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Post‑lockdown changes 
of age‑specific susceptibility 
and its correlation with adherence 
to social distancing measures
Max S. Y. Lau1*, Carol Liu2, Aaron J. Siegler2, Patrick S. Sullivan2, Lance A. Waller1, 
Kayoko Shioda2,3 & Benjamin A. Lopman2

Social distancing measures are effective in reducing overall community transmission but much 
remains unknown about how they have impacted finer-scale dynamics. In particular, much is unknown 
about how changes of contact patterns and other behaviors including adherence to social distancing, 
induced by these measures, may have impacted finer-scale transmission dynamics among different 
age groups. In this paper, we build a stochastic age-specific transmission model to systematically 
characterize the degree and variation of age-specific transmission dynamics, before and after lifting 
the lockdown in Georgia, USA. We perform Bayesian (missing-)data-augmentation model inference, 
leveraging reported age-specific case, seroprevalence and mortality data. We estimate that overall 
population-level transmissibility was reduced to 41.2% with 95% CI [39%, 43.8%] of the pre-lockdown 
level in about a week of the announcement of the shelter-in-place order. Although it subsequently 
increased after the lockdown was lifted, it only bounced back to 62% [58%, 67.2%] of the pre-
lockdown level after about a month. We also find that during the lockdown susceptibility to infection 
increases with age. Specifically, relative to the oldest age group (> 65+), susceptibility for the youngest 
age group (0–17 years) is 0.13 [0.09, 0.18], and it increases to 0.53 [0.49, 0.59] for 18–44 and 0.75 
[0.68, 0.82] for 45–64. More importantly, our results reveal clear changes of age-specific susceptibility 
(defined as average risk of getting infected during an infectious contact incorporating age-dependent 
behavioral factors) after the lockdown was lifted, with a trend largely consistent with reported 
age-specific adherence levels to social distancing and preventive measures. Specifically, the older 
groups (> 45) (with the highest levels of adherence) appear to have the most significant reductions 
of susceptibility (e.g., post-lockdown susceptibility reduced to 31.6% [29.3%, 34%] of the estimate 
before lifting the lockdown for the 6+ group). Finally, we find heterogeneity in case reporting among 
different age groups, with the lowest rate occurring among the 0–17 group (9.7% [6.4%, 19%]). Our 
results provide a more fundamental understanding of the impacts of stringent lockdown measures, 
and finer evidence that other social distancing and preventive measures may be effective in reducing 
SARS-CoV-2 transmission. These results may be exploited to guide more effective implementations 
of these measures in many current settings (with low vaccination rate globally and emerging variants) 
and in future potential outbreaks of novel pathogens.

Social distancing measures ranging from stringent lockdowns to keeping distance are effective in reducing com-
munity transmission of SARS-CoV-21–3. Implementing these measures for suppressing SARS-CoV-2 transmission 
remains an option in many settings, given the current inadequate vaccination rates particularly in low income 
countries4 and uncertainty regarding the level of protection of current vaccines against emerging new variants5. 
It is important to more rigorously quantify the short- to medium-term impacts of these measures on community 
transmission, particularly for a firmer grasp on the magnitude and timings of the impacts. Moreover, much is 
unknown about how induced changes in (age-stratified) contact patterns and behaviors by these measures (Ref. 
Hutchins et al. 6) may have impacted finer-scale transmission dynamics—in particular, age-specific transmission 
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dynamics, which are known to be important factors in the transmission of SARS-CoV-23,7. Obtaining systematic 
characterization of the impacts on both the population-level and finer-scale age-specific dynamics will guide 
more effective implementations of these social distancing measures in current settings and may also lend insights 
into future outbreaks of other novel pathogens.

In this paper, we formulate a stochastic transmission modelling framework to systematically characterize 
population-level and age-specific transmission dynamics amid major changes of lockdown policy in Georgia, 
USA. Our framework leverages multiple data sources including age-stratified case data of SARS-CoV-2 collected 
by the Georgia Department of Public Health, and age-stratified contact data and seroprevalence data (see “Study 
Data”). We perform Bayesian model inference using data-augmentation techniques, which also accounts for 
unobserved data including unreported cases (see “Materials and Methods”).

