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Abstract: Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in
marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type
species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is
a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide
sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant
putative enzymes involved in the degradation of polysaccharides were identified, such as alginate
lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and
glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved
in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity
152 U/mL at 50 ◦C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 ◦C.
The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by
the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL)
analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of
P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production
and provide insights into its potential applications in the degradation of polysaccharides such
as alginate.

Keywords: Paenibacillus algicola; genome; polysaccharide lyase; alginate lyase; oligosaccharide

1. Introduction

Complex polysaccharides, including alginate, agar, carrageenan, chitin, cellulose and
pectin, etc., are the major components of seaweed cell walls and intercellular spaces, and are
generally refractory to degradation [1,2]. Most marine polysaccharides (MPs) are structural
components of the cell walls of macroalgae, such as alginate in brown algae (Phaeophyceae)
and agar and carrageenan in red algae (Rhodophyceae). Alginate is widely distributed,
mainly in brown seaweeds such as Laminaria, Sargassum and Macrocystis [3]. It is a water-
soluble and acidic polysaccharide, consisting of α-L-guluronic acid (G) and β-D-mannuronic
acid (D) in three different arrangements, such as homopolymeric G (PolyG), homopolymeric
M (PolyM), alternating GM or random heteropolymeric G/M stretches (polyMG) [4,5].

Mar. Drugs 2022, 20, 388. https://doi.org/10.3390/md20060388 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md20060388
https://doi.org/10.3390/md20060388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0003-1612-6620
https://orcid.org/0000-0002-7255-8914
https://doi.org/10.3390/md20060388
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md20060388?type=check_update&version=1


Mar. Drugs 2022, 20, 388 2 of 13

Alginate, agar and carrageenan are the three typical polysaccharides of marine origin,
and are commercially used as thickening, gelling, texturing and stabilizing agents in
food, cosmetics and pharmaceuticals [6,7]. On the other hand, algal oligosaccharides,
the enzymatic degradation products of MPs, have wide biological activities and used in
different fields, such as industry, agriculture and medicine [8–10].

The biodegradation of seaweed is crucial to marine ecology and is a key step in ma-
terial cycles, especially in the carbon cycle [11]. Polysaccharide-degrading bacteria are
key players in the global carbon cycle and algal biomass recycling. Many kinds of MP-
degrading marine bacteria have been isolated and revealed as the key players in the algal
biomass recycling and global carbon cycle, such as Pseudoalteromonas [7], Alteromonas [12],
Agarivorans [13], Paenibacillus [14], Vibrio and Zobellia [15,16]. Members of genus Paenibacillus
produce many kinds of extracellular enzymes, e.g., chitosanase [17], glucanase [18], cel-
lulase/mannanase/xylanase [19], xanthanase [20] and chitinase [21], which can be used
in a wide range of industrial fields. However, only a few species in this genus have been
reported to possess alginate lyases, namely, Paenibacillus sp. LJ-23 from brown algae [22]
and Paenibacillus sp. strain MY03 [23], Paenibacillus sp. S29 [24] and Paenibacillus sp. str.
FPU-7 [25] from soil.

Alginate lyases can cleave alginate at the hexuronic acid residue sites and release
the 4,5-unsaturated hexuronic acid residue at the non-reducing terminus; they attract
attention for their broad biotechnological applications, especially in the preparation of
biologically active alginate oligosaccharides (AOSs) and the production of biofuels directly
from macroalgal biomass [26,27]. According to substrate specificity, alginate lyases are
divided into polyM-specific lyases (EC 4.2.2.3), polyG-specific lyases (EC 4.2.2.11) and
polyMG-specific lyases (EC 4.2.2), which can degrade polyG, polyM and polyMG blocks of
alginate, respectively [28]. Based on the carbohydrate-active enzyme (CAZyme) database
(www.cazy.org, accessed on 2 March 2022), alginate lyases are grouped into 14 polysaccha-
ride lyase (PL) families: PL5, PL6, PL7, PL14, PL15, PL17, PL18, and the recently identified
families PL31, PL32, PL34, PL36, PL38, PL39 and PL41 [13,21]. CAZyme are the key to
promoting carbohydrate catabolism in marine heterotrophic bacteria. Based on genome
sequencing and functional annotation, the genomes of several alginate-degrading marine
bacteria have been assembled and the CAZyme genes annotated; those such as Zobellia
russellii and Z. barbeyronii [16], Flammeovirga pacifica WPAGA1 [1], Microbulbifer strain
HZ11 [29] and Paenibacillus sp. str. FPU-7 [21] have been reported.

