Notch3 expression were enhanced several-fold higher in SP
than in NSP fraction. Reduction in VEGFA expression in NSP fraction after treatment with
co-culture media indicates that the Notch3/VEGFA axis is exclusively active in SP cells.
Altered p21 expression/spatial regulation, consequent to Notch3 activation, was observed
after rh-Jag1 peptide/cisplatin treatment. Interestingly enough, both NICD3 protein and
VEGFA transcripts were found to be upregulated in the metastatic tumors compared to
the corresponding paired primary tumors of HGSOC patients. This potential interplay of
Notch3 along with p21 and VEGFA evidently emerges as critical regulators during tumor
metastasis leading to the progression of ovarian carcinoma.

The potential heterogeneity in Jagged1 expression in the neighboring cells imparts dif-
ferential juxtacrine activation of Notch3, rendering relevant clinical implications [20,21]. To
date, six real-time monitoring strategies have been developed for Notch activation. Three
of them were developed in order to study canonical Notch signaling, such as NICD/CSL lu-
ciferase complementation, hes1/hes5 promoter-driven fluorescent genes, and CSL-binding
sites-driven fluorescent reporters [11,22–24]. Despite having its own merits, each of these
relied primarily upon the co-expression of a specific Notch receptor with autocrine induc-
tion of the reporter or induction by non-specific chemical inducers (EDTA). Except for the
luciferase complementation, all other studies evaluated the Notch reporters in cell fate
determination during CNS development. Also, there are three reported methods based
on synthetically engineered Notch receptor (synNQ) approaches. The ligand-interacting
EGF-like domain of the N-terminus of the Notch receptor can be replaced, e.g., with a GFP-
binding nanobody. Alternatively, the downstream transcriptional effector molecule, i.e.,
ICD in the C-terminus, can be swapped with other transcription factors (e.g., QF) without
affecting upstream cleavage events (Ref.). Also, a synthetic system has been developed by
introducing different binding partners of ICD without affecting the receptor itself [25,26].
Since our focus was to investigate the functioning of intact Notch3 receptor and ligand,
the SNFT sensor does not fit for comparison with synthetic Notch receptor. Our unique
co-culture-based Notch reporter model utilizes the multimerized CSL-binding sites-driven
firefly luciferase (which possesses a better signal-to-noise ratio), recording only ‘canonical’
signaling (ICD/CSL-mediated) and not any non-CSL mediated Notch signaling.

In contrast, any putative non-CSL-mediated form of Notch signaling should go un-
detected [27]. However, epithelial ovarian cancer is not known for the presence of any
non-canonical form of Notch signaling; rather, the canonical Notch3 pathway is one of
the major pathways responsible for promoting EOC. EOC cell lines possess different ex-
pression/levels of activation of all Notch receptors; therefore, selecting a candidate to
delineate the Notch receptor-specific effect is critical, and SKOV3 is deemed appropriate
for the model due to its autocrine activation of every Notch receptor except Notch3 [13].
The endogenous Notch receptors of SNFT cells and Jagged1-expressing cells (natural and
overexpressed) function as the receiver and the donor. SNFT showed no significant lu-
ciferase signal owing to the absence of basal Notch3 activity, indicating non-response to
NICD of other Notch receptors. The mechanism, though it requires elucidation, suggests
the specificity of our system.

Similarly, the lack of induction in luciferase signal by the NIH3T3jag1-nodder or TOV21G
(no membrane localization of Jag1) indicates that the system’s specificity interaction be-
tween the receiver and heterogeneous levels of donor led to differential Notch3 activation,
which led to downstream molecular and biological heterogeneity. The rh-Jag1 peptide or
DAPT inhibitor reliably demonstrated the sensitivity of the sensor. NIH3T3J1-A co-culture
induced the sensor at 12 h post-culture, reached maxima at 24 h then decreased until 48 h,
thus exhibiting the temporal activation kinetics. Several naturally Jagged1-expressing EOC
cell lines (A2780, OVCAR3, and OAW42) were used as the feeder layer, mimicking tumor
cells’ homotypic interaction. The concomitant and proportional cleavage of NICD3 across
conditions deemed the model a bona fide sensor for the Notch3 pathway activity.
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As a result of its pleiotropic nature, deregulation of Notch leads to aberrant effects on
cellular proliferation, migration, angiogenesis, and survival [28–30]. In melanoma, Notch3
had been linked to invasion-migration properties of the cells [31]. Notch3 is also implicated
in inhibiting cell proliferation and invasion in breast cancer through PTEN transactiva-
tion [32]. Both Ki-67 expression and CFSE-assay ascertained the hyperproliferation of
SNFT by Notch3. We observed that NIH3T3J1-A and OVCAR3 imparted the highest pro-
liferative, invasive, and chemoresistance potential. However, OVCAR3 co-culture caused
the maximum nuclear localization of Ki-67. Interestingly, NIH3T3wt co-culture imparted
marginal proliferative and invasive leverage, possibly by the PGE2 secretion, activating
ERK1/2 in SNFT [33]. SKOV3 cells (Platinum-IC50: ~3 µg/mL) acquired further resistance
post-activation of the pathway through peptide/co-culture [34]. Thus, this model can
reliably measure the activation dynamics of Notch3 signaling.