Study data
We leveraged a range of data for this study. Datasets include a large set of COVID-19 age-stratified daily case and 
mortality data collected by the Georgia Department of Public Health (GDPH), between late March, 2020, and 
end of June, 2020 (covering the lockdown period and the earliest wave after lifting the lockdown), in the four 
counties of metro Atlanta (Cobb, DeKalb, Gwinnett, and Fulton) reporting the largest numbers of cases (29,832 
reported cases in total). The GDPH Institutional Review Board has previously determined that this analysis is 
exempt from the requirement for IRB review and approval and informed consent was not required. We also 
leveraged publicly available social contact data from a representative survey conducted among US adults which 
include individuals residing in Atlanta8. No children less than 18 years were surveyed in our data, we therefore 
imputed contacts made by individuals aged 0–17 years following Jarvis et al.9 (see also Materials and Methods). 
Age-specific seroprevalence data from a state-wide cross-sectional serosurvey10–12, in conjunction with the mor-
tality data, were used to provide important model calibration information (see also “Materials and Methods”).

Data availability statement
Case data and mortality data are available at https://​dph.​georg​ia.​gov. Requests of obtaining the seroprevalence 
data should be made to P. S. Sullivan and A. J. Siegler the PIs of the serosurvey. Computer codes for this paper 
are available at https://​github.​com/​msylau/​Post-​lockd​own-​age-​speci​fic-​susce​ptibi​lity-​and-​its-​corre​lation-​with-​
adher​ence/.

Results
Magnitude and timings of impacts of lockdowns on community transmission.  Observed new 
cases often do not directly reflect underlying changes of transmissibility—in particular, a reduction of trans-
missibility does not manifest in an immediately declining trend of new cases. To more rigorously quantify the 
impacts of, for example, stringent lockdown measures, it is important to jointly model the magnitude and tim-
ings of changes of the underlying transmissibility. Our framework treats these change points as unobserved free 
model parameters to be estimated from the data. We consider a fixed number change points3 but relax prior 
constraints on the change points (specifically, we used noninformative flat priors for the change points them-
selves, see also “Materials and Methods”). Our results suggest that population-level transmissibility declined 
relatively rapidly and substantially after the announcement of shelter-in-place order (see Fig. 1). We estimate 
that transmissibility was reduced to 41.2% [39%, 43.8%] of the pre-lockdown level in 8.5 days [8.02, 8.97] after 
the announcement of the shelter-in-place order on April 2, 2020. There also appears to be a carry-over effect 
of dampening transmission after the order was lifted. Specifically, although the transmissibility subsequently 
increased after the order was lifted on April 30, it only went back to 62% [58%, 67.2%] before the outbreak peak-
ing again towards the end of our study period.

Age‑specific susceptibility prior to lifting the lockdown.  We define susceptibility throughout this 
paper as the average risk of getting infected during an infectious contact. This definition implicitly incorporates 
potential effects of time- and age-dependent behavioral factors (beyond measures which mostly aim at reducing 
number of contacts) such as adherence level to facemask wearing which may potentially influence the risk of 
getting infected (see also Materials and Methods).

Susceptibility to SARS-CoV-2 infection was found to be heterogeneous among different age groups. For 
example, it was estimated that, during earlier phase of the pandemic, susceptibility to infection in individuals 
under 20 years of age is approximately half that of adults aged 20 years or older7. In this paper we considered the 
following age categories: 0–17 years, 18–44 years, 45–64 years and 65 years and above, and estimate age-specific 
susceptibility relative to the oldest age group (65+). Our results suggested that, prior to lifting the lockdown, 
susceptibility for the youngest age group (0–17) is 0.13 [0.09, 0.18], and it increases to 0.53 [0.49, 0.59] for 18–44 
and 0.75 [0.68, 0.82] for 45–64 (Fig. 2).

Post‑lockdown age‑specific susceptibility.  Social contact patterns changed due to the initiation 
and the subsequent lifting of the shelter-in-place order8. Adherence levels to social distancing and preventive 
measures were also found to vary inhomogeneously among different age groups and in time during our study 
period6,13–17. For example, it was reported in Feehan et al.8 that individuals in the younger age groups, compared 
to those 60+ years, were less likely to follow various measures including mask-wearing, keeping 6 feet distance 
and avoiding public/crowded places and restaurants. Other surveys also highlight that the discrepancy of adher-
ence between younger and older age groups may only become prominent during the post-lockdown period 
(e.g., Kim et al.15). Such changes and discrepancies may potentially alter the age-specific transmission dynamics, 
particularly the post-lockdown (i.e., after lockdown was lifted) susceptibility for different age groups.

https://dph.georgia.gov
https://github.com/msylau/Post-lockdown-age-specific-susceptibility-and-its-correlation-with-adherence/
https://github.com/msylau/Post-lockdown-age-specific-susceptibility-and-its-correlation-with-adherence/
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Our results are largely consistent with these reported trends of age-stratified adherence levels to social dis-
tancing and preventive measures. Specifically, the susceptibility of the 0–17 group increases to 2.52 times [1.87, 
3.18] the value of its estimate before lifting the order. And, in contrast, Fig. 2 shows that other age groups are all 
estimated to have reductions of susceptibility, with the trend that the degree of reduction increases with age. In 
particular, the 65+ age group has the highest degree of reduction of susceptibility among all age groups, being 
at 31.6% [29.3%, 34%] of its pre-lifting estimate. Also noted that the susceptibility becomes more homogeneous 
among different age groups.