Previously, we described Paenibacillus algicola HB172198T, a novel species isolated
from brown algae in Qishui Bay, Hainan, China, with the capability of producing alginate
lyase [14]. In the present study, general characteristics of its complete genome sequence
are reported, and the genome annotation revealed that diverse CAZymes could degrade
various polysaccharides that are constituents of plant and algal cell wall, not just alginate.
In addition, we further analyzed the putative polysaccharide lyases (PLs) that are involved
in several polysaccharide degradation processes, and investigated the properties of alginate
lyase in culture supernatant.

2. Results

2.1. Screening and Identification of Strain HB172198T

Based on the screening results by agar plate method, strain HB172198T from brown
seaweed in Qishui Bay, Hainan, China, showed significant alginate lyase activity. Under
the action of 1-M CaCl2, a gelation reaction white halo and white ring was observed on
the plate, which indicated that the strain secreted alginate lyases (Figure S1). The type of
calcium ion-dependent reactions on the agar plate containing alginate shows the substrate
specificity of alginate lyase [30]. Colonies are circular, light yellow and approximately
1 mm in diameter when grown on a marine agar 2216 (Difco Laboratories, Detroit, MI, USA)
plate at 30 ◦C for 48 h. Cells are Gram-stain-variable, facultatively anaerobic, motile rods
(1.8–4.8 × 0.5–0.8 µm) with a polar and a lateral flagella (Figure S2). Phylogenetic analysis
of 16S rRNA gene sequences (1474 bp, GenBank No. MG994973) indicated that strain
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HB172198T belonged to the genus Paenibacillus, and the closest phylogenetically related
species was Paenibacillus lemnae NBRC 109972T (97.6% similarity). Based on the combined
phylogenetic relatedness and phenotypic and genotypic features, strain HB172198T was
identified as a novel species of the genus Paenibacillus, for which the name Paenibacillus
algicola sp. nov. is proposed. The type strain is HB172198T (=CGMCC 1.13583T = JCM
32683T) [14].

2.2. Genome Specifics

The complete genome of strain HB172198T was determined and one circular chro-
mosome was obtained, with the GenBank/EMBL/DDBJ accession number CP040396.
A total of 87,777 reads were analyzed, with an average read length of 21,386 bp, totaling
1.88 Gb, and 418× coverage depth. Strain HB172198T presents a genome of 4,475,055 bp
with chromosomal G + C content of 51.2%. A total of 4182 genes were predicted, including
4001 protein-coding genes and 80 tRNA and 27 rRNA sequences. The general features
of the HB172198T genome are shown in Table 1 and Figure 1. The gene functions were
classified with COG and KEEG databases, and it was shown that a total of 2950 proteins had
clear biological functions, 1842 proteins had KEGG homologous genes and 2946 proteins
had COG classification. The most common genes in COG annotation are related to the
basic functions of bacterial cells. The highest proportion of genes includes carbohydrate
transport and metabolism, amino acid transport and metabolism, transcription, cell motility
and secretion.
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Figure 1. Graphical map of strain HB172198T genome. From the outside to the center: The outer
two circles illustrate predicted coding sequences on the plus and minus strands, respectively, colored
by functional categories according to COG classification. The 3rd circle displays tRNA (red) and
rRNA (blue). The 4th circle represents mean centered G + C content of the genome (red—above mean;
blue—below mean). The 5th circle (innermost) represents GC skew (G − C)/(G + C) calculated using
a 2 kb window in steps of 1 kb.

