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Histopathological visualizations are a pillar of modern medicine and biological research. Surgical 
oncology relies exclusively on post-operative histology to determine definitive surgical success and 
guide adjuvant treatments. The current histology workflow is based on bright-field microscopic 
assessment of histochemical stained tissues and has some major limitations. For example, the 
preparation of stained specimens for brightfield assessment requires lengthy sample processing, 
delaying interventions for days or even weeks. Therefore, there is a pressing need for improved 
histopathology methods. In this paper, we present a deep-learning-based approach for virtual label-
free histochemical staining of total-absorption photoacoustic remote sensing (TA-PARS) images 
of unstained tissue. TA-PARS provides an array of directly measured label-free contrasts such as 
scattering and total absorption (radiative and non-radiative), ideal for developing H&E colorizations 
without the need to infer arbitrary tissue structures. We use a Pix2Pix generative adversarial network 
to develop visualizations analogous to H&E staining from label-free TA-PARS images. Thin sections 
of human skin tissue were first virtually stained with the TA-PARS, then were chemically stained with 
H&E producing a one-to-one comparison between the virtual and chemical staining. The one-to-one 
matched virtually- and chemically- stained images exhibit high concordance validating the digital 
colorization of the TA-PARS images against the gold standard H&E. TA-PARS images were reviewed 
by four dermatologic pathologists who confirmed they are of diagnostic quality, and that resolution, 
contrast, and color permitted interpretation as if they were H&E. The presented approach paves the 
way for the development of TA-PARS slide-free histological imaging, which promises to dramatically 
reduce the time from specimen resection to histological imaging.

Histopathology is the fundamental microscopic examination tool in many domains including cancer diagnosis 
and prognosis, surgical oncology, and drug discovery and development1. Tissue staining for microscopic imag-
ing enabled histopathology by helping to distinguish the composition of tissue samples. The gold standard of 
histological imaging is brightfield microscopy of stained formalin fixed paraffin embedded (FFPE) thin tissue 
preparations, where the most common staining set is Hematoxylin and Eosin (H&E). Hematoxylin stains cell 
nuclei with deep blue-purple, while eosin stains cytoplasm and extracellular matrix with pink shades2.

Developing these stained FFPE specimens for brightfield microscopic assessment relies on a laborious process 
of fixation, embedding, sectioning, and staining3, a procedure which takes several days to complete4. This lengthy 
process has motivated the adoption of frozen section (FS) histology, a technique which is commonly used for 
rapid intraoperative assessment. FS enables turnaround times of about 20 min5. However, sampling of specimen 
for FS is limited and involves difficult technical processes. Rapid freezing introduces artifacts deteriorating the 
cellular morphology, which in turn affects the pathological diagnosis of tissue samples by pathologists5. Due to 
these limitations, FFPE histochemical procedures remain the irreplaceable gold standard method.

Histochemical staining not only delays sample assessment, but the sample preparation steps permanently 
alter the tissue composition with multiple chemical substances, meaning tissues may only be stained once per 
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section2. An independent slide must be prepared for each desired staining contrast. This intensive FFPE tissue 
preparation may delay cancer diagnoses and margin assessments for over a week, which in turn delays adjunct 
treatment and supplementary procedures. This motivates a clinically acceptable technique to provide accurate, 
fast, and reproduceable histology-like images label free.

Since pathologists are primarily trained to make diagnoses on histochemical stained tissue samples, one 
promising approach is to develop algorithms that generate virtual H&E-like visualizations of unlabeled tissue, 
simulating the chemical staining effects. This will ease the adoption of label-free tools. In addition, virtual staining 
preserves tissues, permitting downstream processing of the same tissue sections. In a clinical setting this would 
improve the diagnostic utility of small tissue specimens. Moreover, virtual stains, by eliminating pre-analytic 
variability, should reduce inter- and intra-laboratory staining variability caused by slight process variations, thus 
addressing a major challenge in clinical pathology. Finally, directly replicating current staining enables one-to-
one validation against true H&E, a necessary step in adoption.

Several optical microscopes have been developed to provide H&E-like imaging capabilities, such as quan-
titative phase imaging6, reflectance confocal microscopy (RCM)7, microscopy with ultraviolet surface excita-
tion (MUSE)8,9, optical coherence tomography (OCT)10–12, autofluorescence microscopy13, and photoacoustic 
microscopy (PAM)14–17. These methods are usually coupled with deep learning-based virtual staining models, 
particularly generative adversarial networks (GANs)18. Microscopic images are captured and then are used to 
train a network to perform virtual H&E staining. Hence, the quality of the resulting virtual H&E staining will 
be directly determined by the characteristics of the optical microscope used to capture the images. In the ideal 
case, the microscopy technique would (1) operate in reflection mode, enabling imaging of thick tissue specimens, 
and (2) would provide analogous contrast to current histochemical staining, improving artificial colorization 
quality by avoiding inferences of essential diagnostic features. Other optical microscopes that have exhibited 
distinguished progress in H&E-like imaging include light-sheet microscopy (LSM)19 and stimulated Raman 
scattering miscoscopy (SRS)20,21.

Of the listed techniques, MUSE and LSM have demonstrated acceptable agreement with H&E-stained his-
tology, mimicking the standard H&E staining specificity. However, both MUSE and LSM rely on fluorescence 
stains to provide H&E contrast. These dyes can potentially be mutagenic, carcinogenic, or toxic, hindering in-
situ applicability of these fluorescence-based techniques9. Moreover, LSM requires relatively clear samples for 
3D volumetric imaging of fresh tissue, which necessitates additional equipment and long preprocessing times 
making the technique impractical in an intraoperative setting19. Accordingly, label-free techniques are expedient.