Age‑specific reporting patterns.  Case reporting rates may vary between different age groups due to 
disparities in severity of symptoms, self-reporting behaviors and testing capacity7. Our modelling framework 
includes and infers an unreported class for each age group (see “Materials and Methods”), from which we 
are able to estimate age-specific reporting trends. Note that in our framework the unreported class includes 
asymptomatic cases and any cases which were undetected for other reasons. Figure 3 shows that ratio between 
inferred reported cases and total cases over time for the 0–17 age group remained the lowest among all age group 
throughout the study period (9.7% [6.4%, 19%] at the end of our study period). There may be a slight increasing 
trend of the reporting ratio particularly for those younger than 45, with the estimate for the 18–44 group peaking 
at 47.3% [44%, 55.5%].
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Figure 1.   (a) Change points. The grey area represents period with active shelter-in-place order. The blue line 
indicates the model-inferred (free) change point time at which there was a major reduction of population-level 
transmissibility. The red line indicates the change point at which there was a major uptick of transmissibility. 
Note that the reduction of transmissibility at first change point also appears to have largely leveled off the overall 
increasing trend of cases (illustrated by the black curve showing the 7-day moving average) before the next 
major uptick. (b) Transmissibility compared to the transmissibility in the period before the first change point 
(blue line). It on average reduced to 41.2% [39%, 43.8%] during the period between the first and second change 
points, and restored to 62% [58%, 67.2%] after the second change point.
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Model fit
To assess the model fit, we compare daily 14-day, 10-day and 7-day moving averages computed from observed 
new cases and the same metrics computed from data simulated from our estimated model. We simulate the 
epidemic forward conditional on observations in the first 10 days. Figure 4 shows that our model-simulated data 
are largely consistent with the observed data. Also note that while the more recent moving average (e.g., 7-day 
average) for 65+ group is nosier compared to other age groups, our simulated data are capturing the overall trend 
and size of the outbreak in this group reasonably well. We also explore alternative models with one/three change 
points. Our results suggest that the one-change-point model does not provide a good model fit (see Figure S1 in 
SI Figures in Supplementary Information) and the three-change-point model does not yield reliable posterior 
samples of model parameters.

Discussion
Our results show that population-level transmissibility declined relatively rapidly after the initiation of shelter-in-
place order; and although relaxing the lockdown may be followed by an uptick of cases, underlying population-
level transmissibility may stay at a level lower than the level before implementing the lockdown at least within 
the first two months. These results enable a firmer grasp regarding the short- to medium-term (post-lockdown) 
impacts of lockdown policies on community transmission of SARS-CoV-2.

Age is an important factor for characterizing transmission dynamics of SARS-CoV-23,7. However, while non-
pharmaceutical measures aimed at reducing contacts have shown to be effective in reducing population-wide 
transmission18,19, much is unknown regarding how the age-specific dynamics may have responded to other fac-
tors including behavioral changes differed by age induced by the pandemic and lockdown policies. Our results 
systematically characterize the dynamics of age-specific susceptibility, and provide additional and finer-scale 
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Figure 2.   Posterior distributions of age-specific susceptibility. (a) Age-specific susceptibility before lifting the 
lockdown. Note that susceptibility is measured relatively to the 65+ years whose susceptibility parameter is set 
to be 1. (b) Age-specific susceptibility after lifting the lockdown. (c) Changes of susceptibility. Change for a 
particular age group is measured by the ratio between the post-lockdown estimate and the estimate obtained for 
the period prior to lifting the lockdown.