2.3. Genetic Basis of Polysaccharide Degradation

CAZymes are the most important enzymes for polysaccharide degradation. To
search for genes related to polysaccharide-degrading enzymes in the genome of P. algicola
HB172198T, the carbohydrate-related genes were annotated on the basis of the CAZyme
database. Strain HB172198T has 191 CAZymes, including 80 glycoside hydrolases (GHs),
9 polysaccharide lyases (PLs), 53 glycosyl transferases (GTs), 11 carbohydrate esterases
(CEs) and 38 carbohydrate-binding modules (CBMs). The PLs are classified into seven
families: 7, 8, 12, 15, 31, 38 and 42. The proportion of CAZymes in strain HB172198T is
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about 4.8%, which is consistent with the statistics of Mann et al. [31]. In general, CAZymes
seldom exceed 5% in the genomes of bacteria that specialize in carbohydrate degradation,
and typically account for not more than about 2% in most bacterial genomes [32]. The
capability of strain HB172198T to degrade various polysaccharides was evident from the
annotation of the genome. The genome encodes many kinds of enzymes capable of de-
grading a diverse range of algal and plant cell wall polysaccharides such as alginate, agar,
carrageenan, fucoidan, chitin, xylan, glycosaminoglycan, pullulan, lichenstarch, cellulose,
glucan and starch (Table 2). All of these enzymes belong to GHs and PLs.

Table 1. General features of the P. algicola HB172198T genome.

Category Number

Genome size (bp) 4,475,055
G+C content (%) 51.2%
Total genes predicted 4182
Protein-coding genes 4001
tRNA genes 80
rRNA genes 27

5S rRNA 9
16S rRNA 9
23S rRNA 9

ncRNAs 4
Pseudo genes (total) 70

Table 2. Diverse genes related to polysaccharide degradation identified in the genome of P. algicola HB172198T.

Catabolic Enzymes Enzyme Family No. of Enymes

Alginate lyase
PL7 1
PL15 1
PL38 2

β-Agarase GH50 1
GH86 1

ι-Carrageenase GH82 1

β-1,4-Endo-glucanase GH9 1

β-Glucosidase GH3 4

α-Amylase
GH2 1

GH13 3
GH13|CBM34 1

Pullulanase
CBM48|GH13|CBM41 1

CBM41|CBM41|CBM48|GH13|CBM41|GH13 1

Lichenase GH16 1

Endo-1,4-β-xylanase
CBM22|GH10|CBM9 1

CBM22|GH10|CBM9|CBM9 1
GH11 1

Xylan 1,4-β-xylosidase GH43 3
GH52 1

α-Glucosidase
GH4 1

GH13 1
CBM34|GH13 1

Heparinase PL12 1

Chitinase GH18 1
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Table 2. Cont.