One popular label-free modality, SRS, leverages the vibrational resonance of molecular bonds to provide 
contrast22. SRS has demonstrated promising results when compared to H&E stains in both thin and thick tissue 
samples. However, SRS usually operates in transmission mode21–23. Thick tissues are typically compressed to 
transmissible thicknesses to acquire images20, which severely alters tissue morphology. This not only affects the 
pathologist assessment, but also renders SRS impractical for in-situ imaging.

Conversely, OCT usually operates in reflection mode, and is well suited to imaging thick tissue specimens. 
OCT has shown potential in label-free tissue block imaging11,24, surgical margin assessment25,26, and biopsy 
examination27,28. However, OCT uses optical scattering contrast which highlights predominately morphologi-
cal information. This contrast lacks the sufficient specificity to distinguish biomolecules like cell nuclei and 
cytoplasm, which is essential for histological analysis. Subsequently, artificial colorization methods must infer 
the structures of these essential diagnostic features, which greatly reduces diagnostic confidence. This motivates 
the adoption of a label-free microscopy modality with higher chromophore specificity, which may improve 
colorization confidence.

Recently, autofluorescence microscopy has emerged as a popular contender for virtual histology. Autofluo-
rescence provides label-free visualizations of biomolecules like elastin, collagen, amino acids, NADPH and other 
cellular organelles, at excitation wavelengths ranging from UV to ~ 500 nm29. Previously, Rivenson et al.13 had 
success in developing virtual H&E staining from autofluorescence images. In this work, a deep neural network 
was trained on pairs of autofluorescence and H&E-stained images with the objective of colorization. This method 
was successfully applied to autofluorescence images, bypassing the H&E staining process. However, the broad 
realization of this technique in bulk tissues was limited by the autofluorescence contrast. Though autofluorescence 
highlights a number of biomolecules resembling eosin staining, the DNA and nuclei30, do not exhibit any meas-
urable autofluorescence31. Hence, while many diagnostic elements are present, the colorization network must 
estimate the nuclear features since they cannot be measured. Inferring nuclear structures (a key determinant of 
cancer diagnosis) presents challenges to clinical adoption and regulatory approval.

One modality, PAM has arisen as a powerful label-free microscopy modality, offering selective biomolecule 
contrast of a wide array of chromophores. PAM enables precise discrimination by using specific excitation wave-
lengths to target the optical absorption characteristics of individual chromophores. Previously, PAM systems 
have been shown to recover both nuclear visualizations analogous to hematoxylin staining32,33 and connective 
tissue imaging analogous to eosin staining15. However, traditional PAM systems exhibit one major drawback. 
PAM is a hybrid optoacoustic imaging modality, where optical absorption-induced photoacoustic pressures 
are captured as ultrasound signals. Measuring these acoustic pressure waves requires an acoustically coupled 
ultrasound transducer. The need for effective acoustic coupling, means the transducer must be in contact with 
the specimen, or submerged in a coupling medium such as a water tank14–16. This arrangement hinders the suit-
ability of PAM for several clinical applications.

A newly developed modality, photoacoustic remote sensing (PARS)34–36, overcomes the drawbacks of PAM. 
In PARS, the acoustically coupled ultrasound transducer is replaced with a secondary co-focused detection laser, 
offering robust all-optical non-contact label-free photoacoustic imaging37. Over the past few years, PARS has 
emerged as a powerful contender in the label-free histological imaging space34–36,38. PARS may emulate current 
histochemical staining, by targeting the UV absorption of DNA (analogous to hematoxylin staining)34,35, and 
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by targeting the 420 nm absorption of cytochromes (analogous to hematoxylin staining)34. Recent works have 
shown that PARS may offer high contrast and high spatial resolution in freshly resected tissue, formalin fixed 
tissue, and FFPE tissue sections35,36. In resected tissues, PARS has even been shown to provide 3D imaging of 
subsurface nuclei35.

In this paper, we employ a second-generation PARS architecture, total-absorption photoacoustic remote 
sensing (TA-PARS)36, to provide label-free histology-like images. As outlined by Ecclestone et al.36 the TA-PARS 
architecture incorporates a number of advances providing improved sensitivity and contrast when imaging in 
tissues specimen. Applied to resected tissues, TA-PARS directly measures analogous contrast to H&E staining, 
capturing nuclei and cytoplasm independently. Since the proposed framework directly measures H&E informa-
tion, it enables confident colorization modeling. In addition, this provides the opportunity for direct comparison 
to ground truth H&E staining while providing outputs acceptable for clinical applications.

The TA-PARS operates by introducing a pulse of targeted excitation light to a chromophore, then capturing the 
relaxation processes as the chromophore sheds the absorbed optical energy. There are two main pathways for this 
relaxation: radiative, and non-radiative. During non-radiative relaxation, absorbed optical energy is dissipated 
as heat. This generates local thermoelastic expansion, and photoacoustic pressures when the excitation process 
is fast enough37. The non-radiative relaxation induces modulations in the local optical properties, which are 
captured as back-reflected intensity fluctuations in a co-focused TA-PARS detection laser. When using a 266 nm 
excitation, the non-radiative absorption reveals predominantly nuclear structures, typically visualized by the “H” 
stain. Conversely, during radiative relaxation, absorbed energy is emitted as photons. The radiative relaxation is 
captured as these absorption-induced optical emissions, the same mechanism as fluorescence imaging. When 
using a 266 nm excitation, the radiative absorption contrast typically depicts extranuclear features, commonly 
revealed by the “E” stain. In addition to the optical absorption fractions, the local scattering is also captured using 
the TA-PARS detection laser. The optical scattering reveals the morphological structures in thin tissue sections38.