Figure 3.   Weekly ratio between inferred reported cases and total cases for different age groups.
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evidence that maintaining social distancing and preventive measures may modify (age-stratified) susceptibility 
and reduce population-level transmission1,2. Specifically, we show that susceptibility of a particular age group 
may shift amid major changes of lockdown policy, and these shifts appear to correlate with age-specific adher-
ence level to social distancing and preventive measures such as facemask wearing and keeping 6 feet distance. 
Our results support implementations of these measures in the current setting (with low vaccination rate globally 
and emerging variants) and in future potential outbreaks of novel pathogens. We also note that as contact pat-
terns tended to be more homogeneous among different age groups during lockdown periods15, our estimated 
differences in age-specific susceptibility occurring in that period may mostly represent biological discrepancies, 
as opposed to the post-lockdown susceptibility estimates which may largely reflect discrepancy in ‘normal-life’ 
susceptibility as a combination of both biological and behavioral factors. These age-specific estimates also provide 
additional insights in framing appropriate and sustainable interventions during the current ‘normal-life’/post-
lockdown period. Also note that our results are consistent with Omori et al.20 which suggest that heterogeneity 
in age-specific susceptibility may be not sufficient to influence age-specific distribution of mortality which has 
been largely constant in our study period.

Our study has a number of limitations. First of all, data on adherence levels to social distancing measures 
are mostly sparse and are not modelled explicitly in our model. Future studies with less sparse joint sampling of 
adherence data and case data may be considered. Nevertheless, our results show a consistent trend between the 
changes of susceptibility and adherence levels to social distancing measures reported in other studies. Similarly, 
while we incorporate data on the number of contacts between age groups, we are not able to dissect potential 
effects such as types and durations of contacts. Changes in these factors may counteract effects of preventive 
measures including mask wearing, and it is possible that for those < 18 years the former effect overweighed the 
latter (e.g., by having longer durations of contacts at schools), resulting the estimated increase in post-lockdown 
susceptibility (Fig. 2). Future work may need to explicitly model these factors including age-stratified dura-
tions and types of contacts, when such data are available including for those < 18 years. Also, future work may 
include further stratifying the 65+ age group to account for more granular behavioral differences (e.g., the older 
ones in this group may be more care dependent). Moreover, we have focused on understanding the short- to 
medium-term impacts of lockdown policies, by focusing on time period that covers both the lockdown period 
and the neighboring post-lockdown period. Future work may include extending our model and study period. 
Furthermore, environmental, behavioral and demographic factors are not explicitly incorporated in our transmis-
sibility parameter. For example, while we model time-varying population-level transmissibility, our framework 
does not explicitly account for potential differences of transmissibility among different age groups (as they are 
not identifiable with susceptibility parameters). Future data sources such as age-stratified viral load data may 
be incorporated into our model as future work to dissect age-specific transmissibility from susceptibility. Simi-
larly, other potentially time-varying factors that may impact per-contact transmission probability such as the 
types and durations of contacts are not explicitly incorporated in our model. Therefore, our estimates should be 
considered as an average measure of transmissibility aggregating over these various factors. Finally, while our 
results suggest that the major change points of population-level transmissibility are fairly close to time points 
of lockdown policy changes (without using strong prior on the change points), other policy and environmental 
changes may have played a role. For instance, increased efforts for testing-trace-quarantine may have contributed 
to reduction of population-level transmission. Therefore, our results may represent an aggregate effect of many 

Figure 4.   Model fit. (a) Daily (14-day moving) average computed from observed daily new cases among 
different age groups are shown in dotted lines. Grey lines represent the same average computed from 1,000 set of 
observations simulated from our estimated model. (b) Daily (10-day moving) average. (c) Daily (7-day moving) 
average.
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policies and environmental changes combined, while lockdown related policies and their induced behavioral 
changes may have been the major contributors.

Materials and methods
Stochastic age‑specific transmission model.  We formulate a stochastic age-specific transmission 
model in the general Susceptible(S)-Exposed(E)-Reported(I)-Unreported(U)-Recovered(R) framework. For a 
particular age group i at time t − 1 ( i = 1 corresponding to the 0–17 years, i = 2 to 18–44, i = 3 to 45–64 and 
i = 4 to 65+), we have

where nXYi (t) represents number of transitions between a class X and class Y for age group i at time t .
The number of transitions from the susceptible to exposed class for group i at time t  is modelled by