Catabolic Enzymes Enzyme Family No. of Enymes

α-L-fucosidase GH29 1

Glucan
endo-1,3-β-D-glucosidase CBM54|GH16|CBM4|CBM4|CBM4|CBM4 1

Glycosaminoglycan
polysaccharide lyase PL8 1

α-Galactosidase GH4 1

β-Galactosidase
GH36 1
GH2 4

GHnc|CBM66 1

α-L-rhamnosidase GH78 3

α-Mannosidase
GH38 2

GH125 1

α-Phosphotrehalase GH13 1

Arabinanase GH117 1

Further analysis revealed that four of the putative PLs, ORF00773 (accession number:
QCT01494.1), ORF02660 (PL15, accession number: QCT03372.1), ORF02668 (PL7, accession
number: QCT03380.1) and ORF3334 (PL38, accession number: QCT04045.1), were involved
in alginate degradation. The open reading frames (ORFs) of the orf02660, orf02668, orf00773
and orf03334 genes consist of 2319, 936, 3042 and 4833 bp nucleotides; encode 772, 312,
1013 and 1611 amino acids; and contain alginate lyase domains of the PL15, 7, 38 and
38 families, respectively (Table S1). Aly38A was the first alginate lyase belonging to
the PL38 family obtained from Agarivorans sp. B2Z047 that has been found to degrade
alginate [13]. In the CAZy database, a total of 1383 proteins are classified as PL38 family
members. Only two of them, CUL-I and TpPL38A, have been characterized as endo-
β-1,4-glucuronan lyase, and CUL-I also exhibits alginate lyase activity as well [32,33].
Detailed analysis of the CAZyme information of Paenibacillus species was rarely reported.
Paenibacillus sp. strain MY03 from root soil of cypress had the capability of metabolizing
polysaccharides of marine algae and animals. Various polysaccharidase genes related to
seaweed degradation were found in its genome, including a glucoamylase, a mannanase,
an alginate lyase, 3 putative agarases, 4 glucanases and 10 xylanases [23]. However, further
analysis based on the dbCAN server (http://cys.bios.niu.edu/dbCAN2, accessed on 8 May
2022) revealed that five of the putative PLs were involved in alginate degradation, namely
two PL6, one PL14 and two PL15, which was inconsistent with Liu et al. [23]. No genomic
data for other Paenibacillus species with the ability to degrade alginate were found on the
NCBI webpage. To further confirm the attribution of the alginate lyases, a phylogenetic
tree was constructed according to the amino acid sequences of the four enzymes and other
reported alginate lyases. As shown in Figure 2, ORF02660 and ORF02668 were clearly
located in the clade with the PL15 and PL7 families, respectively; moreover, ORF00773 and
ORF03334 were located in the clade with the PL38 family and formed a distinct branch,
which was consistent with the results predicted by the CAZy database.

Additionally, two agar-degrading genes belonging to the GH50 and GH86 fami-
lies were predicted, whose members are known in the CAZy database for β-agarase
and porphyrinase activities [34]. Agarose is generally hydrolyzed by GH86 family β-
agarase to generate neoagarotetraose and neoagarohexaose, while neoagarooligosaccha-
ride is generally hydrolyzed by GH50 family β-agarase to generate neoagarobiaose [35].
Both of the β-agarases in strain HB172198T would degrade agar to neoagarobiaose. The
ι-carrageenase identified in strain HB172198T belongs to the GH82 family. It is reported that
all members of the GH82 family demonstrate carrageenase activity against ι-carrageenan.

http://cys.bios.niu.edu/dbCAN2
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Figure 2. Neighbor-joining molecular phylogenetic tree of alginate lyases belonging to PL7, PL15
and PL38 families based on predicted amino acid sequences. Bootstrap values (1000 replicates) are
shown as percentages at each node for values. The scale bar represents 0.2 nucleotide substitutions
per position. Putative alginate lyases of strain HB172198T are highlighted in bold.

Furthermore, two cellulase genes were identified in strain HB172198T. One β-1,4-endo-
glucanase (GH9 family) and four β-glucosidases (GH3 family) were found in the genome
of strain HB172198T. Generally, cellulose hydrolysis is achieved by the synergistic action of
endo-glucanase, exo-glucanase and β-glucosidase.

Some bacteria were reported as degraders of xylan and called xylanases. P. algicola
HB172198T can also degrade xylan, which is a group of hemicelluloses found in plant cell
walls and some algae [36]. Seven putative xylanases exist in strain HB172198T, including
three putative endo-1,4-β-xylanases (GH10 and GH11 families), and four putative xylan
1,4-β-xylosidases (GH43 and GH52 families). Two endo-1,4-β-xylanases are grouped with
the GH10 family, which are modular enzymes. CBM9 and CBM22 modules were observed
and the modular structure of xylanases facilitates the binding of enzymes to substrates.

A total of five α-amylase and two pullulanase genes were identified. One α-amylase is
classified in the GH2 family and three in GH13 families, whereas the fifth one is a modular
enzyme belonging to the GH13 family that is appended with carbohydrate-binding modules
CBM34. The two pullulanases are both modular enzymes belonging to the GH13 family
with additional carbohydrate-binding modules CBM48 and CBM41.

Besides the enzymes responsible for degrading these above-mentioned polysaccha-
rides, numerous other saccharide-degrading enzymes were predicted from the P. algicola
HB172198T genome, including α-L-fucosidase, lichenase, glucan endo-1,3-β-D-glucosidase,
α-glucosidase, α-galactosidase, β-galactosidase, α-L-rhamnosidase, α-mannosidase, arabi-
nanase and α-phosphotrehalase. These masses of CAZymes comprise a complex system
for carbohydrate catabolism in strain HB172198T.