In total, TA-PARS microscopy simultaneously provides label-free non-contact imaging of radiative absorp-
tion, non-radiative absorption, and optical scattering contrasts. To the extent of our knowledge, the TA-PARS 
is the only modality that can provide all three contrast mechanisms in a single capture. This rich array of input 
data provides simultaneous recovery of structures including cell nuclei, fibrin, connective tissues, adipocytes, 
and neurons36 in a single excitation event. The diagnostic confidence of deep learning-based virtual histological 
staining can be improved using this more informative dataset for network training and colorization.

Here, we use a general-purpose image-to-image translation model, namely Pix2Pix39, to colorize histological 
images captured by the TA-PARS system. The Pix2Pix model is designed based on generative adversarial networks 
(GANs)18, a type of generative model that creates new datasets based on a given input (training) data. The archi-
tecture is comprised of a generator subnetwork for creating new feasible data, and a discriminator subnetwork 
that tries to distinguish between the newly generated (synthetic) data and the ground truth (real) data. The two 
subnetworks are trained simultaneously in an adversarial process, where the generator model aims to maximize 
the error rate of the discriminator model, while the discriminator model tries to minimize the classification 
error. For the training task, the network was fed multi-contrast images of the TA-PARS channels co-registered 
with H&E images that were captured using traditional slide imaging procedures.

Through the array of contrasts provided by TA-PARS, we directly capture the H&E information. Directly 
measuring the desired H&E contrast in one dataset permits a strong deep learning model, avoiding assumptions 
or unsubstantiated inferences about the presence of features such as cell nuclei. The proposed work provides 
H&E-like TA-PARS of tissue slides, leading to images comparable to the gold standard. TA-PARS virtual his-
tology images were reviewed by four dermatologic pathologists who confirmed they are of diagnostic quality, 
and that resolution, contrast, and color permitted interpretation as if they were H&E. This is an essential step 
toward developing an alternative histopathological workflow featuring slide-free virtual staining of fresh tissue 
specimens. Ultimately, achieving histology-like in-situ imaging would permit near real-time intra-operative 
margin assessment.

Materials and methods
Dataset preparation.  The dataset used in this study was collected from thin sections of formalin fixed 
paraffin embedded (FFPE) human skin tissues. Anonymous tissues samples were provided by clinical collabora-
tors at the Cross-Cancer Institute (Edmonton, Alberta, Canada). These samples were collected under protocols 
approved by the Research Ethics Board of Alberta (Protocol ID: HREBA.CC-18-0277) and the University of 
Waterloo Health Research Ethics Committee (Photoacoustic Remote Sensing (PARS) Microscopy of Surgical 
Resection, Needle Biopsy, and Pathology Specimens; Protocol ID: 40275). Patient consent was waived by the 
ethics committee as the samples are archival tissues no longer required for patient diagnostics, and no informa-
tion was provided to the researchers about the patient identity. All experiments involving human tissues were 
conducted in accordance with the government of Canada guidelines and regulations, such as “Ethical Conduct 
for Research Involving Humans (TCPS 2)”.

The dataset of co-registered TA-PARS and H&E pairs required for the virtual staining procedure was acquired 
as follows. Unstained thin tissue sections were imaged with the TA-PARS system. Once imaged, specimens were 
stained and scanned with a brightfield microscope to generate matched TA-PARS and H&E image pairs of the 
exact same samples. The dataset preparation procedure is illustrated in Fig. 1.

The unstained tissue sections were prepared as follows. First, bulk resected tissues were fixed in a formalin 
fixative solution (within 20 min of resection) for up to 48 h. Tissues were then dehydrated and prepared for 
paraffin wax penetration. During this process, tissues were cleared of residual fats. Next, tissues were embedded 
into the paraffin substrate creating FFPE tissue blocks. Thin sections of ~ 5 µm thickness were sliced from the 
FFPE tissue block surface. Thin sections were fixed directly onto glass slides and excess paraffin was removed 
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by baking the slide at 60 °C for 60 min. At the end of this process, the thin sections were ready for imaging with 
the TA-PARS system. All imaging was done at the PhotoMedicine Labs at the University of Waterloo. Once the 
TA-PARS dataset was collected, the thin tissue slides were stained with H&E, covered with a mounting medium 
and a coverslip, and then imaged using a transmission mode brightfield microscope, providing the correspond-
ing H&E dataset.

