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Abstract

Human postural sway during quiet standing has been characterized as a proportional-inte-

gral-derivative controller with intermittent activation. In the model, patterns of sway result

from both instantaneous, passive, mechanical resistance and delayed, intermittent resis-

tance signaled by the central nervous system. A Kalman-Filter framework was designed to

directly estimate from experimental data the parameters of the model’s stochastic delay dif-

ferential equations with discrete dynamic switching conditions. Simulations showed that all

parameters could be estimated over a variety of possible data-generating configurations

with varying degrees of bias and variance depending on their empirical identification. Appli-

cations to experimental data reveal distributions of each parameter that correspond well to

previous findings, suggesting that many useful, physiological measures may be extracted

from sway data. Individuals varied in degree and type of deviation from theoretical expecta-

tions, ranging from harmonic oscillation to non-equilibrium Langevin dynamics.

Introduction

Several previous studies have analyzed bodily sway patterns in quiet standing, and a variety of

models have been proposed. In this study, we designed and tested a method of directly estimat-

ing the parameters of the Asai et al. [1] intermittent feedback control model of posture from

experimental data. We begin with a brief review of prior models and the rationale for choosing

a model of intermittent postural control (IPC). In the second section, we describe the current

model in more detail and explain our framework for the estimation of its parameters. The

third section describes simulation studies that tested the estimation capabilities of our frame-

work when the data-generating parameters are known and the model is specified accurately.

In the fourth section, we applied the model to experimental data and estimated sampling dis-

tributions for each parameter.

Observed trajectories of postural sway have largely been studied as a problem of stochastic

behavior, though some studies have focused on its chaotic properties [2]. In this study, we too

regarded postural sway as a random process subject to statistical analysis. The center of pres-

sure (COP) on a force plate during quiet standing has been shown to exhibit the features of a
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bounded, random walk, or correlated noise [3]. Center of mass (COM) is one of the most com-

mon metrics of body sway but has to be inferred from other position and force metrics such as

the COP [4]. For the small radius in which postural sway occurs, body tilt angle is nearly equiv-

alent to COM and has likewise been used to develop models of posture [1].

Many authors have observed that sway follows a two-frequency oscillation scheme,

with fast oscillations of the COP around a drifting center point [3, 5–7]. Collins and De

Luca [3] regarded these patterns as a combination of short-term, open-loop system with

long-term closed-loop control. Alternatively, the “rambling and trembling” hypothesis sug-

gests that short-term tremors result from corrective, closed-loop feedback that is activated

with deviation of the COP from the ground projection of the COM, which is itself allowed

to drift [7].

Broadly, more recent debate over the control scheme of human balance has focused on two

kinds of models: continuous and intermittent feedback controllers. Continuous control is

exerted through a proportional-integral-derivative (PID) or closed-loop system often charac-

terized by a second order linear differential equation, sometimes including delayed propor-

tional and derivative feedback. For instance, Maurer and Peterka [8] tested a PID inverted

pendulum model that distinguishes passive, instantaneous feedback from sources such as

ankle joint stiffness, from delayed, active feedback from the central nervous system and

subsequent muscular response. Others have argued that human postural movement is better

described by intermittent feedback mechanisms due to a smaller reliance on process noise,

reproduction of cyclical behavior over multiple timescales, more efficient energy expenditure,

and greater robustness to disturbances and instability caused by delays in neural signaling [9].

Simulations [10] and reinforcement learning [11] have been used to show that an upright pen-

dulum, taken as a simple model of the standing human body, can exhibit stability and the

observed slow oscillation patterns as a result of learned, time-delayed, intermittent feedback.

Intermittent activation models have taken multiple forms. Gawthrop and Wang [12] ini-

tially proposed clock-driven muscular feedback, but later considered event-driven models

[13]. Event-driven models are generally defined by a combination of stable and unstable mani-

folds in the phase space of the body’s position or angle. Gawthrop et al. [13] and Eurich and

Milton [14] describe the behavior of systems with position-based thresholds that result in two

stable equilibria. A model by Bottaro et al. [15] proposes boundary functions of both position

and velocity that jointly determine probabilistic bursts of negative feedback. Asai et al. [1]

reproduced a commonly observed double power-law structure in the PSD of sway [6] using

similar control manifolds but with deterministic rules for sustained feedback activation. Their

model requires only a simpler, Gaussian distribution of process noise with a smaller variance

as compared to continuous PID models. Nomura et al. [16] showed that the same intermittent

activation feedback model is capable of reproducing both chaotic and stochastic patterns that

resemble human postural sway as a function of small hemodynamic perturbations, while con-

tinuous feedback models cannot.

A common method of estimating the parameters of each model is to simulate data that opti-

mally resemble the experimental data. This is accomplished by varying parameters over itera-

tions of simulation until resulting disparities on a set of key summary statistics have been

minimized. Bottaro et al. [15] used the the Root Mean Square (RMS) of both the COP and

COM series and each of its derivatives, unimodality of the series histogram, the length of larg-

est oscillations calculated from zero crossings, and the PSD of the COP series. Maurer and

Peterka [8] estimated parameters from observed data in a similar manner using mean velocity,

RMS distance and velocity, spectral properties such as mean frequency, frequency dispersion,

and total power. Asai et al. [1] used the double power law structure of the frequency spectrum

as a criterion for the success of their model but did not demonstrate a direct empirical
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application. To obtain statistical information about estimated parameters, summary statistic

methods have been combined with approximate Bayesian inference [17]. This method was

used to acquire empirical posterior distributions of five out of the eight parameters of interest

[18].

While the simulation approach is flexible for a wide range of model specifications and lev-

els of complexity, it risks overlooking attributes of the data that do not have specific effects

on the chosen summary statistics. Bottaro et al. [15] notes, for instance, that “The intermit-

tent nature of the control process cannot be detected by global descriptors of the sway pat-

terns, like the PSD of the COP, because they cannot distinguish between asymptotic and

bounded stability”. Furthermore, the amplitude spectrum is invariant to reversal of the sig-

nal, giving identical results for potentially different mechanisms of variation. This is prob-

lematic when the system includes discontinuous dynamics, such as a sharp impulse followed

by a more gradual decay. An alternative approach that better accounts for fine-grained

sequential dependence is to estimate the structural parameters directly from the data using

Kalman filtering or other iterative techniques. No simulation or descriptive statistics are

necessarily used, rather the structural parameters are estimated by minimizing an objective

function such as the squared prediction error, or by maximizing the likelihood of the data

according to an expected noise distribution. The results obtained by this approach can be

sensitive to the exact predictive mechanisms specified in the model, and post-hoc analyses

of the estimates can be highly informative about the types and degrees of misspecification.

Direct estimation (sometimes called exact estimation by comparison [19]) may be particu-

larly useful when the dynamic structure cannot represented by any descriptive statistics with

sufficient specificity. The Asai et al. [1] model of posture may present one such case in that

it postulates dependence of the spectral power-law property upon nonlinear, physiological

mechanisms of feedback control and their properties. Such properties include the delay in

neural signaling, the sensitivity of feedback activation, and the strength of passive versus

active corrective forces. Furthermore, the process noise distribution of the Asai et al. [1]

model is a Gaussian process and thus accords with the statistical assumptions of the Kalman

filter. A drawback of direct estimation is that a misspecified model is not guaranteed to result

in any interpretable or accurate parameter estimates if the parameters are highly dependent.