2.4. Test of Carbohydrate Utilization

The OD600 of the fermentation broth was measured after 48 h incubation at 180 rpm
and 30 ◦C on an orbital shaker. Cell growth represents that the tested carbohydrates can
be utilized by the strain as a carbon source for its growth. Excitingly, all the tested carbon
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sources could be utilized for the growth of strain HB172198T as the sole carbon source,
such as alginate, carrageenan, agar, chitin, starch, cellulose, hemicellulose, xylan, xanthan,
sucrose, lactose, maltose, glucose, rhamnose, fructose, xylose and arabinose (Table S2).
For the complex polysaccharides, strain HB172198T grew best on alginate (OD600 = 1.152),
followed by chitin, carrageenan, xanthan, xylan, starch, agar, hemicellulose and cellu-
lose. Therefore, the results indicate that strain HB172198T harbors powerful enzymes for
utilizing various simple and complex carbohydrates, which would enable it to adapt to
various environments.

2.5. Enzymatic Properties of Alginate Lyase

Fermentation was carried out using the optimal fermentation medium and condi-
tion; the supernatant was obtained by centrifugation, with the alginate lyase activity of
152 U/mL determined by the ultraviolet absorption method. The culture supernatant was
precipitated by saturation of ammonium sulfate (80%) to prepare extracellular alginate
lyase. The specific activity was increased to 1839 U mg/L from the initial 152 U mg/L, with
a yield of 12.1.

The effects of pH and temperature on the activity of the partially purified alginate
lyase were examined. As shown in Figure 3A, the alginate lyase from strain HB172198T

exhibited maximum enzymatic activity at 50 ◦C. Nearly 80% of the highest activity was
manifested at the temperature range of 40–60 ◦C, while almost no detectable activity was
observed at 4 ◦C and 80 ◦C. The thermostability of alginate lyases was determined at
a temperature ranging from 4 to 90 ◦C (Figure 3B). The alginate lyases were relatively stable
at temperatures lower than 40 ◦C; approximately 100% of the activity was maintained after
incubation at less than 40 ◦C for 1 h. As the temperature rose above 40 ◦C, the activity
declined dramatically; and the vast majority of the activity was lost above 70 ◦C. As shown
in Figure 3C, the activity was the highest at pH 8.0, and above 70% of the maximum activity
when the pH value was between 7.0 and 9.0. The activity was the most stable at pH 7.0,
above 90% of the activity was retained at pH 6–8 and about 60% of the activity at pH 3.0 and
pH 9.0 (Figure 3D). These results indicate that the alginate lyases have good pH stability.
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activity, but Zn2+, Mn2+ and urea had weak inhibitory effect. Ba2+ showed some inhibitory
effect with 80.3% of the relative activity, and EDTA directly reduced the enzymatic activity
to 27.1% of the control group.

The substrate specificity was detected by measuring the increased absorbance at
235 nm of the unsaturated uronic acids that were generated from the oligomers via a β-
elimination reaction. According to the results of the substrate specificity assay, the alginate
lyases from strain HB172198T exhibited higher activity with polyM than with alginate and
polyG (Figure S3). The ability to degrade polyG was only 56.0% of that of alginate, while
the ability to degrade polyM was 2.52 times that of alginate. Obviously, the enzymes could
act more significantly on polyM than polyG and sodium alginate. This suggested that the
enzymes were suitable for the production of mannuronate oligosaccharides from polyM
blocks, and the production of oligosaccharides from sodium alginate.

2.6. Enzymatic Degradation of Sodium Alginate

The extent of polysaccharide degradation was determined using the partially pu-
rified alginate lyase, the contents of reducing and total sugars were monitored and the
average DP of the alginate fragments was calculated. Under the optimized conditions of
1.2% sodium alginate, 18.60 U/mL enzyme, pH 7.0 and 45 ◦C for 36 h, the yield of reducing
sugar and the average DP are shown in Figure 4. The action of the enzyme solution on
sodium alginate resulted in the release of reducing sugars, with a 50% increase in reducing
sugars during 12 h incubation. With the increase of enzymatic hydrolysis time, the content
of reducing sugar increased rapidly, and the average DP of AOS decreased rapidly. After
36 h, both of them were gradually stabilized, the reducing sugar content reached a max-
imum value of 34.0 mg/L, and the average DP of oligosaccharides reached a minimum
value of 14.2. After hydrolysis for 36 h, there was no obvious increase in the yield of
reducing sugars, partially because the enzyme lost its activity after being incubated at
45 ◦C for a long time.
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Figure 4. Effect of enzymolysis time on the enzymatic hydrolysis of sodium alginate under the
optimized conditions of 1.2% sodium alginate, 18.60 U/mL enzyme, pH 7.0 and 45 ◦C.