TA‑PARS imaging.  A more detailed description of the TA-PARS system architecture and image formation 
process can be found in36. Briefly, the experimental system is illustrated in Fig. 2. The excitation source was a 
266 nm diode laser (Wedge XF 266, RPMC). The detection was a 405 nm OBIS-LS laser (OBIS LS 405, Coher-
ent). Images were captured with excitation pulse energies of ~ 400 pJ, and detection power levels of ~ 0.16 mW36. 
The excitation and detection sources were combined via dichroic mirror (Fig. 2: DM), then co-focused onto the 
sample with a 0.42 NA UV objective lens (Fig. 2: OL), providing a maximum spatial resolution of ~ 350 nm36. 
Detection light returning from the sample (containing the optical scattering and non-radiative relaxation) was 
fiber-coupled into the circulator (Fig. 2: Circ.), which then redirected the reflected light to a photodiode (Fig. 2: 
PD) where the nanosecond scale photoacoustic intensity modulations were captured. Concurrently, radiative 
relaxation was chromatically isolated and then captured using a photodiode.

The TA-PARS image formation is conducted as follows. To form an image, the mechanical stages were used 
to scan the sample while the objective lens remained fixed. The velocity of the stages was adjusted to obtain a 
pixel size of 250 nm. The 50 kHz pulsed excitation source was used to excite the tissue, and the induced signals 
due to optical scattering, radiative, and non-radiative relaxation were collected at each pulse. Each event was 
placed in the channel that corresponds to its signal. Such signals were compressed by extracting a single feature 
that becomes the pixel value. Hence, images are collected one pixel at a time such that the total imaging speed is 
largely driven by the excitation lasers repetition rate. The 50 kHz excitation used here provides an imaging speed 
of ~ 25 s per megapixel. The final images are then reconstructed for each TA-PARS channel through fitting the 
computed pixel values to a Cartesian grid based on their corresponding position signals from the stages. The 

Figure 1.   TA-PARS and H&E dataset preparation process of human skin tissue slide images. Scale bar: 50 µm.

Figure 2.   Simplified TA-PARS system architecture and system setup. Component labels are as follows: dichroic 
mirror (DM), variable beam expander (VBE), collimator (Col.), circulator (Circ.), spectral filter (SF), condenser 
lens (Cond.), photodiode (PD), 10:90 splitter (90:10), mirror (M) and objective lens (OL).
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images were then processed according to the task of interest. In the next subsection, processing of images for 
the virtual staining task is described.

Dataset preparation for training.  In this work, a Pix2Pix GAN model39 was adopted. The model requires 
pixel-to-pixel correspondences between the input data (TA-PARS) and the ground truth (H&E), where the 
objective is to learn a statistical transformation between the two data domains. Since TA-PARS and H&E images 
were acquired using different techniques, images of the same sample were not co-registered. Therefore pre-pro-
cessing, including field of view matching and registration, was required to produce approximately co-registered 
pairs of TA-PARS and H&E images. The virtual staining framework is depicted in Fig. 3.

The registration process can be described as follows. First, the corresponding field-of-views (FOVs) of the 
two image domains were extracted from the whole-slide images and coarsely matched in terms of pixel size in 
preparation for one-to-one registration process. For registration, the control point registration tool was deployed 
from the MATLAB Image Processing Toolbox. The TA-PARS images were chosen as reference images, and H&E 
as the images to be registered. The control points were manually selected and then fine-tuned in a second pass 
to minimize global and local distortions. Afterward, the algorithm fits a non-rigid geometric transformation40 
between the two images, which was applied to the H&E images to obtain co-registered TA-PARS and H&E 
images. Since all TA-PARS channels were intrinsically registered, the whole registration process was applied 
using the non-radiative channel only.

Once the registration process was done, the dataset was ready for the network training for colorization. In 
this study, all three TA-PARS channels were used for training the model. Figure 4 illustrates the inputs and the 
output of the network. Non-radiative and radiative absorption and optical scattering channels are shown in 
Fig. 4a–c, respectively. The multi-channel input is shown in Fig. 4d as the concatenation of the three channels. 
A colorization example is depicted in Fig. 4e and the corresponding H&E ground truth is shown in Fig. 4f. It is 
clear that the non-radiative absorption channel features strong nuclear contrast representing the hematoxylin 
contrast, while the radiative absorption contrast exhibits the eosin contrast showing the tissue morphological 
information. Normalized TA-PARS images undergo contrast stretching by saturating the top 1% and the bottom 
1% of all the pixel values and were then color-reversed to match the colormap and the histogram distribution of 
the grayscale ground truth images. Several datasets were prepared in a likewise manner for concept validation.

This framework is meant to replace the histological staining process, where the Pix2Pix model was trained 
using the multi-channel TA-PARS images as inputs and corresponding H&E images as labels, and the network 
was trained to learn the statistical transformation function between the two domains. Once the model is trained, 
the virtual staining process takes a few seconds to produce a virtually stained version of an image of 4000 × 6500 
pixels (~ 1.6 mm2).

Figure 3.   Virtual Staining framework. Pairs of TA-PARS and H&E images are co-registered to create the 
training dataset, which is then used to train the Pix2Pix39 model. Unseen TA-PARS images are then fed into the 
trained model for virtual staining, producing H&E-like visualizations. Scale bar: 50 µm.
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Virtual staining model architecture and implementation details.  A Pix2Pix image-to-image trans-
lation model39 was applied to transform the label-free TA-PARS images to virtually stained images that match 
their corresponding H&E histochemical stained samples. The model is based on a GAN architecture, or more 
specifically conditional GAN (cGAN)41, where the generative model is further conditioned on the input data.