Both canonical and non-canonical Notch signaling are known for initiating a tran-
scriptional cascade that involves both the activation and the repression of target genes.
The canonical Notch signaling follows a multi-tiered signaling cascade which gets strictly
trans-activated (normal condition) or trans/cis-activated (malignant condition) by several
ligands of delta (DLL1, DLL3, DLL4) and serrate (Jag1, Jag2) families leading to sequential
cleavages and release of NICD, which translocates to the nucleus causing transcriptional
modulation by co-activation complex formation [35,36]. The non-canonical Notch pathway,
on the other hand, primarily comprises a CSL-independent transcriptional role or complete
absence or replacement of canonical ligand for activation, which is reported in the context
of several tumors [10–13]. However, epithelial ovarian cancer is not known for the presence
of any non-canonical form of Notch signaling; rather, canonical Notch3 pathway is a major
pathway responsible for promoting EOC. To appraise the effects of differential Notch3
activation on cellular properties, we adopted a stringent and elaborate FACS sorting strat-
egy to isolate labelled SNFT cells after homotypic (A2780, OAW42, and OVCAR3 cells)
or heterotypic (Jagged1 expressing NIH3T3 clones/patient-derived CAFs) co-cultures. A
real-time profiler array was carried out on these sorted populations that identified five com-
monly modulated targets of Notch3 (TNFSF10, FOXC1, VEGFA, CDKN1A & SERPINA3).
Perchet et al. have demonstrated that in the context of the type-I lymphoid immune func-
tion, TNFSF10, along with Stat5/IL2 pathway, co-cluster with the Notch pathway genes,
though the exact mechanism of this association is not known [37]. FOXC1 is reported to
be an oncogene in several cancers like basal-like breast cancer, hepatocellular carcinoma,
endometrial cancer, and lymphoma [38]. In our analysis, FOXC1 was downregulated post
Notch3 activation, but the exact mechanism of this observation needs further elucidation.
FOXC1 protein was present in 84% of serous ovarian cystadenomas and 66.7% of borderline
cystadenomas, whereas its expression was observed in only 37.5% of adenocarcinomas,
which suggests that FOXC1 is a better prognosis marker [39]. SERPINA3 is commonly
associated with the transition of benign tumors to invasive melanoma [40]. Except for
CAF-III co-culture, we observed upregulation of this oncogene in all the conditions.