TLC was used to detect AOS with low DPs. As the hydrolysis process proceeded,
AOS with different DPs appeared (Figure S4). Lanes 1-8 mean the digested samples with
enzymolysis times of 0, 2, 6, 12, 24, 36, 48 and 60 h, respectively. When incubated for
2 and 6 h, small amounts of low DP oligosaccharides began to appear. When incubated for
24–48 h, AOS with small DP showed higher content, which was consistent with the detec-
tion results of reducing sugars. In addition, the oligosaccharide content decreased to some
extent after 60 h of incubation. Results showed that the AOS with various low degrees of
polymerization (DPs 2–8) were continuous. In general, only oligosaccharides below DP8
can be developed under the TLC conditions employed. There was no monosaccharide in
the TLC results, indicating that the four alginate lyases produced by strain HB172198T were
all endolytic lyases.
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3. Materials and Methods
3.1. Materials and Strains

The polysaccharides of sodium alginate, carrageenan, agar, cellulose, chitin, starch,
glucan, hemicellulose, xylan and xanthan were purchased from Sangon (Shanghai, China).
PolyM and polyG (purity > 97%) were purchased from Qingdao Haizhida Biotech Co., Ltd.
(Qingdao, China). Other chemicals and reagents used in this study were of analytical grade.

3.2. Screening and Identification of Strain HB172198T

Brown seaweed samples were collected from Qishui Bay, Hainan, China (19◦38′6′′ N,
111◦0′21′′ E). For the isolation of spore-forming bacteria, the mashed sample was incubated
at 80 ◦C for 15 min to kill any vegetative cells. Then, suspension liquid was serially diluted
with sterile saline water and spread on modified 2216E agar (MA; Difco) supplemented
with 0.5% sodium alginate. The alginate lyase activity was preliminarily screened with the
agar plate method using 1-M calcium chloride as the enzyme-producing indicator. The
substrate specificity of alginate lyase can be determined by discriminating between the
types of gelation (i.e., halo or ring formation) caused by the interaction between calcium
ions and depolymerized alginates [30]. The bacterial isolate HB172198T was picked and
identified using a polyphasic approach [14].

3.3. Genome Sequencing and Annotation

Cells of strain HB172198T were cultured overnight in 2216E medium (MB; Difco).
DNA was extracted using TIANamp Bacteria DNA Kit (Qiagen, DP302) following the
manufacturer’s protocol. The quality and size of genomic DNA were determined by
0.8% agarose gel electrophoresis, NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA)
and Qubit version 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). A high-quality genome
sequence of strain HB172198T was obtained using the PacBio RSII system (Pacific Bio-
sciences, Menlo Park, CA, USA) and Illumina X10 (San Diego, CA, USA) at the Chinese
National Human Genome Center (Shanghai, China). The 10 kb library of inserts was
constructed by using DNA Template Prep Kit 4.0 and sequenced on the Pacbio RSII sys-
tem (Pacific Biosciences, Menlo Park, CA, USA). The pair-end library of the 300 bp insert
was constructed by using the TruSeqTM DNA Sample Prep Kit-Set A and sequenced on
Illumina X10 (Illumina, San Diego, CA, USA). The clean data from Illumina sequenc-
ing were corrected for the assembly of PacBio by HGAP v. 23 to generate one contig
without gaps. Protein-coding sequences were predicted with Glimmer version 3.02 soft-
ware [37]; transfer RNA (tRNA) and ribosomal RNA (rRNA) were predicted with tR-
NAScan [38] and RNAmmer [39]. Functional annotation of the predicted protein-coding
genes was performed against the non-redundant protein (NR) database and the GO [40],
COG [41], KEGG [42] databases, respectively. The CAZymes and carbohydrate-binding
modules were predicted using the BLASTP and CAZy database (http://www.cazy.org/,
accessed on 25 February 2022) [34]. The signal peptide was predicted using the SingalP
server (https://services.healthtech.dtu.dk/service.php?SignalP-5.0, accessed on 26 Febru-
ary 2022) [43]. The theoretical isoelectronic point (pI) and molecular weight (Mw) were
predicted online (http://web.expasy.org/protparam/, accessed on 26 February 2022). The
protein domain prediction was performed with the Simple Modular Architecture Research
Tool (SMART) (http://web.expasy.org/protparam/, accessed on 26 February 2022). The
neighbor-joining phylogenetic tree was generated based on the reported alginate lyases
using MEGA version 7.0 [44].