The model training algorithm in Pix2Pix concurrently trains two separate neural networks, the generator, and 
the discriminator, as illustrated in Fig. 5. The training algorithm learns to minimize a loss function between the 
network output and the ground truth. The discriminator network is trained to effectively differentiate between 
real and synthetically generated images, while the generator network is trained at the same time to produce 
images that better resemble the ground truth data, which makes it progressively harder for the discriminator 
to differentiate correctly. As a result, the model is capable of producing virtually stained TA-PARS images of a 
comparable diagnostic quality with the histologically stained images.

Training for the standard Pix2Pix model was carried out using 3-channel RGB color images. In the proposed 
approach, the three channels were replaced with the non-radiative absorption contrast, the radiative absorption 
contrast, and the optical scattering, respectively. In this way, the model can simultaneously learn complementary 
information from the three available information sources.

Overlapping patches of 256 × 256 pixels were extracted from TA-PARS and H&E images to generate the train-
ing and validation sets. Approximately, 15,000 training patches and 6000 validation patches were used in the 
experiments. The maximum number of epochs was set to 500 with an early stopping criterion to terminate the 
training when the generator loss stops improving. The trained model was then applied to the test images which 
were also subdivided into overlapping patches of 256 × 256 pixels. An overlap of ~ 50% was usually sufficient to 
avoid visible artifacts at the borders of adjacent patches in the final stitched image. The colorization algorithm 
was implemented in Python version 3.8.10 and model training was implemented using PyTorch version 1.9.1 
with support of CUDA version 11.

Clinical validation of virtual H&E images of skin.  Nine representative images of TA-PARS generated, 
and AI-colorized human skin were distributed to four board certified dermatopathologists for evaluation. None 
of the dermatopathologists had conflicts of interests or financial relationships relating to this technology. Each 

Figure 4.   The colorization network input and output images of human skin tissue slide. (a) TA-PARS non-
radiative absorption contrast image captured using a TA-PARS microscope. (b) TA-PARS radiative absorption 
contrast of the same tissue using the same microscope. (c) TA-PARS optical scattering contrast. (d) TA-PARS 
image of all three channels (network input to be colorized). (e) Colorized TA-PARS image using Pix2Pix model. 
(f) Histologically stained tissue of the same region taken on a bright field microscope, the ground truth for the 
virtual staining framework. Scale bar: 100 µm.
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pathologist confirmed that all the images are of sufficient quality to allow diagnosis, and that contrast, resolution, 
and colorization quality are sufficiently H&E-like to permit clinical diagnoses.

Results and discussion
We applied our machine learning framework to unstained human skin tissue sections imaged with TA-PARS. 
These results were compared against bright-field microscopy images, which were acquired after staining the exact 
same tissues with H&E. Hence, these images provide a one-to-one nuclei-to-nuclei match between the TA-PARS, 
and corresponding H&E images. Given limited datasets, our initial step was to perform a proof of concept and 
bracket the model’s performance by overfitting. When overfitting, the same data was used for training and test-
ing the model. This was performed using a single image, split into 5000 patches of 256 × 256 pixels each. The 
colorization results of this experiment are visually almost indistinguishable from the ground truth images (as 
shown in Fig. 6), setting an upper bound to the model performance. When generalizing the model, comparable 
results can be realistically achieved with data not included in the training dataset (unseen data) if the training 
set sufficiently covers the variability of the target domain.

With the initial conceptualization of the colorization process examined through the overfitted data process-
ing, the next step was generalization. Hence, we expanded our experiments to assess the model’s generalization 
performance. Approximately, 15,000 training patches and 6000 validation patches were used in the experiment. 
The model was tested exclusively on unseen TA-PARS images, which were taken from the same label-free tissue 
sections. Again, the results show strong visual agreement between the TA-PARS virtual staining and the H&E 
ground truth, where the colorization of different tissue structures resembles what is usually seen in H&E-stained 
tissue samples. Specifically, of interest in the tissues shown in Fig. 7, are the nuclei. In many malignancies, the 
morphology and distribution of individual nuclei may be indicative of the progression and severity of the dis-
ease. Hence, accurately representing the nuclear structures is paramount for any virtual staining technique. As 
demonstrated in Fig. 7 there is high acuity in the replication of the nuclei shape and size between the colorized 
TA-PARS and the true H&E. Assessing the enhanced section in Fig. 7a, the resemblance is even more apparent 
as the nuclear structures are highly similar between the H&E and the virtual staining.

In addition to the visual agreement, two statistical metrics were used for comparison, the structural similarity 
index measure (SSIM)42 and the root mean square error (RMSE). The colorized and ground truth images were 
converted to the Lab color space prior to SSIM and RMSE computations to represent the images in a perceptually 
correlated color space. The RMSE was chosen to provide a direct comparison between the images, capturing true 
differences between the virtual stain and the H&E. The SSIM was selected as a metric since it measures the per-
ceived change in structural information as well as the contrast and luminance changes, rather than the absolute 
errors, mimicking the human visual system42. This metric (SSIM) is of particular interest due to the subjective 
evaluation nature of histopathology43. The statistical metrics were applied on 1000 patches of size 256 × 256 pixels. 
The average computed SSIM was 0.91 ± 0.02 while an average RMSE of 14.28 ± 1.61 was measured, indicating 
objective structural and quantitative agreement between the H&E-like TA-PARS and true H&E.