If the parameter estimates deviate significantly from their theorized values, we may nonethe-

less analyze the behaviors they imply and draw general inferences.

The aim of this study was to validate and apply a method of directly estimating parameters

for event-driven control with specific focus on the popular intermittent control model by Asai

et al. [1]. Validation of this analytic strategy will set a foundation for estimating the parameters

of alternative models and more comprehensive comparisons. Following the validation study,

we estimated empirical values of each parameter from publicly available COM data [20] and

compared our results with theoretically expected values from the literature. We included two

previously demonstrated covariates in our analysis, visual feedback and age, to attempt to rep-

licate previous findings as further evidence for the validity of the model.

Model

The intermittent postural control (IPC) model by Asai et al. [1] describes a tension between

toppling torque due to gravity and a combination of active and passive resistance mechanisms.

Passive resistance is proposed to come from leg stiffness and joint friction and is modeled with

instantaneous relations between position, velocity, and acceleration. Active feedback control is

proposed to arise from motor responses signaled by the central nervous system and is conse-

quently delayed by about 190-210 ms [21].
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The model is provided in terms of body tilt angle (θ) as follows:

I€yt ¼ mghyt � T; ð1Þ

T ¼ mghKyt þ B _yt þmghfPðyt� tÞ þ fDð _yt� tÞ þ swt; wt � Nð0; 1Þ; ð2Þ

where I is the rotational inertia, m is the body mass (kg), g is gravity (� 9.81m/s2), and h is

the height of the COM. T includes all the terms representing mechanisms of resistance to the

angular toppling force. wt is a Gaussian, independent and identically distributed random vari-

able accounting for stochastic variation in acceleration, with standard deviation σ. The total

passive forces may be written as mgh(1 − K)θt, as K is the percentage of the gravitational accel-

eration counteracted by passive resistance. While a certain definition of B is not given, its

effects are non-trivial and an interpretation may be taken from the common use of the second-

order damped oscillator equation, in which the velocity coefficient represents negative feed-

back due to friction. In this case, it may be regarded as a measure of ankle and knee joint

friction.

The active control terms, fP and fD, intermittently respond to θ on a time lag of τ� 200 ms

according to the conditions:

if yt� tðs _yt� t � ayt� tÞ > 0; and y2

t� t þ ðs _yt� tÞ
2
> r2

fPðyt� tÞ ¼ Pyt� t

fDð _yt� tÞ ¼ D _yt� t

ðActiveÞ; ð3Þ

(

otherwise

( fPðyt� tÞ ¼ 0

fDð _yt� tÞ ¼ 0
ðInactiveÞ ð4Þ

The first condition represents a threshold dividing the saddle-type attractor of the toppling

acceleration into stable and unstable manifolds. The stable manifold briefly occurs when

the tilt angle is moving toward zero, while the unstable manifold is characterized by falling

away from zero. The angle of the dividing line is given by the slope parameter α. The second

condition describes a radius (r) about the origin within which the tilt angle is too small to be

detected or too stable for immediate correction (note that r has conventionally been used to

denote the delay time interval in the delay differential equation literature. Here we have pre-

ferred τ for that purpose.). By converting the switching threshold slope α into the angle a as

a ¼
sinðapÞ
cosðapÞ, we change the upper and lower estimation bounds from [−1,1] to [0, 1]. This

way, the parameter a represents the percentage of the phase space, not including the insensitiv-

ity radius, for which the active control parameters are non-zero.

The estimable parameters of the SDDE are summarized in Table 1. Many of the parameters

have previously been estimated in a variety of ways, sometimes with highly varied results. Tie-

täväinen et al. [18] used the approximate Bayesian inference [17] with data simulation to esti-

mate P, D, a, τ, and σ. Among these, the method failed to obtain precise distributions for D in

both simulations and empirical application. It is also not clear whether fixing the other param-

eters to uncertain theoretical priors (K = .8, B = 4, and r = .004) results in biased estimates.

Direct physiological measurements found the relative resistance to toppling torque at the

ankle, K, to be as high as 91% on average [22] when the average magnitude of disturbance is

small. Another study estimated relative resistance to be around 64% when disturbances were

larger [23]. Conversely, the chosen value of r involves a conjecture about perceptual sensitivity

that is specific to this model and has not been measured directly.
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Tietäväinen et al. [18] obtained a value of τ around 300 ms, while other methods of

assessment have produced estimates including 125 ms [24] and 200 ms [21]. Direct mea-

surements of ankle response, however, found response to start at 30 ms with maximal dis-

placement around 120 ms [25]. If feedback delay is too long, then intermittent periods of

acceleration due to gravity or muscle feedback will be consequently prolonged even as the

state enters unstable regions of the phase space. One result is overcompensation for error,

in which the fast oscillations found in sway are more amplified than would be the case with

shorter delays. Alternatively, if the value of a is too high, then delayed feedback may bypass

the unstable manifold and activate at inappropriate locations in the phase space, potentially

amplifying slower oscillations over time. Long feedback delays can therefore contribute to

instability, sway amplification, and higher risk of falling, but the exact kinds of error are

determined by the joint behavior of several parameters, including a, r, and disturbance mag-

nitude σ [1].

Estimation

The above equations represent a Stochastic Delay Differential Equation (SDDE). The Kal-

man-Bucy filter provides minimum-variance unbiased estimates of the state of a stochastic

process when both measurement and process noise are present and can be used to estimate

the parameters of continuous-time differential equations from noisy data [26]. However,

two challenges arise when estimating the parameters of an SDDE, including the lag interval τ
and the lagged position and velocity coefficients, P and D. First, interpolation of the lagged

states must be used to allow a continuous domain of possible values for τ. Second, backward

extrapolation must be used to estimate the unmeasured interval of lagged states preceding

initial state x0.

Last, we address problems that occur when the discrete switching conditions are toggled

between measured instances. For most intervals between measures, the dynamics are linear

and the prediction is exact, but state predictions that traverse the condition thresholds will sys-

tematically introduce bias to the linear dynamics unless the correct ratio of active and inactive

dynamics within each traversal is estimated. We detail an algorithm to resolve this bias by

adjusting the prediction according to each of the possible threshold-traversal scenarios.

Table 1. Parameters of the IPC model with units and descriptions.

Fixed / Observed Unit

I Inertia (kgm)2

m Body mass (kg)

h Distance of center of mass from the ankle (m)

g Acceleration from gravity (m/s2)

Estimated

K Intrinsic upright stiffness % (of total Nm/rad)

B Joint friction Nms/rad

P Active response force Nm/rad

D Active response damping Nms/rad

a Percentage of phase space active %

r Insensitivity radius rad

τ Feedback delay s

σ Process noise variance Nm

� Measurement error variance rad

https://doi.org/10.1371/journal.pone.0222664.t001
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Optimal filtering. The state-space equation for the time-lagged IPC system is given as

_x t ¼ Axt þ Atxt� t þQ; ð5Þ

yt ¼ Hxt þ mþ R; ð6Þ

where Q is the process noise covariance matrix, H is the measurement matrix, μ is the esti-

mated origin about which the COM oscillates, and R is the covariance matrix of measurement

error. The contemporaneous and lagged state vectors are

xt ¼
xt

_xt

" #

; _x t ¼
_xt

€xt

" #

; xt� t ¼
xt� t

_xt� t

" #

;

and the state transition matrices are

A ¼
0 1

mghð1 � KÞ=I � B=I

" #

; At ¼
0 0

� mghP=I � D=I

" #

; Q ¼
0 0

0 s2

" #

;

Matrix A contains the parameters of the passive, instantaneous forces, while Aτ contains

the conditional parameters of active feedback. When the conditions given in Eq 3 evaluate to

false, Aτ = 0.