Two significantly upregulated genes, CDKN1A and VEGFA, unlike basic helix-loop-
helix (bHLH) domain (hes1) or homeobox family (pbx1) members, are non-classical Notch3
targets. VEGFA is known for promoting angiogenesis [18,41]. VEGFA upregulation and se-
cretion by SNFT cells through co-culture/peptide-induction signified the role of the Notch3
pathway in disease progression in EOC. CAF-III, inducing maximal VEGFA expression
in SNFT, is particularly important in highlighting the strength of this system in delineat-
ing the molecular angiogenic cues. Interestingly, VEGFA shows a lesser DAPT-driven
inhibition of peptide induction than p21. VEGFA expression is known to be regulated by
Notch3/Jag1 axis through the zeb1 transcription factor [42]. Thus, feedback mechanisms
other than Notch3/Jag1/zeb1 axis possibly contribute to this reduced VEGFA inhibition.
Bevacizumab, a VEGF inhibitor, is currently in use as maintenance therapy for advanced-
stage HGSOC due to the well-established role of VEGFA in EOC angiogenesis. Recently, in
primary ovarian carcinoma culture, VEGFA had been shown to promote tumor-initiating
cells through Src-DNMT3A-driven miR-128-2 methylation and Bmi1 upregulation [43].
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VEGFA is also known to modulate cancer stem cell-enriched side population in breast
cancer patients through non-canonical PKA/β-catenin pathway and ABCG2/ABCB1 drug
efflux transporters [44]. Intriguingly, the conditioned medium of co-culture of SNFT and
NIH3T3Jag1A cells imparted slightly higher induction of SP fraction than purified VEGF
treatment in platinum-resistant A2780LR cells. This effect might have resulted from other
secreted factors present in the co-culture medium. When a pure fraction of the SP and NSP
population were incubated with the co-culture medium, both differentiation of SP and
a minimal de-differentiation (less than 10%) of NSP were observed. Such differentiation
and de-differentiation phenomena were not reported earlier and could be attributed to
several factors present in co-culture media. We are working towards the identification of
these factors. Intriguingly, along with pluripotent genes (Oct4, SOX2, and Nanog), the
Notch3/VEGFA axis is highly expressed exclusively in SP cells and probably contributes to
pro-tumorigenic activities. Our data thus indicate a broader role of the Notch3/VEGFA
axis in the enrichment of undifferentiated, drug-resistant CSC-like population and neo
angiogenesis during EOC metastasis. Further investigation on this axis would open up the
prospect of therapeutic intervention at the pre-metastatic niche formation.

p21, a G1/S checkpoint protein, binds to CDK1 and induces cellular senescence after
stress-induced p53-activation [45]. However, studies have shown that p21 could play a
myriad of pro-tumorigenic roles depending on its cellular localization [46]. p21 phosphory-
lation at Thr-145 and Ser-146, caused by AKT1, sequesters it in the cytoplasm. This imparts
apoptosis-resistance by sequestering pro-caspase-3 and thus inhibiting Fas-mediated cell
death [47]. Also, nuclear p21 induces proliferation through CCND1 accumulation and
CDK4/6 association [48]. Notch3 can regulate p21 transcription through hes1 [49]. Our
data show prominent and expected nuclear localization of p21 after cisplatin treatment
which redistributed to cytoplasm post dual treatment of cisplatin and rh-Jag1, indicating
a probable anti-apoptotic fate adapted by the cells. This molecular event possibly leads
to the acquirement of platinum resistance, as observed in this study. Intriguingly, rh-Jag1
treatment alone also significantly increased cytoplasmic localization of p21 which is pos-
sibly due to an increase in pAkt level [50]. Finally, we observed a biological correlation
between Notch3 protein upregulation and transcriptional induction of VEGFA in five
metastatic HGSOC tumors compared with their primary counterparts. Interestingly, in P6
we observed a concomitant decrease in Notch3 as well as VEGFA expression. However, the
CDKN1A encoding p21 did not show any particular correlation with Notch3 [51].

Notch3 signaling is tightly regulated in a multi-tiered fashion and determines the cell
fate decision during normal development and pathogenesis. Herein, we have elucidated
the functional and molecular aspects of trans-regulation of Notch3 by heterogeneous cells
from the malignant ascites of EOC and the possible involvement of Notch3 at various facets
in disease progression. This is probably the first report of homotypic cell–cell interaction in
EOC leading to Notch3 activation. Redesigning this reporter system as a platform for a high
throughput library will enable the screening of Notch3-associated therapeutic candidates
in the future.

5. Conclusions

This study conclusively established that differential ligand induction by the tumor
microenvironmental cells leads to differential Notch3 activation in tumor cells in a homo-
and heterotypic fashion. The differential activation of Notch3 resulted in phenotypic
modulation in SKOV3 cells in a proportional manner, and p21 and VEGFA are two critical
genes through which Notch3 imparts its effects during these interactions. This study
uncovers an unknown role of the Notch3/VEGFA axis in EOC progression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14143365/s1, Figure S1: Characterization of wild type
and mutant Jagged-1 expressing clones; Figure S2: Differential expression of Jagged-1 in EOC cells
induce differential Notch3 activation in SNFT; Figure S3: (Effect of rh-Jag1 peptide on cellular
proliferation, cisplatin-sensitivity and invasion. Figure S4: Enhanced OCT4 expression in co-culture
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