Assessing additional, larger skin tissue sections (Fig. 8), further comparison may be drawn between the 
diagnostic features of the TA-PARS, and the H&E images. These images capture the dermis of human skin tis-
sue containing predominately connective tissue and blood vessels. Directly observing the raw TA-PARS data 
(Fig. 8-i) the nuclear structures are discernable in the dark blue/purple, while the connective tissues are seen in 
shades of yellow and orange. Finally, the microvasculature is distinctly visible in red. Certain details such as the 
vasculature and nuclei, may be easier to identify and assess in the raw TA-PARS input (Fig. 8-i) as compared 
to the H&E (Fig. 8-iii) or the virtually stained images (Fig. 8-ii). All the diagnostic information required for a 
pathologist to perform diagnosis and histological analysis may be present in the raw TA-PARS images. However, 
the TA-PARS manifestations are colorized significantly different than the gold standard H&E images. Here, the 

Figure 5.   An illustration of the Pix2Pix training algorithm. Pix2Pix is comprised of two subnetworks: the 
discriminator and the generator. The discriminator subnetwork is trained to distinguish between real H&E and 
synthetically generated H&E. Simultaneously, the generator subnetwork is trained to confuse the discriminator 
by producing images that look like real H&E.
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three TA-PARS contrasts (non-radiative and radiative absorption contrast, and optical scattering) are presented 
directly as the red, green, and blue color channels forming a combined image (the same format provided to the 
GAN network). Current pathologists have extensive training and pattern recognition skills based primarily on 
H&E imaging. Hence, substantial retraining would be required for pathologists to interpret the different colors 
in the raw TA-PARS images. Previously it was shown that these TA-PARS visualizations could be color mapped 
to develop H&E like visualizations36. However, the technique may not be easily generalized to a range of tissues. 
This motivates the proposed AI colorization technique, which may enable clinical acceptance by transforming 
the TA-PARS images into a clinically accepted format.

With TA-PARS virtual H&E, both the collagen rich subcutaneous connective tissues and nuclear structures 
are represented with high quality and contrast, effectively comparable to the gold standard imaging. Furthermore, 
four independent dermatopathologists evaluated the images and confirmed that the colorization, contrast, and 
resolution are sufficient for clinical diagnosis and subjectively equivalent to H&E imaging. This is an encourag-
ing conclusion as these TA-PARS images were produced directly from unstained tissue specimens. Moreover, 
this supports that a robust model has been developed which can be generalized to color different whole slides of 
skin tissues with H&E stain. The model has proven to accommodate for variations of imaging conditions present 
between different specimens, such as differences in image brightness.

Moving forwards, additional tissue types may be explored with the TA-PARS. Virtually staining the different 
tissue types may require specific tuning of the GAN network. Each tissue type (e.g., breast, brain, skin) may 
exhibit certain unique H&E hues. Subsequently, the current model which is optimized for skin tissues may not 
be perfect for other tissues. Though it may provide excellent H&E-like visualizations, some hues may be differ-
ent when applied to other tissue varieties. This aligns with current clinical practices, as different tissue types are 
often treated slightly different in current histopathology workflows44. Staining practices are commonly adjusted 
“on the fly” based on tissue type. These modifications are a major contributor to the variability of H&E staining 
highlighted in the manuscript. Hence, to provide optimal colorization pathologists may need to provide the tissue 

Figure 6.   Virtual staining of TA-PARS images of human skin tissue slides. Here, the same images were used for 
training and testing the model, setting an upper bound to the model performance. Scale bar: 100 µm.
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type (e.g., skin, brain, breast), prior to colorization. Moving forward, future works will focus on the development 
of several colorization models for other individual tissue types like brain and breast, as well as different stains.

Though the current study was restricted to tissue sections in order to have one-to-one correspondence 
with H&E from the same tissue, TA-PARS microscopy also provides high resolution images of freshly resected 
tissues36. Directly capturing hematoxylin and eosin contrasts may potentially enable comparable fresh-tissue 
colorization. In the near future, formalized clinical studies will be conducted aiming to validate and compare the 
TA-PARS virtual H&E against traditional visualizations. Once this validation is complete proving the accuracy 
of the colorizations, the proposed system may be employed directly in bulk resected tissue specimens. When 
moving to bulk tissues, the TA-PARS imaging provides other potential advantages over standard H&E. In addi-
tion to the markedly reduced time to diagnosis, this technique, when applied to fresh tissue, removes numerous 
pre-analytic variables such as the time since devitalization, time from devitalization to fixation, time of fixation, 
variability of fixation depending on distance from the surface, and staining variability.

This could improve the consistency of histology evaluation by removing operator dependent variability in 
tissue processing. However, it should be noted that directly validating the TA-PARS in bulk resected tissues may 
provide further challenges. There are no universally accepted techniques for performing histological analysis on 
bulk resected tissues. Hence, accessing a direct comparison to validate the TA-PARS label-free images may be dif-
ficult. The planned approach is to image bulk tissue specimens with the TA-PARS, then process these specimens 
through the standard histopathological workflow. This will provide loosely comparable TA-PARS virtual- and 
traditional-H&E visualizations. The diagnostic detail of the TA-PARS virtual H&E and corresponding traditional 
H&E images will then be compared through blinded validation studies. Though the visualizations may differ 
between the PARS and H&E, since the FFPE preparation alters the tissue structure and chemistry, the diagnosis 
from each specimen should be identical. Hence, this approach may facilitate a one-to-one diagnostic comparison 
between the TA-PARS images and the current gold standard method. Ideally this direct validation within bulk 
unprocessed resected tissue specimens may pave the way for clinical adoption.