The measurement matrices simply attribute the observed COM to the state position with

estimated origin μ and measurement error variance �:

H ¼ 1 0½ � R ¼ �½ �

The complete algebra for the prediction and correction steps of Kalman Filtering is

excluded, as its derivation can be found in many resources [27] and remains largely unchanged

for this model. However, the key difference in this case is that the prediction step is altered to

include the delayed term. Using the following matrix discretizations,

Ad ¼ eADt; ð7Þ

Ad
t
¼ A� 1ðAd � IÞAt

ð8Þ

Qd ¼

Z Dt

d¼0

eAdQeAd Tdd ð9Þ

we can then provide the prediction equations for the state mean and covariance as follows:

x̂ tþDt ¼ Ad�x t þ Ad
t
�x t� tþDt ð10Þ

P̂tþDt ¼ Ad�PtA
d T þ Ad

t
�PtA

d T
t
þQd ð11Þ

For stationary series with large number of observations, Pt� P1. For convenience, we use

Pt−1 as an approximation to Pt−τ. Note that Eq 8 does not work if K = 1, making A singular.

However, small, numerically viable deviations from K = 1 will not substantially impact solution

topology. Point singularitieswill also not impede derivative-free optimization methods.
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Estimation of feedback delay. Linear interpolation To obtain estimates of the state at

time lags that do not fall on measurement instances, we use linear interpolation of the state:

l ¼
t

Dt
; ð12Þ

x̂ t� t ¼ xi� blc þ ðxi� blc � xi� dleÞðl � blcÞ; ð13Þ

λ is the conversion of the time delay to the number of measured occasions comprising that

interval. The ceiling and floor functions thus give valid measurement indices and are used

to give a combination of measurements falling to either side of λ, weighted proportionally. If

τ = 0, then the second term of Eq 13 can be neglected.

Backward extrapolation of initial values By introducing an initial value parameter for

acceleration, we can estimate a quadratic extrapolation backward from t0 to t0 − τ, allowing the

influence of lagged states and switching conditions to be respected within the first λ iterations

of filtering:

If t � t

(
x̂t� t ¼ x0 þ _x0ðt � tÞ þ €x0ðt � tÞ

2
;

_̂xt� t ¼ _x0 þ 2€x0ðt � tÞ;
ð14Þ

Constrained interpolation of dynamic switching points. To avoid bias due to missing

transitional information between measures that straddle the threshold of the conditions given

by Eq 3, we explicitly detect each case, interpolate the state falling on the condition threshold,

and predict its traversal in two steps. For convenience, take the shortened terms u and v as the

delayed states leading up to, and away from the condition threshold:

u≔ xt� t; _u ≔ s _xt� t

v≔ xt� tþDt; _v ≔ s _xt� tþDt;
ð15Þ

Where s is the seconds constant, such that v; u; _v, and _u are measured in radians. For use later,

we note here that the slope between the two points is m ¼ _v � _u
v� u.

Conditions for switching off:

If ½uð _u � auÞ > 0 and u2 þ _u2 > r2� and ½vð _v � avÞ � 0 or v2 þ _v2 � r2�; ð16Þ

then Aτ is switching off. If this holds true, then the following conditions further apply:

If v2 þ _v2 > r2

and !½ðv > 0 and _v < 0 and u < 0 and _u < 0Þ

or ðv < 0 and _v > 0 and u > 0 and _u > 0Þ�;

ð17Þ

then the lagged state is traversing the line _x ¼ ax outside of the slack radius and not traversing

u = 0. The interpolated point ðû; _̂uÞ falls on the line, and is calculated as

û ¼ �
mv � _v
a � m

; _̂u ¼ mû � mvþ _v; ð18Þ
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If v2 þ _v2 � r2, then the lagged state is traversing into the slack radius, and the interpolated

point is

û ¼
r2 þ v2 þ 2mv _v � _v2

2ðvþm _vÞ
; _̂u ¼ mû � mvþ _v; ð19Þ

In all other cases in which (16) holds true, u is traversing the axis at u = 0.

û ¼ 0; _̂u ¼ � mvþ _v; ð20Þ

Conditions for switching on: For cases where the delayed feedback is switching on, the

roles of u and v are simply traded. The interpolated point is calculated identically under each

set of conditions analogous to those for switching off.

If ½uð _u � auÞ � 0 or u2 þ _u2 � r2� and ½vð _v � avÞ > 0 and v2 þ _v2 > r2�; ð21Þ

then Aτ is switching on. If this holds true, then the following conditions further apply:

If v2 þ _v2 < r2

and !½ðu > 0 and _u < 0 and v < 0 and _v < 0Þ

or ðu < 0 and _u > 0 and v > 0 and _v > 0Þ�;

ð22Þ

then the lagged state is traversing the line _x ¼ ax outside of the slack radius and not traversing

u = 0, and the interpolated point is calculated as Eq (18). If u2 þ _u2 � r2, then the lagged state

is traversing the slack radius from within, and the interpolated point is calculated with Eq (19).

In all other cases in which Eq (21) holds true, u is traversing the axis at u = 0 and the interpo-

lated point is calculated as Eq (20).

Prediction for threshold traversal: The time for u to reach the switching threshold, Δt−,

and the time to reach the next observation after the threshold, Δt+, can be calculated from the

interpolated state at the threshold and its neighboring states, u and v:

Dt� ¼
ku � ûk
kv � uk

Dt; Dtþ ¼
kv � ûk
kv � uk

Dt; ð23Þ

In the first step, A, Aτ, and Q are discretized for the interval Δt−, and the prediction is given

as:

x̂ tþDt� ¼ Ad�x t þ Ad
t
u ð24Þ

P̂tþDt� ¼ Ad�PtA
d T þ Ad

t
PtA

d T
t
þQd: ð25Þ

In the second step, A, Aτ, and Q are discretized for the interval Δt+, and the prediction is

computed from time t + Δt− as:

x̂ tþDt ¼ Adx̂ tþDt� þ Ad
t
û ð26Þ

P̂tþDt ¼ AdP̂tþDt� A
d T þ Ad

t
P̂tþDt� A

d T
t
þ Qd: ð27Þ

For either step, Ad
t
¼ 0, depending on whether the active feedback is switching on or off.

Optimization. The toggling of active feedback is not a smooth process and results in dis-

continuities in the space of a cost function for fitting the model, though these are greatly miti-

gated by the interpolation measures described above. The complexity of the model nonetheless

gives rise to multiple local solutions, and attempts to find optimal parameters using local
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methods such as gradient descent and Nelder-Mead reliably fail. Instead, we recommend

using a method of global, derivative-free optimization such as Differential Evolution (DE)

[28]. The optimization parameters that we chose are listed below.