3.4. Utilizing Abilities of Carbohydrate

The alginate-degrading strain HB172198T, which was classified into the genus Paeni-
bacillus, was further investigated regarding its ability to utilize a range of different carbohy-
drates as sole carbon source in a marine minimal medium (MMM; w/v: 0.5% (NH4)2SO4,
0.2% K2HPO4, 2% NaCl, 0.1% MgSO4·7H2O, 0.001% FeSO4·7H2O, pH 7.5), containing 0.5%
of each mono-, oligo- or polysaccharide substrate. The following carbohydrates were used

http://www.cazy.org/
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/


Mar. Drugs 2022, 20, 388 10 of 13

as sole carbon source: polysaccharides such as sodium alginate, carrageenan, agar, colloidal
chitin, starch, cellulose, hemicellulose, xylan and xanthan; disaccharides such as sucrose,
lactose and maltose; monosaccharides such as glucose, rhamnose, fructose, xylose and
arabinose. After incubating for 48 h on an orbital shaker at 180 rpm and 30 ◦C, the OD600
was detected to determine whether the strain could utilize the tested carbohydrate as the
carbon source for its growth.

3.5. Detection of Alginate Lyase Activity and Enzymatic Properties

Strain HB172198T was propagated at 30 ◦C and 180 rpm using the optimized liquid
medium, which contained: sodium alginate 7.50 g/L, tryptone 13.57 g/L, NaCl 29.75 g/L,
MgSO4·7H2O 0.08 g/L, pH 7.0. After 36 h of incubation, cells were removed by cen-
trifugation at 10,000 rpm, 4 ◦C for 15 min. The supernatant was taken as the crude en-
zyme solution to detect alginate lyase activity with the ultraviolet absorption method [45].
One unit of enzyme activity was defined as an increase of 0.01 in absorbance per min
at 235 nm.

In the following, the operating temperature of alginate lyase was maintained at
4 ◦C unless otherwise stated. The cell-free supernatant was precipitated by 80% saturation
of ammonium sulfate and kept overnight. The precipitated protein was collected by
centrifugation (10,000 rpm, 30 min) and dissolved in 0.05 M phosphate-citrate buffer at
pH 7.0. This enzyme solution was dialyzed in a dialysis bag (MWCO: 12,000–14,000 Da)
against the same buffer four times, changing the dialysis buffer every six hours. The dialyzed
supernatant was used as a partially purified alginate lyase for the enzymatic property.

To determine the optimal temperature, the enzyme activity was measured at various
temperatures (4 ◦C, 30–80 ◦C at 10 ◦C increments) and pH 7.0. To test thermal stability, the
enzyme was preincubated at various temperatures and pH 7.0 for 1 h. To determine the
optimal pH, the enzyme activity was measured at various pHs using citrate-phosphate
(pH 3.0–7.0) and Tris-HCl (pH 8.0–9.0) buffers at 40 ◦C. To test pH stability, the enzyme
was preincubated at various pHs (pH 3.0–9.0, with increments of 1) at 4 ◦C for 24 h. The
highest activity was taken as 100%. To determine the metal ions and compounds, the
enzyme activity was measured at 1-mM KCl, CaCl2, NH4Cl, FeSO4, MgCl2, ZnSO4, BaCl2,
MnSO4, urea and ethylenediamine tetraacetic acid (EDTA), respectively. The enzyme
activity without the treatment or addition of extra substances was defined as 100%. All
reactions were performed in triplicate. After each treatment, the enzyme activity was
estimated by measuring the absorbance at 235 nm.