Conclusion
In summary, a framework was developed for H&E-like virtual staining of label-free TA-PARS images. The pro-
posed method leverages the information directly captured from all three TA-PARS channels (radiative absorp-
tion, non-radiative absorption, and scattering), providing a robust model which successfully generates H&E-
like visualizations of tissue samples. Feeding the model with the multi-modal data provides a plethora of data 
not afforded by any single mode. This may markedly improve the overall colorization quality. Specifically, this 
method aims to avoid inferring tissue features, to achieve diagnostically accurate colorizations. Applied in thin 
sections of human skin tissues, the proposed method achieves a high degree of agreement between the virtual 
staining and gold standard histological staining. Dermatopathologists reviewing the TA-PARS colorized images 
unanimously confirmed the diagnostic adequacy of these results. Four independent pathologists indicated that 

Figure 7.   Virtual staining results of different parts of human skin tissue using unseen data. (a) Magnified 
image of connective tissue. Scale bar 25 µm. (b) Image of dense irregular connective tissue. Scale bar 100 µm. (i) 
Raw TA-PARS. (ii) H&E-like TA-PARS. (iii) True H&E. Image sets (a) and (b) depicts high visual agreement, 
especially of nuclear structures, between the H&E and the virtual staining.
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Figure 8.   Another set of virtual staining results using unseen data of human skin tissue. Image sets (a) and 
(b) show different parts of the dermis like connective tissue and blood vessels. (i) Raw TA-PARS. (ii) H&E-like 
TA-PARS. (iii) True H&E. Scale bar 100 µm.
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the colorization, resolution, and contrast is acceptable as an H&E surrogate. Applied to clinical settings, this 
may allow for unstained tissues to be imaged, directly producing H&E-like visualizations. Such a technique 
could reduce histological imaging times, while concurrently reducing staining variability by removing operator 
dependencies within the histochemical staining process. Moving forwards, further exploration will be conducted 
into different tissue types, and different staining varieties. We envision that this approach will pave the way for 
fast label-free histological imaging of tissues, which is a key step toward intraoperative microscopic for diagnosis 
and margin assessment.

Data availability
The data that support the findings of this manuscript are available from the corresponding author, P.H.R., upon 
reasonable request.

Received: 28 March 2022; Accepted: 31 May 2022

References
	 1.	 Baxi, V., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical 

practice. Mod. Pathol. 35, 23–32 (2022).
	 2.	 Fischer, A. H., Jacobson, K. A., Rose, J. & Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. 

Protoc. 2008, pdb.prot4986 (2008).
	 3.	 Histopathology: Methods and Protocols. vol. 1180 (Springer, 2014).
	 4.	 Kang, L., Li, X., Zhang, Y. & Wong, T. T. W. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging 

with near real-time virtual staining. Photoacoustics 25, 100308 (2022).
	 5.	 Jaafar, H. Intra-operative frozen section consultation: Concepts, applications and limitations. Malays. J. Med. Sci. MJMS 13, 4–12 

(2006).
	 6.	 Rivenson, Y. et al. PhaseStain: The digital staining of label-free quantitative phase microscopy images using deep learning. Light 

Sci. Appl. 8, 23 (2019).
	 7.	 Li, J. et al. Biopsy-free in vivo virtual histology of skin using deep learning. Light Sci. Appl. 10, 233 (2021).
	 8.	 Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966 

(2017).
	 9.	 Xie, W. et al. Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins. J. Biomed. Opt. 24, 

1 (2019).
	10.	 Nguyen, F. T. et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 69, 8790–

8796 (2009).
	11.	 Fine, J. L., Kagemann, L., Wollstein, G., Ishikawa, H. & Schuman, J. S. Direct scanning of pathology specimens using spectral 

domain optical coherence tomography: A pilot study. Ophthalmic Surg. Lasers Imaging Retina 41, S58–S64 (2010).
	12.	 Jung, W. & Boppart, S. A. Modern trends in imaging V: Optical coherence tomography for rapid tissue screening and directed 

histological sectioning. Anal. Cell. Pathol. 35, 129–143 (2012).
	13.	 Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 

3, 466–477 (2019).
	14.	 Yao, D.-K., Maslov, K., Shung, K. K., Zhou, Q. & Wang, L. V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation 

of DNA and RNA. Opt. Lett. 35, 4139–4141 (2010).
	15.	 Zhang, C., Zhang, Y. S., Yao, D.-K., Xia, Y. & Wang, L. V. Label-free photoacoustic microscopy of cytochromes. J. Biomed. Opt. 18, 

020504 (2013).
	16.	 Wong, T. T. W. et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. 

Adv. 3, e1602168 (2017).
	17.	 Wong, T. T. W. et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic 

microscopy. Nat. Commun. 8, 1386 (2017).
	18.	 Goodfellow, I. J. et al. Generative Adversarial Networks. arXiv:​1406.​2661 Cs Stat (2014).
	19.	 Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 

1, 0084 (2017).
	20.	 Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman 

scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017).
	21.	 Sarri, B. et al. Stimulated Raman histology: One to one comparison with standard hematoxylin and eosin staining. Biomed. Opt. 

Express 10, 5378 (2019).
	22.	 Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 

322, 1857–1861 (2008).
	23.	 Ji, M. et al. Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci. Transl. Med. 5, (2013).
	24.	 Min, E. et al. Serial optical coherence microscopy for label-free volumetric histopathology. Sci. Rep. 10, 6711 (2020).
	25.	 Fabelo, C. et al. Evaluating optical coherence tomography for surgical margin assessment of canine mammary tumours. Vet. Comp. 