• Strategy: DE / rand / 1 / bin with per-vector-dither

• Iterations = 15000

• Population size = 30

• Crossover Probability (CR) = .95

• F = .15

• Weighting of successful members (c) = 0

• Step tolerance: 500

• Relative tolerance: 1e-10

We chose a high crossover probability (CR) due to high dependence between parameters of

the model and used simulations to confirm reasonable convergence given the chosen popula-

tion size, iterations, and F value. DE does not require initial values for parameter estimation,

but instead populates a region within explicit bounds. The bounds used here for simulation

and data analysis are given in Table 2. Parameter bounds were generally restricted to poten-

tially stable and theoretically meaningful ranges, such as for K, P, r, and τ. Theoretical interpre-

tations of parameters B and D were less certain and were therefore allowed to vary beyond

boundaries imposed under any particular physiological definition. τ was constrained to the

extremes of the empirical distribution of neural delay given the results from Peterka [21].

Otherwise, bounds were made extreme enough to capture all reasonable possibilities without

unnecessarily slowing convergence.

Software. All analyses used R statistical programming environment [29]. Differential

Evolution was provided by the R package DEoptim [30]. The IPC model was implemented in

C++ using R packages Rcpp [31] and RcppArmadillo [32], and compiled to the open-source R

package IPCmodel. The package includes the following functions:

• ipcModel(): C++ Kalman Filter with delayed terms and switching conditions that returns

a -2Log-likelihood value for optimization.

• ipcSimulate(): C++ numerical integrator that generates simulated data for the IPC

model.

• ipcMultiGroup(): R wrapper for ipcModel() that incorporates physical constants,

parameter algebras, and enables the estimation of both within and between-series

parameters.

• kalmanIntegrate(): C++ helper function that accepts continuous-time state-space

matrices and returns discretized matrices for Kalman-Bucy filtering.

Simulations

Two simulations were used: the first to check model specification, and the second to evaluate

the accuracy and precision of parameter estimates. The first simulation used noiseless (i.e.

deterministic trajectories) with perfect measurement to check for systematic bias due to the

estimation strategy. The second simulation used data simulated to include both process and

measurement noise according to the possible properties of real data recorded by a force plate.
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Solutions for both deterministic and noiseless simulations were generated in linearized steps

of size 10−5s then downsampled according to the design of each simulation. This procedure

ensured both numerical accuracy of solutions and simulated real world mapping of analogue

processes to discrete measurements. The statistical properties of simulated series were

expected to be invariant to downsampling due to the fractal property of continuous random

walks (i.e., Wiener processes) where Δt� N(0, Δt).

Parameter sets

Six sets of simulated parameters were defined to test the model’s estimation capability over a

variety of possible behaviors and are shown in Table 3. The first set replicates the simulated

data for Model 4 by Asai et al. [1] and is named accordingly. The second and third sets (“Low

Noise” and “High Noise”) respectively decrease and increase the variance of process noise to

examine its effect on other parameters. The fourth and fifth(“Active Control” and “Passive

Control”) sets respectively increase and decrease the ratio of active to passive control, repre-

senting different plausible configurations for stability. The sixth set (“Rambling and Trem-

bling”) represents a stationary random-walk series that diverges markedly from the underlying

theory but is nonetheless a stable and plausible configuration.

Sim 1: Noiseless series

To test for improper model specification and systematic sources of bias, noiseless series were

generated to span 20s, with a step size of 10−5s, then downsampled to an observation every

Table 2. Optimization bounds for all parameters.

Par. Domain

K [0, 1]

B [-1000, 1000]

P [0, 2]

D [-1000, 1000]

a [0, 1]

r [0, 2]

τ [0.15, 0.25]

σw [0, 5]

σ� [0, 1]

x0,i [-10, 10]

_x0;i [-50, 50]

€x0;i [-100, 100]

μi [-20, 20]

https://doi.org/10.1371/journal.pone.0222664.t002

Table 3. Parameter sets for generating simulated data.

K B P D a r τ σ �

Asai et al. 0.80 4.00 0.25 10.00 0.62 0.40 0.20 0.20 1E-04

Low Noise 0.80 4.00 0.25 10.00 0.62 0.40 0.20 0.05 1E-04

High Noise 0.80 4.00 0.25 10.00 0.62 0.40 0.20 1.00 1E-04

Passive Control 0.95 4.00 0.15 10.00 0.50 0.70 0.20 0.20 1E-04

Active Control 0.75 4.00 0.70 120.00 0.80 0.20 0.20 0.20 1E-04

Rambling and Trembling 0.98 500.00 0.20 -50.00 0.45 0.05 0.20 2.00 1E-04

https://doi.org/10.1371/journal.pone.0222664.t003
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0.01s and again to every 0.1s. The noiseless series used in the first simulation are shown in Fig

1. Only one series per set and per downsample rate was used, as there were no sources of sam-

pling error. To ensure that estimates converged to a high degree of precision, 3000 iterations

of optimization were used.

Table 4 contains the parameter estimates for these simulations, with sampling rate shown

to the left. Only the velocity coefficients B and D exhibited substantial bias all throughout, and

the “High Active” set incurred the greatest bias over nearly all parameters. Most parameter

estimates given 100Hz sampling were exact to at least 3-5 decimal places. Reducing sampling

resolution by a factor of ten increased biases to parameters B and D by a factor of ten to fifteen,

but much less so for K and P. The nonlinear parameters a, r, and τ exhibited the least bias for

all sets.

Fig 1. Noiseless series with initial values x0 ¼ 1; _x0 ¼ 0.

https://doi.org/10.1371/journal.pone.0222664.g001

Table 4. Parameter point estimates for simulated noiseless series. Downsampling rate in Hz is shown in the left column. See Table 3 for the true, data-generating param-

eter values of each set.

Hz Set K B P D a r τ σ
100 Asai et al. 0.80003 4.10640 0.24996 10.62579 0.62000 0.40000 0.20001 0.00000

Passive Control 0.95000 4.08142 0.14998 10.46709 0.50000 0.70000 0.20000 0.00000

Active Control 0.75086 4.09833 0.69372 122.07313 0.79987 0.19990 0.20020 0.00000

10 Asai et al. 0.80024 5.65678 0.24975 15.62635 0.62030 0.39914 0.20000 0.00000

Passive Control 0.95001 5.40384 0.14939 19.03988 0.49999 0.70016 0.19978 0.00001

Active Control 0.74853 4.17357 0.63636 140.82292 0.80120 0.19951 0.20097 0.00022

https://doi.org/10.1371/journal.pone.0222664.t004
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The small biases to K, B, P, and D most likely occur as a result of the approximate, linear

interpolation methods and inability to account for process noise before t0 in the quadratic

backward extrapolation. Biases may be further mitigated using polynomial interpolation of

the lagged state. However, the exact accuracy of the estimated τ indicates that bias from linear

interpolation is probably trivial in this case.

A second source of bias may be the limits of numerical precision. When no noise is present

in the system, the state only occupies a small area of the phase space where certain values of B
and D may have nearly unobservable effects on the solution. We show later that relatively

unbiased estimates of B and D can indeed be obtained as a function of the other parameters,

including the process noise variance σ.

Sim 2 Estimation from noisy data

To test the precision and accuracy of IPC parameter estimates given the dimensions and

expected structure of the data from Santos et al. [20], one-hundred individuals were simulated

for each parameter set in Table 3, with examples series shown in Fig 2. Each individual con-

sisted of three trials, and each trial consisted of a 60s series downsampled to 100 Hz. The same

parameters were estimated for all three trials, making for a total of 18,000 observations per

individual model.