Here, β(t) denotes the average infectiousness of an infectious individual and cj,i(t) is the average number of 
contacts per day made by age group j to i . Also note that the product β(t)× cj,i(t) may represent age-specific 
transmissibility (of age group j ) accounting for contacts. We allow and infer two change points of β(t) (one 
potentially correlates to changes due to the implementation of lockdown and another one to changes due to the 
lifting of lockdown), i.e.,

where T1 and T2 are the two change points to be inferred ( T2 ≥ T1 ). γi(t) denotes the susceptibility of group 
i relative to the oldest age group (i.e., γ4 = 1 ), which is also allowed to change proportionally after lifting the 
lockdown. Note that γi(t) implicitly incorporates any behavioral effects (e.g., potential reduction of risk of getting 
infection due to facemask wearing). Transitions between other classes are modelled as:

where DEI , DEU , DIR and DUR denote the mean waiting times between the indicated two classes. We assume that 
DEI = DEU=7 days and DIR = DUR=14 days. pUi (t) represents probability that an infection is unreported at times 
t  for age group i , we assume

fi(.) is an increasing function with fi(t) = ai + bi × t , where −∞ < ai < ∞ and bi ≥ 0 , which is used to model 
time-varying average reporting rate in a particular age group i (which may be increasing due to, for example, 
increasing efforts for asymptomatic screening and testing). We provide a schematic overview of our modelling 
framework in Fig. 5.

We also explore the sensitivity of the assumption DUR = DIR . Specifically, we also consider the scenario when 
DUR = 0.5× DIR . Our results show that our main conclusions are largely robust towards the assumption (see 
Table S1 in SI). In particular, the trend of susceptibility increasing with age (prior to lifting the lockdown) and 
the homogeneity of susceptibility after lifting the lockdown remain robust. However, we do observe that trans-
missibility is estimated to be higher in the scenario DUR = 0.5× DIR , but maintaining the same trend obtained 
under the assumption of DUR = DIR.

Bayesian model inference and data‑augmentation.  We infer � (i.e. the parameter vector) in the Bayes-
ian framework by sampling it from the posterior distribution P(�|z) where z  include both observed and unob-
served data21–24. Denoting the likelihood by L(�; z) , the posterior distribution of � is P(�|z)) ∝ L(�; z)π(�) , 
where π(�) is prior distribution for � . Markov chain Monte Carlo (MCMC) techniques are used to obtain 
samples from the posterior distribution. We assumed that, at time 0, the ratio between observed and unreported 
cases was assumed to be 1/1025. Mortality and seroprevalence data are used to facilitate the estimation of the 
number of recovered individuals Ri(t) . Specifically, knowing that number of recovered is bounded above by 
the cumulative incidence, prior distribution of the number of recovered individuals Ri(t) was assumed to fol-
low a Uniform distribution bounded above by the cumulative incidence. The cumulative incidence is estimated 

(1)

Si(t) = Si(t − 1)− nSEi (t)
Ei(t) = Ei(t − 1)+ nSEi (t)− nEIi (t)− nEUi (t)
Ii(t) = Ii(t − 1)+ nEIi (t)− nIRi (t)
Ui(t) = Ui(t − 1)+ nEUi (t)− nURi (t)
Ri(t) = Ri(t − 1)+ nIRi (t)+ nURi (t),

(2)

nSEi (t) ∼ Poi(Si(t − 1)× γi(t)

×

∑
j=1

β(t)× cj,i(t)× {Ij(t − 1)+ Uj(t − 1)}).

(3)β(t) =

{
β0, if t ≤ T1

β1 = ω1 × β0, if T1 < t ≤ T2

β2 = ω2 × β0, if t > T2,

(4)

nEUi (t) ∼Bin(nSEi (t − DEU ), pUi (t − DEU ))

nEIi (t) =nSEi (t − DEI )− nEUi (t)

nIRi (t) =nEIi (t − DIR)

nURi (t) =nEUi (t − DUR),

(5)pUi (t) = 1−
efi(t)

1+ efi(t)
.
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from the mortality data and cross-sectional seroprevalence data following the approach previously developed 
by the authors26. As seroprevalence data were not collected for the 0–17 age group, we conservatively assume 
that Ri=1(t) was bounded above by the estimated cumulative incidence of the 18–44 group. Non-informative 
uniform priors for parameters in � are used (see Supplementary Information (SI)). More details of the inferential 
algorithm are referred to SI Text in Supplementary Information (SI). Posterior distributions of parameters are 
given in Figure S2 in SI Figures.

Imputations of missing contacts.  Since no children younger than 18 years were surveyed in our data, we 
imputed (during-pandemic) contacts made by individuals aged 0–17 years. Specifically, following Jarvis et al.9, 
we take pre-pandemic contacts and rescale them based on the ratio of the dominant eigenvalue of a during-
pandemic matrix to dominant eigenvalue of the pre-pandemic matrix. Also, since there are no publicly available 
pre-pandemic (0–17 years) contact data for the US, we used pre-pandemic estimates from the UK POLYMOD 
study as a proxy in the imputation27,28.
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