The enzyme activity assays of sodium alginate, polyM and polyG were defined for
investigating the substrate specificity. The amount of yielded unsaturated uronic acid was
monitored by recording the absorbance of the reaction mixture at 235 nm, using sodium
alginate as the reference (100%) [46].

3.6. Preparation and Detection of the Enzymatic Degradation of Alginate

To elucidate the effect of the enzymes concerning polysaccharide, alginate degrada-
tion was performed with 12 g/L sodium alginate in 50 mM phosphate buffer (pH 7.0) as
a substrate. The experiments were carried out under the optimized conditions of
1.2% sodium alginate, 18.60 U/mL enzyme, pH 7.0 and 45 ◦C. At intervals (0, 2, 6, 12,
24, 36, 48 and 60 h), aliquot samples (10 mL) were taken, boiled for 10 min to denature
the enzymes and the polysaccharides were precipitated overnight with three times the
volume of ethanol. After centrifugation at 10,000 rpm for 15 min, the supernatant was
taken, lyophilized and then redissolved in distilled water to reduce sugar, total sugar and
TLC testing. The content of reducing sugar was determined by using 3,5-dinitrosalicylic
acid (DNS) colorimetry [47]. The content of total carbohydrate was determined with the
phenol-sulfuric acid method described by Doubois et al. [48]. The average DP of the
alginate fragments was calculated by dividing the total sugar content by the reducing
sugar content. To determine the enzymatic depolymerization pattern of sodium alginate,
AOSs were also measured with the TLC method on a silica gel high-performance TLC
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plate (Merck, Germany) with the solvent system (1-butanol/formic acid/water 4:5:1) and
visualized by heating at 110 ◦C for 5 min after spraying with 10% (v/v) sulfuric acid in
ethanol [49]. The guluronic acid sodium salt monomers, trimers and pentamers (1 mg/mL)
(Qingdao Bozhi Huili Biotech, Qingdao, China) were used as standards.

4. Conclusions

In this work, the genome of a novel alginate lyase-producing marine bacterium,
designated Paenibacillus algicola HB172198T, was sequenced. The assembled fine genome
contains 4,475,055 bp with G + C content of 51.2%. Among 4182 genes, 4001 protein-
coding genes and 80 tRNA and 27 rRNA sequences were predicted. Analysis of nucleotide
sequence of predicted gene using the CAZymes Analysis Toolkit indicated that strain
HB172198T encodes 191 CAZymes, including 80 glycoside hydrolases, 11 carbohydrate
esterases, 9 polysaccharide lyases and 38 carbohydrate-binding modules. In addition,
abundant putative enzymes involved in degrading polysaccharide were found, including
alginate lyases, agarase, carrageenase, cellulase, xylanases, amylase, pullulanase, chitinase,
xanthanase, fucosidase, lichenase, glucanase, etc. The crude extracellular alginate lyase
activity of strain HB172198T reached 152 U/mL using the optimized liquid medium at 30 ◦C
and 180 rpm for 36 h. The average DP of oligosaccharide-degrading sodium alginate was
maintained at about 14.2, and the oligosaccharide components of DP2-DP8 were present as
well. Our results show that Paenibacillus algicola HB172198T is therefore a source of potential
MP-degrading biocatalysts for biorefinery applications and oligosaccharide preparation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md20060388/s1: Figure S1: Gelation reactions of strain HB172198T

observed on the plate covered by the CaCl2 solution; Figure S2: Transmission electron micrograph of
cells of strain HB172198T from a 2-day-old culture on MA. Bar, 2 µm; Figure S3: Substrate specificity
of the alginate lyases from strain HB172198T; Figure S4: TLC detection results of AOS; Table S1:
Characteristics of the alginate lyases identified in the genome of strain HB172198T; Table S2: The
ability of carbohydrates-utilization by Strain HB172198T.
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