Figs 3 through 8 show the sampling variation and bias for each parameter set. Boxplots

are grouped by common axis scale. Table 5 gives the means and standard deviations of each

parameter for each set.

Variance and baises across all parameters were highly interdependent. Estimates of both

process noise (σ) and measurement error were precise and close to their true values, indicating

successful filtering of the state. The precision of active and passive and active control parame-

ters depended on the true values of parameters and resulting behavior of the process. For the

Asai et al. replication and the sets with low and high process noise, most control parameters

had only small bias and high precision, while others were less reliable under particular condi-

tions. The greatest apparent contrast may be the insensitivity radius r, which was not estimable

for the Rambling and Trembling set in which its true value was small, and much less reliable in

the increased noise set where its value matched Asai et al.

The B and D parameters were the least reliable, and are possibly empirically unidentified

without a sufficiently high process noise variance. This is evident from the increased noise set

(Fig 6) and the Rambling and Trembling set (Fig 4). The active control set (Fig 8) also showed

successful estimation of the B parameter, and improvements in estimating D over the the Asai

et al. set, low noise, and passive control.

From the variation in results across sets, it can be inferred that a parameter can only be

estimated reliably when the state occurs for a sufficient amount of time in the portions of the

phase space for which that parameter has an influence. For instance, the insensitivity radius

will not be estimable if the state tends to bypass it entirely. This may be due to a large variance

of process noise, or for large values of B that distort the saddle shape of the passive attractor

space, causing an orbital path that never intersects the origin. Likewise B and D cannot be esti-

mated reliably if the process does not frequently visit the extremes of the phase space where

their influence is most apparent.

Empirical under-identification of some parameters is not necessarily problematic for

the others, and does not imply the unreliable parameters should be fixed to some value or

excluded. Two solutions to empirical under-identification are to increase the length and reso-

lution of the sample to increase the chances of observing informative behavior, and perhaps to
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Fig 2. Examples of simulated series from six parameter sets.

https://doi.org/10.1371/journal.pone.0222664.g002
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introduce small interventions or disturbances such that subjects express the full range of rele-

vant dynamic behaviors.

Standing apart from the other parameters is the feedback delay τ. Despite perfect accuracy

in the noiseless case, it tended to bias downwards when estimated from noisy data. It is unclear

from our simulations why the bias occurs and whether it accounts for bias to other parameters.

However, the estimates were not generally boundary cases, and the sampling variability was

small. If the bias is consistent, the delay parameter should still be comparable between persons,

with the caveat that the estimate is understated by 20-40ms.

Fig 3. Parameter recovery results for the Asai et al. replication set. Black squares: data-generating value; Empty squares: Estimate mean; Triangles:

Upper and lower std. dev.; Circles: Outliers; Crosses: Optimization boundaries.

https://doi.org/10.1371/journal.pone.0222664.g003
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Data analysis

The IPC model was fit to empirical postural control data to 1) estimate the multivariate distri-

butions of each parameter, 2) test for expected effects from age and visual feedback, 3) test the

consistency of parameters within-person, 4) compare the proposed model to simpler alterna-

tives. COM data were obtained from the data set published for public use by Santos et al. [20]

and included 49 individuals at 100Hz for 60 seconds per trial. Three trials were conducted

Fig 4. Parameter recovery results for the Rambling and Trembling set.

https://doi.org/10.1371/journal.pone.0222664.g004
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with eyes open, and three with eyes closed. Only trials tested with a rigid floor were used for

our analyses. Height and weight were provided for each individual and included as the con-

stants h and m in the model, scaled to units of meters and kilograms respectively. Height was

scaled by 0.51, the approximate ratio of vertical COM to total height in upright standing (cal-

culated from Table 1, p.7 of [23]). By visual inspection of the sample, it was found that the

first and last several seconds of many series contained large, sudden changes in position likely

relating to movement during the initiation and termination of the trial period. To ensure that

only the stationary dynamics of interest were modeled, 500 occasions were trimmed from the

Fig 5. Parameter recovery results for the Low Noise set.

https://doi.org/10.1371/journal.pone.0222664.g005
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beginning and end of each series, leaving 5000 occasions or 50 seconds of data per trial, and

30,000 measurements in total per individual.

Models

Three models were fit to each of three trials per individual to examine the statistical signifi-

cance of the parameters involved in intermittent activation and delayed feedback. The models

Fig 6. Parameter recovery results for the High Noise set.

https://doi.org/10.1371/journal.pone.0222664.g006
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included, in descending order of complexity, the complete intermittent stochastic delay differ-

ential equation (ISDDE),

I€yt ¼ mghð1 � KÞyt þ B _yt þmghfPðyt� tÞ þ fDð _yt� tÞ þ swt; ð28Þ

a stochastic delay differential equation (SDDE) with delayed feedback but no intermittent

switching conditions,

I€yt ¼ mghð1 � KÞyt þ B _yt þmghPyt� t þ D _yt� t þ swt; ð29Þ

Fig 7. Parameter recovery results for the Passive Control set.

https://doi.org/10.1371/journal.pone.0222664.g007
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and a stochastic differential equation (SDE) containing only instantaneous, continuous PID

control terms:

I€yt ¼ mghð1 � KÞyt þ B _yt þ swt: ð30Þ

All models included trial-specific initial conditions x0,i and _x0;i and sway origins μi for i 2
[1, 2, 3]. The ISDDE and SDDE both included trial-specific estimation of €x0;i for backward

extrapolation. All models included measurement error variance σ�. Parameter boundaries,

shown in Table 6 reflected both theoretical and analytic roles of each parameter. For example,

Fig 8. Parameter recovery results for the Active Control set.

https://doi.org/10.1371/journal.pone.0222664.g008
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B could not be less than zero in the ISDDE because it is conjectured to represent ankle stiff-

ness, and stability is required to come from values of P and D in the given domains. In the

SDE, stable solutions must rely on only instantaneous feedback with coefficients K and B. In

the absence of other theoretical mechanisms, the same physiological interpretations of K and B
could not be assumed and thus the same theoretical constraints were not applied.

Multiple regression was used to test the association between each parameter, visual feed-

back, and age, accounting for height and mass as covariates. Pearson correlation was used to

estimate the correlation between parameter estimates during trials with eyes open and trials

with eyes closed. Maximum likelihood estimation was used to fit each model, assuming the

multivariate normality of measurement and process noise.

Table 6. Optimization boundaries [lower, upper] for each parameter, under each model.

Par. ISDDE SDDE SDE

K [0, 1] [0, 1] [-10, 10]

B [0, 2000] [0, 2000] [-2000, 2000]

P [0, 2] [-2, 2]

D [-2000, 2000] [-2000, 2000]

a [0, 1]

r [0, .1]

τ [0, 1] [0, 1]

σ [0, 5] [0, 5] [0, 100]

� [0, .03] [0, .03] [0, 10]

x0 [-5, 5] [-5, 5] [-5, 5]

_x0 [-150, 150] [-150, 150] [-150, 150]

€x0 [-500, 500] [-500, 500]

Origin [-1, 1] [-1, 1] [-1, 1]

https://doi.org/10.1371/journal.pone.0222664.t006

Table 5. Simulation results: Means (μ) and standard deviations (σ) of estimated parameters over 100 iterations of simulation for six parameter sets. True values are

given in Table 3, and parameter descriptions are given in Table 1.