Oncol. 19, 697–706 (2021).
	26.	 Ha, R. et al. Optical coherence tomography: A novel imaging method for post-lumpectomy breast margin assessment—A multi-

reader study. Acad. Radiol. 25, 279–287 (2018).
	27.	 Vakoc, B. J., Fukumura, D., Jain, R. K. & Bouma, B. E. Cancer imaging by optical coherence tomography: Preclinical progress and 

clinical potential. Nat. Rev. Cancer 12, 363–368 (2012).
	28.	 Huang, Y. et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. 

Cancer Res. 77, 6011–6020 (2017).
	29.	 Croce, A. C. & Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. 

Histochem. https://​doi.​org/​10.​4081/​ejh.​2014.​2461 (2014).
	30.	 Chen, Y.-C. et al. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. 

Biomed. Eng. 1, 724–735 (2017).
	31.	 Kretschmer, S. et al. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in 

murine and human airways. Lab. Invest. 96, 918–931 (2016).
	32.	 Imai, T. et al. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. J. Biomed. Opt. 23, 1 (2018).
	33.	 Shi, J. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic 

microscopy. Nat. Photonics 13, 609–615 (2019).
	34.	 Bell, K. et al. Reflection-mode virtual histology using photoacoustic remote sensing microscopy. Sci. Rep. 10, 19121 (2020).

http://arxiv.org/abs/1406.2661
https://doi.org/10.4081/ejh.2014.2461


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10296  | https://doi.org/10.1038/s41598-022-14042-y

www.nature.com/scientificreports/

	35.	 Ecclestone, B. R. et al. Three-dimensional virtual histology in unprocessed resected tissues with photoacoustic remote sensing 
(PARS) microscopy and optical coherence tomography (OCT). Sci. Rep. 11, 13723 (2021).

	36.	 Ecclestone, B. R. et al. Label-free complete absorption microscopy using second generation photoacoustic remote sensing. Sci. 
Rep. 12, 8464 (2022).

	37.	 Hajireza, P., Shi, W., Bell, K., Paproski, R. J. & Zemp, R. J. Non-interferometric photoacoustic remote sensing microscopy. Light 
Sci. Appl. 6, e16278–e16278 (2017).

	38.	 Abbasi, S. et al. All-optical reflection-mode microscopic histology of unstained human tissues. Sci. Rep. 9, 13392 (2019).
	39.	 Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. in 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR) 5967–5976 (IEEE, 2017). https://​doi.​org/​10.​1109/​CVPR.​2017.​632.
	40.	 Goshtasby, A. Image registration by local approximation methods. Image Vis. Comput. 6, 255–261 (1988).
	41.	 Mirza, M. & Osindero, S. Conditional Generative Adversarial Nets. arXiv:​1411.​1784 Cs Stat (2014).
	42.	 Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. 

IEEE Trans. Image Process. 13, 600–612 (2004).
	43.	 Wolf, J. C. & Maack, G. Evaluating the credibility of histopathology data in environmental endocrine toxicity studies: Credibility 

of histopathology data in environmental studies. Environ. Toxicol. Chem. 36, 601–611 (2017).
	44.	 Chapman, C. M. Troubleshooting in the histology laboratory. J. Histotechnol. 42, 137–149 (2019).

Acknowledgements
The authors would like to thank the Cross-Cancer Institute at Edmonton, Alberta for providing human skin tissue 
samples. The authors also thank Dr. Gilbert Bigras, Dr. Marie Abi Daoud, Dr. Charlene Hunter, and Dr. Karen 
Naert for their expert pathology review of the TA-PARS images. The authors thank the following sources for 
funding used during this project. Natural Sciences and Engineering Research Council of Canada (DGECR-2019-
00143, RGPIN2019-06134); Canada Foundation for Innovation (JELF #38000); Mitacs Accelerate (IT13594); 
University of Waterloo Startup funds; Centre for Bioengineering and Biotechnology (CBB Seed fund); illumiSon-
ics Inc (SRA #083181); New frontiers in research fund – exploration (NFRFE-2019-01012).

Author contributions
M.B. implemented the framework, carried out the experiments, prepared the figures, and wrote the main manu-
script. B.R.E. collected the TA-PARS images and assisted in writing the manuscript. V.P. assisted in planning the 
experiments and preparing the results. D.D. and J.R.M. worked on preparing and collecting tissue specimens, 
provided clinical feedback on the results and performed the clinical consultation in the assessment of the results. 
P.F. assisted in planning the experiments and provided consultation in manuscript writing. P.H.R. directed 
and organized the project and the manuscript writing as the principal investigator. All authors reviewed the 
manuscript.

Competing interests 
Authors B.R.E., V.P., D.D., J.R.M., and P.H.R., have financial interests in IllumiSonics which has provided funding 
to the PhotoMedicine Labs. Authors M.B. and P.F. declare no conflicts of interest.

Additional information
Correspondence and requests for materials should be addressed to P.H.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1109/CVPR.2017.632
http://arxiv.org/abs/1411.1784
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS)
	Materials and methods
	Dataset preparation. 
	TA-PARS imaging. 
	Dataset preparation for training. 
	Virtual staining model architecture and implementation details. 
	Clinical validation of virtual H&E images of skin. 

	Results and discussion
	Conclusion
	References
	Acknowledgements