Par. Asai et al. Low Noise High Noise Low Active High Active Ramb./Tremb.

K μ 0.820 0.814 0.812 0.955 0.789 0.978

σ 0.021 0.017 0.017 0.008 0.067 0.025

B μ 15.654 22.278 4.203 9.811 6.350 504.441

σ 10.727 13.743 9.631 6.922 4.743 28.426

P μ 0.228 0.231 0.235 0.139 0.694 0.301

σ 0.020 0.017 0.016 0.011 0.071 0.211

D μ -0.511 -3.337 11.039 7.556 101.869 -138.941

σ 14.490 14.398 13.258 14.042 9.850 281.247

a μ 0.621 0.623 0.620 0.505 0.813 0.481

σ 0.006 0.005 0.004 0.008 0.016 0.072

r μ 0.410 0.402 0.494 0.712 0.202 0.609

σ 0.037 0.006 0.210 0.024 0.014 0.322

τ μ 0.174 0.170 0.178 0.162 0.177 0.176

σ 0.013 0.011 0.009 0.010 0.013 0.023

σ μ 0.216 0.060 1.008 0.207 0.206 2.117

σ 0.014 0.005 0.049 0.011 0.011 0.134

� μ 9.98E-05 1.00E-04 9.96E-05 1.00E-04 9.98E-05 9.99E-05

σ 1.07E-06 1.16E-06 1.08E-06 1.04E-06 1.08E-06 1.15E-06

https://doi.org/10.1371/journal.pone.0222664.t005
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The estimated means m̂, standard deviations ŝ, and medians of each estimated parameter

across all trials × participants × visual feedback conditions, are given in Table 7. The estimated

individual-level intraclass correlations (ρICC), effect sizes, and p-values for age and visual

feedback are also given for each model. Measurement error estimates were generally small

(σ� < 1e − 3) and were omitted from the tables. Minor, trial-specific “nuisance” parameters

including sway origins and initial values were also omitted. Mean sway origin was estimated to

be 0.217, with a standard deviation of 0.11 and a median of 0.226.

The estimated parameters of the ISDDE fell within the expected domains. Several parameters

of the ISDDE had outliers that substantially inflated estimates of their standard deviations.

Trimmed standard deviations in which the highest 15 values were excluded are given in paren-

theses in Table 7. The marginal distributions of each parameter with these trimmed means and

standard deviations are shown in Fig 9. B, P, D, and r in particular were skewed upward by outli-

ers but otherwise had relatively precise distributions about their medians, with similar precision

to those of the SDDE. K had consistent values around .91 to .93 in all three models. B was close

to zero for most series but skewed upward by outliers as high as 80. In the SDE, B was allowed

to take negative values but had a mean around 17. All values of B in the SDE were positive and

greater than zero, with a minimum of .82. a was generally high, representing active control over

75-85% of the phase space. Similarly, r was 50% smaller on average than values used in previous

studies. τ had a median of 284 ms and was distributed between 200 to 400 ms. If the bias found

in simulations is consistent and proportional, then the true median delay was closer to 240 ms.

The SDDE estimated much longer delays on average at 470-490 ms but much lower values of D.

Process noise standard deviation σw estimates were distributed identically between models.

No significant effects of visual feedback were observed in the parameters of any of the three

models. The lowest p-values were for a(p = .069) and σw(p = .086). Both the SDDE and SDE

showed effects on σ with p< .05, the alpha level before adjusting for the 17 tests in total.

Table 7. Summary statistics, effects of age and vision accounting for height and mass, and person-level intraclass correlations of parameter estimates under each

model. Bonferroni adjusted α = .0029.

m̂ ŝ (Trimmed) Median βVision CI p βAge CI p ρICC
ISDDE K 0.920 0.021 (0.019) 0.920 0.002 (0, 0.004) 0.133 7.6e-5 (1.9e-5, 1.3e-4) �0.009 0.912

B 3.057 10.223 (5.2) 0.000 1.019 (-1.314, 3.352) 0.393 -0.078 (-0.144, -0.012) �0.023 0.191

P 0.174 0.272 (0.066) 0.116 0.048 (-0.015, 0.111) 0.132 -0.002 (-0.004, 0) 0.074 -0.025

D 154.789 160.153 (47) 131.123 -20.307 (-57.37, 16.76) 0.284 -0.043 (-1.097, 1.011) 0.936 0.040

a 0.730 0.259 (0.26) 0.853 -0.055 (-0.114, 0.004) 0.069 0.001 (-0.001, 0.003) 0.275 0.049

r 0.002 0.003 (0.0017) 0.002 0 (-0.001, 0.001) 0.572 0 (-2.2e-5, 2.2e-5) 0.971 -0.112

τ 0.302 0.124 (0.095) 0.284 0.018 (-0.01, 0.046) 0.212 -0.001 (-0.002, 0) �0.049 0.291

σw 0.047 0.006 (4.2e-4) 0.046 -0.001 (-0.002, 0) 0.086 4e-06 (0, 8e-6) �0.033 0.490

SDDE K 0.918 0.019 0.919 0 (-0.001, 0.001) 0.923 8.3e-5 (4.6e-5, 1.2e-4) ��1e-5 0.999

B 0.838 3.508 0.000 0.163 (-0.647, 0.973) 0.693 -0.006 (-0.029, 0.017) 0.582 0.233

P 0.162 0.071 0.146 -0.012 (-0.026, 0.002) 0.071 0.001 (0.001, 0.001) ��0.002 0.580

D 68.818 53.280 50.384 -3.668 (-15.80, 8.47) 0.554 0.135 (-0.21, 0.48) 0.442 0.386

τ 0.478 0.031 0.494 0.006 (-0.001, 0.013) 0.099 -2.4e-4 (-4e-4, -5e-5) �0.015 0.034

σw 0.047 0.006 0.046 -0.001 (-0.002, 0) �0.044 5e-6 (1e-6, 9e-6) �0.012 0.494

SDE K 0.931 0.020 0.930 0.004 (0.001, 0.007) �0.007 1.8e-5 (-5.8e-5, 9.4e-5) 0.641 0.804

B 17.475 13.231 14.616 2.462 (-0.475, 5.399) 0.102 -0.137 (-0.221, -0.053) ��0.001 0.608

σw 0.048 0.006 0.048 -0.002 (-0.003, -0.001) �0.011 6e-6 (2e-6, 1e-5) ��0.002 0.544

� Significant at unadjusted α = .05

�� Significant at adjusted α = .0029

https://doi.org/10.1371/journal.pone.0222664.t007
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In the SDDE, both passive ankle stiffness K and active control coefficient P were shown to

significantly increase with age. The effects were detected given the adjusted alpha level, with

p< .0029. Both B and σw in the SDE showed significant trends with age as well. Other non-sig-

nificant effects with p< .05 were K and σw in both the ISDDE and SDDE, B in the ISDDE, and

τ in the SDDE. Effect estimates of σw were consistent across models.

Overall, parameters tended to be more consistent within person for the simpler models.

The highest intra-class correlation for all parameters in all models was K, with extreme reliabil-

ity (ρ = .999) in the SDDE. σ generally correlated around .5 for each model. The ISDDE had

the least consistent parameters with intraclass correlations near zero for P, D, a, and r. The

SDDE and SDE intraclass correlations were moderate to high for all except feedback delay, τ,

which was near zero.

Akaike’s Information Criterion (AIC) [33], as � 2 lnðL̂Þ þ 2k where k is the number of

estimated parameters, was used to compare overall model fit for every individual. For each

trial, the model with the lowest value of the AIC was selected as the best fitting option. In

total, the ISDDE was selected for 227 trials, SDDE for 62, and SDE for 0. No significant associ-

ations were found between model selections over trials within person or by visual feedback

condition.

Discussion

Simulation

Simulation studies were used to determine whether the parameters of the intermittent activa-

tion feedback control model proposed by Asai et al. [1] can be estimated using a Kalman Filter-

ing-based framework with delayed proportional and derivative terms and discrete activation

Fig 9. Marginal distributions of the ISDDE parameter estimates. Solid lines are means and dashed lines are standard deviations, both trimmed for

the 15 highest values.

https://doi.org/10.1371/journal.pone.0222664.g009
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thresholds. The results of the simulations show that the parameters of the model can be esti-

mated with relatively low bias and high precision if the behaviors for which they are influential

are sufficiently expressed in the data (i.e., empirically identified). Every parameter of the

model was successfully recovered in at least one of the parameter configurations tested, though

no single configuration of parameters resulted in a completely unbiased set. The set of results

shown in Fig 8 comes close, with downward bias only to the active derivative controller. We

can also see by comparing Fig 6 to Figs 5 and 3 that an increased variance of process noise

allowed the identification of the B and D parameters, but with large standard errors. The deriv-

ative coefficients were likely biased and unreliable when the trajectories did not frequent the

extremes of position and velocity where the directional effects of derivative terms could be

distinguished from other sources. Fig 4 shows that with process noise of a standard deviation

much greater than the insensitivity radius and a weak attraction to point equilibria (K� 1),

the state is prone to drifting away from the origin where it will rarely traverse the insensitivity

radius or switching boundary. If the data can be optimally explained without the use of the

switching parameters, then they are said to be empirically unidentified. For this reason, both a
and r do not contribute crucial information and converge to precise solutions when the data

are optimally described by other parameter values characteristic of rambling and trembling.

However, estimates of the derivative controllers B and D in that case were unbiased.

Across configurations, some iterations of model fitting resulted in negative values of B. In

continual PID controllers, this would result in amplification and instability over time. In the

ISDDE and SDDE, the stability of the system given a value of B depends on the corresponding

values of P, D, and a, as the instantaneous proportional and derivative terms do not control

the complete periodic behavior on their own. Negative values of B will promote further insta-

bility in the already unstable manifold of instantaneous feedback but will be counteracted

when the state reaches the stable manifold determined by active feedback. It is informative

that solutions occasionally involved negative values of B that breach its theoretical interpreta-

tion as joint friction. Solutions that did better identify B and D only did so when their effects

were much larger than physically plausible, a priori values of joint friction. In simpler PID

cases, estimates of damping tend to be far less reliable than, for instance, the proportional

coefficients, so for these reasons together it may be inadvisable to rely on postural sway data

and estimation approaches to specifically determine joint friction. Similar concerns may be

directed toward the active feedback damping D, though the prior ISDDE literature does not

assert as specific of a definition nor necessary theoretical boundaries.

Estimates of both process noise and measurement error were very close to their true values

in every case, with only small upward bias proportional to the magnitude of the estimate for

certain parameter sets (Figs 3 and 4). The standard deviation of measurement error that we

chose to simulate was σ = .01 cm, twenty times the error of the force plate used by Santos et al.

[20] to obtain the data. The success of estimation despite greatly exaggerated sensor noise

demonstrates the reliability of Kalman filtering and adequate technical specification of the

model, and relieves researchers from the need to choose a preliminary noise reduction step

such as spectral filtering. Instead, using the raw data and including measurement error in the

model avoids removing fine-grained details of the signal represented in the domain of high fre-

quencies typically suppressed by low-pass filtering.

The feedback delay, τ, was unbiased in noiseless simulations, and consistently biased down-

ward in noisy simulations. It is not clear what causes the bias, but it did not appear to consis-

tently induce bias in other parameters that depended on the correct lag interval, such as the

active proportional and derivative controllers.

The results of our simulation demonstrate that the proposed method of direct, statistical

estimation by Kalman filter can recover the complete set of parameters for the model. Previous
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estimation methods only attempted to estimate five of the eight structural parameters [17, 18].

Among those attempted, the D parameter did not converge to its true value in simulation nor

to a reliable, unimodal distribution in the empirical study. Despite this setback, no discussion

was given of the role of empirical identification in determining D or other parameters, whereas

we have demonstrated that the precision of estimates depends on their true values and interde-

pendence. Additionally, the accuracy of their results rests on assumed values of K, B, and r.
Due to the high degree of parameter dependence in univariate models such as this, error in

one parameter is expected to propagate to other parameters in a compensatory manner. It is

therefore preferable to jointly estimate all uncertain model parameters when possible.

The prior studies also did not account for measurement error. We determined that addi-

tional sources of sensor noise could be filtered simultaneously with estimation of the dynamic

structure. If additive noise is Gaussian, then no preprocessing steps such as spectral filtering or

downsampling should be needed and the risk of obscuring important, fine-grained topological

features is greatly mitigated.

Computationally, the use of global optimization to maximize the likelihood function pro-

vided an efficient alternative to Bayesian MCMC methods as no data simulation procedures,

prior distributions, or posterior sampling were required. An additional, unexplored benefit of

maximum likelihood in this case is estimation of standard errors directly from the likelihood

function. Because the model includes discrete thresholds, the likelihood function was stochas-

tic and non-differentiable. This prevented the use of the Hessian matrix to calculate precision.

However, future work may explore methods of smoothly approximating the marginal likeli-

hood function, for instance by fitting splines to likelihood values retained from the optimiza-

tion procedure.

Experimental data

The results of analyzing the empirical COM data show that the nonlinear mechanisms of feed-

back activation led to significant improvement in model fit over the simpler SDDE and SDE

(i.e., delayed and instantaneous PID) models. It cannot be determined from statistical model

comparisons alone whether the results validate the model-generating theory of posture con-

trol. To that end, we must compare the parameter estimates to their theoretical priors.

Overall, the distributions of parameters showed a feasible correspondence to the domains

expected given the theory. K was consistently close to the 91% relative resistance found by

Loram and Lakie [22] for all of the models tested, here showing resistance to 92% of the total

gravitational toppling torque on average. Conversely, in the ISDDE and SDDE, B most often

converged to zero and was not likely to play a critical role in the model behavior. Perhaps coin-

cidentally, the mean of B was near its proposed value of 4 Nms/rad. It is possible that statistical

power at the individual level was insufficient to identify small effects due to B, and the expected

value would be recovered if it were estimated across the total data set. Active feedback was gen-

erally weaker than hypothesized but still sufficient for stability. Estimates of P were closer to .1

than the proposed .25 [1], likely due in part to the greater resistance to toppling forces from

values of K closer to the high end of their theoretical distribution. D played a large role in the

dynamics of active control and resulted in non-negligible damping in many individuals. Val-

ues of a and r reflected greater control sensitivity than expected. a values around 75% to 80%

assign a larger share of the phase space to active feedback, while smaller values of r indicate

less tolerance to falling at the origin of sway. The mean estimate of a was higher than found

by Tietäväinen et al. [18], which reported a control space closer to 64% in accordance with the

analysis by Asai et al. [1]. We found a nearly identical distribution of the feedback delay, τ, to

Tietäväinen et al. [18], ranging from 200 to 400 ms with a mean around 300 ms. Estimates of
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σw were an order of magnitude smaller than expected by Asai et al. [1], and about half of those

found by Tietäväinen et al. [18].

A graphical vignette of these results is provided in Fig 10, which shows six raw data series

with their respective intermittent activation conditions estimated by the model. The horizontal

axis is the tilt angle and the vertical axis is the tilt angle’s velocity. The shaded region represents

behavior where P and D are equal to zero. In the unshaded region, all parameters are active

with their non-zero values. Fig 10a shows two cases that resemble the theorized structure with

combinations of stable and unstable manifolds in nearly equal proportion. In Fig 10b, the val-

ues of B and a are sufficiently large to minimize the influence of the unstable manifold. The

result is behavior that closely resembles harmonic oscillation around a single equilibrium. The

opposite trend is shown in Fig 10c, where the unstable manifold is not influential, but a high

ratio of the derivative coefficients to proportional coefficients results in continual suppression

of velocity. This pattern results in wandering oscillations without clear equilibria.

The optimal solution for the SDE model had a much larger, positive value for B than the

other models while maintaining a theoretically plausible value of K less than 1. Furthermore,

all values of B in the SDE were positive, as we might expect given that negative values would

result in instability. When a linear system is strongly overdamped (in this case, a high value of

B in the SDE, or either B or D in the SDDE) with relatively weak proportional feedback, as the

SDE, then it exhibits non-equilibrium Langevin dynamics. These dynamics have convention-

ally described the random walk of a large molecule due to its collisions with a many smaller

molecules in a solvent. The resulting trajectories can appear locally stationary by chance and

exhibit short intervals of oscillation. Previous studies have modeled posture control in the con-

text of Langevin dynamics [34–37]. Our simplest model of COM movement, the SDE, resem-

bled a model of COP proposed by Bosek et al. [34] that describes trajectories as a second order

SDE with no proportional feedback and a large derivative coefficient B. Fig 11 shows how the

theoretical model and Langevin dynamics differ markedly in their mechanistic parameteriza-

tion and observed phase portraits, yet they share many notable features. In both, high-fre-

quency oscillations move gradually across the sample space in a “rambling” pattern. By

chance, the Langevin equation in Fig 11b can result in concentrated oscillations around a few

apparent equilibria, but no equilibrium mechanism is present in the model. The parsimony of

generating these patterns with only three parameters poses a challenge to the specificity of evi-

dence for the theoretical ISDDE. Visual inspection of the complete results showed that trials

ranged between the two extremes of theoretical misspecification, from harmonic oscillation to

Langevin dynamics. The expected topology involves a mix of features from both, sometimes

showing adherence to the principles of feedback switching with occasional deviations into

Langevin-type random walk.

Regardless of the true form of the underlying process, we might expect that if the parame-

ters represent underlying physiological mechanisms, they should exhibit some degree of trait-

like stability within-person. The intraclass correlations in Table 7 show that the nonlinear

switching parameters were generally unreliable within-person. The correlations for the

remaining parameters increase as the model is simplified to the SDDE and SDE. The higher

consistency of the simpler models’ parameters does not necessarily imply that they are more

“real” than those of the ISDDE. It is expected that reliance on fewer parameters to explain the

variance of sway results in fewer competing configurations of those parameters. Any consis-

tency of topological features within-person will be reflected in similarity of the model solu-

tions. The lack of consistency in the more complex ISDDE is, however, a challenge to the trait-

like stability and actuality of its parameters.

Though no specific connections between visual feedback and the theoretical mechanisms of

control were hypothesized for the present study, we expected one or more parameters to be
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Fig 10. Phase portraits of observed body tilt angle series with estimated intermittent activation structures and

vector fields. The horizontal axis is the COM or tilt angle position and the vertical axis is its velocity. The shaded

region represents behavior where P and D are equal to zero. In (a), the estimated parameters match theoretical

expectations, showing mixed equilibrium behaviors. In (b) and (c), the nonlinear mechanisms are fit in unique ways

that deviate from their theoretically expected function.

https://doi.org/10.1371/journal.pone.0222664.g010
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significantly influenced over trials in which eyes were closed in correspondence with previ-

ously observed effects on summary statistics. By modeling center of pressure variation with

Langevin dynamics, Bosek et al. [34] found that the process noise distribution was influenced

by visual feedback. The same finding was replicated with further connections to Parkinson’s

disease [35]. Vieira et al. [38] found associations of visual feedback with stabilogram measures

of sway. All three models models tested here had lower p-values for σw than for other parame-

ters, suggesting that effects may be discernible given a larger sample or improvement in model

specification.

Age has been previously associated with more general metrics of sway, such as path length

[39], frequency band [38, 40] and mean velocity [40], though findings vary and few effects

have been consistently reproduced in COP and COM data. Significant effects of age were

observed in the present results, including ankle stiffness and active feedback force in the SDDE

and process noise and ankle viscosity in the SDE. Interpretation of effects on the SDE is more

difficult because the parameters of the SDE do not correspond to specific explanatory mecha-

nisms in this case. The consistent positive associations of all models with noise magnitude σw
with age may be linked to previously observed associations of stabilogram-based diffusion

metrics with age [41]. The significant associations of ankle stiffness and active proportional

feedback in the SDDE found here may reflect previously observed increases in stiffness and

damping with age estimated from a simpler PID model [42].

Fig 11. Phase portraits and time series from two models generated from the same vector of noise (scaled by σw). In (a)

data were simulated from the ISDDE model with the theoretical priors. In (b) data were simulated from a 3-parameter SDE.

The large ratio of derivative (B) to proportional (K) force results in non-equilibrium Langevin dynamics that may exhibit

similar features to the ISDDE for limited periods of time. Characteristic features distinguish (a) from (b), such as sharp

changes in velocity localized to quadrants II and IV, slow change in velocity associated with quadrants I and III, and higher

density at two spatial equilibria.

https://doi.org/10.1371/journal.pone.0222664.g011
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Finally, the model concerns an abstract notion of body tilt angle, though there are many

ways to represent this using the full kinematic data. For simplicity and consistency with past

studies, we chose to represent tilt angle by the COM. Preliminary tests using alternative mea-

sures included COP and the average angle of both ankle joints. The results were found to differ

markedly from both our current results and those previously obtained with the COM, but a

complete comparison of alternative measures is too complex to discuss here. We leave detailed

examination of this question with regard to the feasibility of this model to future study.

Conclusions

We designed and implemented an Extended Kalman Filter-based estimation model of inter-

mittent, delayed feedback control in postural sway and demonstrated that for a variety of stable

configurations, parameters can be recovered accurately given adequate empirical identifica-

tion. Application of the model to experimental data resulted in distributions of the parameters

the correspond well to previous findings and suggest that physiologically informative and

clinically useful attributes of human balance may be extracted directly from COM data. While

the model replicates previous findings, the conjectured parameters of feedback activation were

not reliable within-person or strongly associated with visual feedback and age. Further com-

parisons with alternative mechanistic theories and model parameterizations are warranted.

Beyond postural control, the model stands as a framework for estimating parameters of sto-

chastic delay differential equation models controlled by discrete activation thresholds.
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